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Introduction

Homogenization theory studies differential equations with rapidly
oscillating coefficients. One is interested in the behavior of the solutions in
the small period limit.

A broad literature is devoted to homogenization
problems. First of all, we mention the books

A. Bensoussan, J.-L. Lions, G. Papanicolaou. Asymptotic analysis for
periodic structures, 1978.

E. Sanchez-Palencia. Nonhomogeneous media and vibration theory,
1980.

N. S. Bakhvalov, G. P. Panasenko. Homogenization: averaging of
processes in periodic media, 1984.

V. V. Zhikov, S. M. Kozlov, O. A. Oleinik. Homogenization of
differential operators, 1993.
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Introduction

One of the methods in homogenization theory is a spectral approach based
on the Floquet-Bloch theory and the spectral perturbation theory.
Mention the following papers where the spectral method was used:

E. V. Sevost’yanova, Asymptotic expansion of the solution of a
second-order elliptic equation with periodic rapidly oscillating
coefficients, Math. USSR-Sbornik, 1982.

V. V. Zhikov, Spectral approach to asymptotic diffusion problems,
Diff. Equations, 1989.

C. Conca, R. Orive, M. Vanninathan, Bloch approximation in
homogenization and applications, SIAM J. Math. Anal., 2002.
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Introduction

We will discuss the operator-theoretic (spectral) approach to
homogenization problems that was suggested and developed in a series of
papers by M. Birman and T. Suslina (in 2001–2008).

The main idea of our approach is that the homogenization can be studied
as a spectral threshold effect at the bottom of the spectrum of a periodic
elliptic operator.
Consider the simplest homogenization problem. Let ε > 0 be a small
parameter. In L2(Rd), consider the operator

Aε = −div g(x/ε)∇.

Here g(x) is positive definite and bounded (d × d)-matrix-valued function,
periodic with respect to some lattice of periods. The operator Aε is the
acoustics operator, it describes a periodic acoustical medium with rapidly
oscillating parameters.

Tatiana Suslina (SPbSU) Spectral Approach to Homogenization Durham, July 2016 5 / 38



Introduction

We will discuss the operator-theoretic (spectral) approach to
homogenization problems that was suggested and developed in a series of
papers by M. Birman and T. Suslina (in 2001–2008).
The main idea of our approach is that the homogenization can be studied
as a spectral threshold effect at the bottom of the spectrum of a periodic
elliptic operator.

Consider the simplest homogenization problem. Let ε > 0 be a small
parameter. In L2(Rd), consider the operator

Aε = −div g(x/ε)∇.

Here g(x) is positive definite and bounded (d × d)-matrix-valued function,
periodic with respect to some lattice of periods. The operator Aε is the
acoustics operator, it describes a periodic acoustical medium with rapidly
oscillating parameters.

Tatiana Suslina (SPbSU) Spectral Approach to Homogenization Durham, July 2016 5 / 38



Introduction

We will discuss the operator-theoretic (spectral) approach to
homogenization problems that was suggested and developed in a series of
papers by M. Birman and T. Suslina (in 2001–2008).
The main idea of our approach is that the homogenization can be studied
as a spectral threshold effect at the bottom of the spectrum of a periodic
elliptic operator.
Consider the simplest homogenization problem. Let ε > 0 be a small
parameter. In L2(Rd), consider the operator

Aε = −div g(x/ε)∇.

Here g(x) is positive definite and bounded (d × d)-matrix-valued function,
periodic with respect to some lattice of periods. The operator Aε is the
acoustics operator, it describes a periodic acoustical medium with rapidly
oscillating parameters.

Tatiana Suslina (SPbSU) Spectral Approach to Homogenization Durham, July 2016 5 / 38



Introduction

We will discuss the operator-theoretic (spectral) approach to
homogenization problems that was suggested and developed in a series of
papers by M. Birman and T. Suslina (in 2001–2008).
The main idea of our approach is that the homogenization can be studied
as a spectral threshold effect at the bottom of the spectrum of a periodic
elliptic operator.
Consider the simplest homogenization problem. Let ε > 0 be a small
parameter. In L2(Rd), consider the operator

Aε = −div g(x/ε)∇.

Here g(x) is positive definite and bounded (d × d)-matrix-valued function,
periodic with respect to some lattice of periods.

The operator Aε is the
acoustics operator, it describes a periodic acoustical medium with rapidly
oscillating parameters.

Tatiana Suslina (SPbSU) Spectral Approach to Homogenization Durham, July 2016 5 / 38



Introduction

We will discuss the operator-theoretic (spectral) approach to
homogenization problems that was suggested and developed in a series of
papers by M. Birman and T. Suslina (in 2001–2008).
The main idea of our approach is that the homogenization can be studied
as a spectral threshold effect at the bottom of the spectrum of a periodic
elliptic operator.
Consider the simplest homogenization problem. Let ε > 0 be a small
parameter. In L2(Rd), consider the operator

Aε = −div g(x/ε)∇.

Here g(x) is positive definite and bounded (d × d)-matrix-valued function,
periodic with respect to some lattice of periods. The operator Aε is the
acoustics operator, it describes a periodic acoustical medium with rapidly
oscillating parameters.

Tatiana Suslina (SPbSU) Spectral Approach to Homogenization Durham, July 2016 5 / 38



Introduction

Consider the following equation in Rd :

Aεuε + uε = F , F ∈ L2(Rd).

It turns out that there exists a limit: uε → u0, as ε→ 0. Here u0 is the
solution of the so called ”homogenized” (or ”effective”) equation

A0u0 + u0 = F ,

where A0 is the effective operator A0 = −div g 0∇ with constant positive
matrix g 0 called the effective matrix.
From physical point of view the convergence uε → u0 means
homogenization of the medium: a medium with rapidly oscillating
parameters in the small period limit behaves like a homogeneous medium
with constant effective parameters. Mathematicians are interested in the
character of convergence and estimates of the error uε − u0.
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Introduction

We prove the error estimate

‖uε − u0‖L2(Rd ) 6 Cε‖F‖L2(Rd ). (1)

This estimate is order-sharp. It can be formulated in the operator terms:

‖(Aε + I )−1 − (A0 + I )−1‖L2(Rd )→L2(Rd ) 6 Cε. (2)

Such estimates are called operator error estimates in homogenization
theory. In order to obtain estimate (2), it is useful to apply the scaling
transformation. We have the following identity:

‖(Aε + I )−1 − (A0 + I )−1‖L2→L2 = ε2‖(A + ε2I )−1 − (A0 + ε2I )−1‖L2→L2 ,

where A = −div g(x)∇.
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Introduction

The bottom of the spectrum of A is the point λ = 0. This point is called
”a threshold”.

Only a small part of the spectrum near the threshold is
essential for our problem. Indeed, fix sufficiently small δ > 0. Let Eδ be
the spectral projection of A for the interval [0, δ]. Obviously, we have

‖(A + ε2I )−1E⊥δ ‖L2(Rd )→L2(Rd ) 6 δ−1.

So, the term ε2(A + ε2I )−1E⊥δ is estimated by Cε2 and ”moves to error”.
It remains to study the operator (A + ε2I )−1Eδ. It is natural to expect
that the behavior of this operator can be described in terms of the
”threshold characteristics” (the spectral characteristics of A near the
bottom of the spectrum). That is why we can treat homogenization as a
spectral threshold effect. Using this main idea, we have developed an
operator-theoretic approach to homogenization and have obtained the
operator error estimates for a wide class of matrix differential operators.
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Statement of the problem

Let Γ be a lattice in Rd , let Ω be the cell of Γ.
By Γ̃ we denote the dual lattice. Let Ω̃ be the Brillouin zone of Γ̃.

Example:

Γ = Zd , Ω = (0, 1)d , Γ̃ = (2πZ)d , Ω̃ = (−π, π)d .

By L2 = L2(Rd ;Cn) we denote the L2-space of Cn-valued functions in Rd .
Now we introduce the class of second order DOs. Let A be the operator in
L2(Rd ;Cn) admitting the following factorization

A = f (x)∗b(D)∗g(x)b(D)f (x), D = −i∇.

Here g(x) is an (m×m)-matrix, f (x) is an (n× n)-matrix, and b(D) is an
(m × n)-matrix DO. It is assumed that m > n.
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Statement of the problem

A = f (x)∗b(D)∗g(x)b(D)f (x).

Suppose that g(x) and f (x) are Γ-periodic and such that

f , f −1 ∈ L∞; g , g−1 ∈ L∞; g(x) > 0.

The operator b(D) is given by

b(D) =
d∑

j=1

bjDj ,

where bj are constant (m × n)-matrices. We assume that the symbol

b(ξ) =
∑d

j=1 bjξj satisfies

rank b(ξ) = n, 0 6= ξ ∈ Rd .

This condition is equivalent to

α01n 6 b(θ)∗b(θ) 6 α11n, |θ| = 1, 0 < α0 6 α1 <∞. (3)
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Statement of the problem

The precise definition of A is given in terms of the quadratic form

a[u,u] =

∫
Rd

〈g(x)b(D)(f (x)u(x)), b(D)(f (x)u(x))〉 dx,

Dom a = {u ∈ L2(Rd ;Cn) : f u ∈ H1(Rd ;Cn)}.

Under our assumptions, this form is closed and nonnegative. By definition,
A is a selfadjoint operator in L2(Rd ;Cn) generated by this form. The form
a[u,u] satisfies the two-sided estimates

c0‖D(f u)‖2
L2

6 a[u,u] 6 c1‖D(f u)‖2
L2
, u ∈ Dom a.

In this sense, A is elliptic. In the case where f = 1, we use the notation

Â = b(D)∗g(x)b(D).

Example. The acoustics operator: Â = −div g(x)∇ = D∗g(x)D.
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Statement of the problem

Let ε > 0 be a small parameter. We use the notation

φε(x) = φ
(x
ε

)
, ε > 0.

Main object

Our main objects are the operators

Âε = b(D)∗g ε(x)b(D), Aε = (f ε(x))∗b(D)∗g ε(x)b(D)f ε(x).

Problem

Our goal is to study the behavior of the resolvents (Âε + I )−1 and
(Aε + I )−1 for small ε.
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The effective matrix. The effective operator

Definition of the effective matrix

Let Λ(x) be the (n ×m)-matrix-valued Γ-periodic solution of the problem

b(D)∗g(x)(b(D)Λ(x) + 1m) = 0,

∫
Ω

Λ(x) dx = 0.

Then the effective matrix g 0 is an (m ×m)-matrix given by

g 0 = |Ω|−1

∫
Ω

g̃(x) dx, g̃(x) := g(x)(b(D)Λ(x) + 1m).

It turns out that the matrix g 0 is positive definite.
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The effective matrix. The effective operator

Proposition

The effective matrix satisfies the estimates (known as the Voight-Reuss
bracketing)

g 6 g 0 6 g .

Here

g = |Ω|−1

∫
Ω

g(x) dx, g =

(
|Ω|−1

∫
Ω

g(x)−1 dx

)−1

.

If m = n, then g 0 = g.

The operator
Â0 = b(D)∗g 0b(D)

is called the effective operator for Â.
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Results: approximation for the resolvent

Now we formulate the main results. We start with the principal term of
approximation for the resolvent of Âε.

Theorem 1 [M. Birman and T. Suslina]

Let Âε = b(D)∗g εb(D), and let Â0 = b(D)∗g 0b(D) be the effective
operator. Then

‖(Âε + I )−1 − (Â0 + I )−1‖L2→L2 6 Cε, 0 < ε 6 1. (4)

The constant C depends only on the norms ‖g‖L∞ , ‖g−1‖L∞ , on α0, α1,
and the parameters of the lattice Γ.

Tatiana Suslina (SPbSU) Spectral Approach to Homogenization Durham, July 2016 15 / 38



Results: approximation for the resolvent

Now we formulate the main results. We start with the principal term of
approximation for the resolvent of Âε.
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Results: approximation for the resolvent

If f 6= 1, the resolvent of the operator Aε = (f ε)∗b(D)∗g εb(D)f ε cannot
be approximated by the resolvent of some operator with constant
coefficients.

Theorem 2 [M. Birman and T. Suslina]

We have

‖(Aε + I )−1 − (f ε)−1(Â0 + Q)−1((f ε)∗)−1‖L2→L2 6 Cε, 0 < ε 6 1. (5)

Here

Q = |Ω|−1

∫
Ω

(f (x)f (x)∗)−1 dx.

The constant C depends only on the norms ‖g‖L∞ , ‖g−1‖L∞ , ‖f ‖L∞ ,
‖f −1‖L∞ , on α0, α1, and the parameters of the lattice Γ.

Estimates (4) and (5) are order-sharp, and the constants in estimates are
well controlled.
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Results: more accurate approximation for the resolvent

In order to describe more accurate approximation of the resolvent, we need
to introduce a corrector K (ε):

K (ε) = K1(ε) + K1(ε)∗ + K3. (6)

Here the operator K1(ε) is given by

K1(ε) = ΛεΠεb(D)(Â0 + I )−1, (7)

and Πε is the auxiliary smoothing operator

(Πεu)(x) = (2π)−d/2

∫
Ω̃/ε

e i〈x,ξ〉û(ξ) dξ,

û(ξ) is the Fourier image of u(x). The operator K3 is given by

K3 = −(Â0 + I )−1b(D)∗L(D)b(D)(Â0 + I )−1,

where L(D) is the first order differential operator with the symbol

L(ξ) = |Ω|−1

∫
Ω

(Λ(x)∗b(ξ)∗g̃(x) + g̃(x)∗b(ξ)Λ(x)) dx.
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Results: more accurate approximation for the resolvent

Theorem 3 [M. Birman and T. Suslina]

We have

‖(Âε + I )−1 − (Â0 + I )−1 − εK (ε)‖L2→L2 6 Cε2, 0 < ε 6 1. (8)

The constant C depends on ‖g‖L∞ , ‖g−1‖L∞ , α0, α1, and the
parameters of the lattice Γ.

Remark. In some cases we can get rid of Πε and use a simpler corrector

K 0(ε) = K 0
1 (ε) + (K 0

1 (ε))∗ + K3, K 0
1 (ε) = Λεb(D)(Â0 + I )−1.

In particular, this is possible in the following cases: a) if d 6 4, b) for the
scalar operator Â = D∗g(x)D = −div g(x)∇, where g(x) has real entries.

A similar but more complicated result is true for operators Aε (we will not
dwell on this).
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Results: approximation of the resolvent in the energy norm

Now we approximate the resolvent in the energy norm.

Theorem 4 [M. Birman and T. Suslina]

Let K1(ε) = ΛεΠεb(D)(Â0 + I )−1. We have

‖(Âε + I )−1 − (Â0 + I )−1 − εK1(ε)‖L2→H1 6 Cε, 0 < ε 6 1. (9)

The constant C depends on ‖g‖L∞ , ‖g−1‖L∞ , α0, α1, and the
parameters of the lattice Γ.

Remark. 1) ‖K1(ε)‖L2→H1 = O(ε−1). 2) In some cases it is possible to

get rid of Πε and use the corrector K 0
1 (ε) = Λεb(D)(Â0 + I )−1. In

particular, this is possible a) if d 6 2, b) for the scalar operator
Â = D∗g(x)D, where g(x) has real entries.

The form of the corrector depends on the type of the operator norm.
The analog of Theorem 4 is true for more general operator Aε.
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particular, this is possible a) if d 6 2, b) for the scalar operator
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Method: the scaling transformation

The results are obtained by the operator-theoretic approach based on the
scaling transformation, the Floquet-Bloch theory, and the analytic
perturbation theory.

For simplicity, let us discuss the case of the operator
Âε and comment on the proof of Theorem 1.
Scaling transformation. Let Tε be the unitary scaling operator in
L2(Rd ;Cn):

(Tεu)(x) = εd/2u(εx).

Then we have
(Âε + I )−1 = ε2T ∗ε (Â + ε2I )−1Tε.

A similar identity is true for (Â0 + I )−1. Hence,

‖(Âε + I )−1 − (Â0 + I )−1‖L2→L2 = ε2‖(Â + ε2I )−1 − (Â0 + ε2I )−1‖L2→L2 .
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(Âε + I )−1 = ε2T ∗ε (Â + ε2I )−1Tε.
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Hence,
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Method: the scaling transformation

Consequently, the required estimate

‖(Âε + I )−1 − (Â0 + I )−1‖L2→L2 6 Cε

is equivalent to

‖(Â + ε2I )−1 − (Â0 + ε2I )−1‖L2(Rd )→L2(Rd ) 6 Cε−1. (10)
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Method: the direct integral expansion

Applying the Floquet-Bloch theory, we decompose Â in the direct integral
of the operators Â(k) acting in L2(Ω;Cn) and depending on the parameter
k ∈ Rd called the quasimomentum.

For this, we need the unitary Gelfand
transformation U . Initially, U is defined on the Schwartz class by the
formula

(Uf)(k, x) = |Ω̃|−1/2
∑
a∈Γ

e−i〈k,x+a〉f(x + a), x ∈ Ω, k ∈ Ω̃.

Next, U extends by continuity to a unitary mapping

U : L2(Rd ;Cn)→ L2(Ω̃× Ω;Cn) =

∫
Ω̃

⊕L2(Ω;Cn) dk.
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Method: the direct integral expansion

The operator Â(k) acts in L2(Ω;Cn) and is given by

Â(k) = b(D + k)∗g(x)b(D + k)

with periodic boundary conditions.

Precisely, Â(k) is a selfadjoint operator
in L2(Ω;Cn) corresponding to the closed nonnegative quadratic form

â(k)[u,u] =

∫
Ω
〈g(x)b(D + k)u, b(D + k)u〉 dx, u ∈ H1

per(Ω;Cn).

Under our assumptions the form â(k) satisfies the two-sided estimates

c0

∫
Ω
|(D+k)u|2 dx 6 â(k)[u,u] 6 c1

∫
Ω
|(D+k)u|2 dx, u ∈ H1

per(Ω;Cn).

(11)
The direct integral expansion for Â is given by the formula

UÂU−1 =

∫
Ω̃
⊕Â(k) dk. (12)
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Method: the spectral properties

By (12), the required estimate (10) is equivalent to the following estimate
which must be uniform in k:

‖(Â(k) + ε2I )−1 − (Â0(k) + ε2I )−1‖L2(Ω)→L2(Ω) 6 Cε−1, k ∈ Ω̃. (13)

Spectral properties. The operators Â(k) have discrete spectrum. By
Ej(k), j ∈ N, we denote the consecutive eigenvalues of Â(k):

E1(k) 6 E2(k) 6 · · · 6 Ej(k) 6 . . .

The functions Ej(k) are called band functions. Band functions Ej(k) are

continuous and periodic with respect to Γ̃. The spectrum of the initial
operator Â has a band structure:

spec Â =
⋃
j∈N

RanEj .

Spectral bands can overlap; there may be gaps in the spectrum.
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Method: the spectral properties

From estimates (11) with k = 0 it is clear that

N := Ker Â(0) = {u ∈ L2(Ω;Cn) : u = c ∈ Cn}, dimN = n.

From (11), by simple variational arguments it follows that

min
k

Ej(k) = Ej(0) = 0, j = 1, . . . , n,

while
min
k

En+1(k) > 0.

So, the first n bands overlap and have the common bottom λ = 0, while
the next band is separated from zero. Moreover,

Ej(k) > c∗|k|2, k ∈ Ω̃, j = 1, . . . , n, c∗ > 0. (14)
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Method: analytic perturbation theory

The operator family Â(k) is an analytic operator family with compact
resolvent.

We want to apply methods of the analytic perturbation theory.
However, there is the following difficulty: if d > 1 (the parameter k is
multidimensional) and n > 1 (the unperturbed operator Â(0) has multiple
eigenvalue λ = 0), then the analytic perturbation theory does not work. To
avoid this difficulty, we distinguish the one-dimensional parameter. We put

k = tθ, t = |k|, θ ∈ Sd−1,

and denote
Â(k) =: A(t,θ).

This operator family is studied by means of the analytic perturbation
theory with respect to the one-dimensional parameter t. But we have to
make estimates uniform in θ. The unperturbed operator is Â(0), and the
perturbed operator is Â(k) = A(t,θ) (with small t = |k|).
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Method: analytic perturbation theory

The family A(t,θ) is studied in the framework of an abstract
operator-theoretic scheme. For this scheme, it is important that this
operator family admits a factorization of the form

A(t,θ) = X (t,θ)∗X (t,θ), X (t,θ) = X0 + tX1(θ).

Here X0 is given by
X0 = g(x)1/2b(D)

with periodic boundary conditions, and X1(θ) is a bounded operator:

X1(θ) = g(x)1/2b(θ).

So, the point λ = 0 is an eigenvalue of multiplicity n for the unpertured
operator Â(0). Then for t 6 t0 the perturbed operator A(t,θ) has exactly
n eigenvalues on the interval [0, δ], while the interval (δ, 3δ) is free of the
spectrum. We control δ and t0 explicitly.
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Method: analytic perturbation theory

By the Kato-Rellich theorem, for t 6 t0 there exist real-analytic branches
of the eigenvalues λl(t,θ) and real-analytic branches of the eigenvectors
ϕl(t,θ) of the operator A(t,θ):

A(t,θ)ϕl(t,θ) = λl(t,θ)ϕl(t,θ), l = 1, . . . , n,

such that the vectors ϕl(t,θ), l = 1, . . . , n, form an orthonormal basis in
the eigenspace of A(t,θ) corresponding to the interval [0, δ].

In fact, the
functions λl(t,θ) partially coincide with Ej(k), but Ej are enumerated in
the increasing order, while λl are enumerated so that they are analytic in t.
For small t 6 t∗(θ) we have the convergent power series expansions:

λl(t,θ) = γl(θ)t2 + µl(θ)t3 + . . . , l = 1, . . . , n,

ϕl(t,θ) = ωl(θ) + tψl(θ) + . . . , l = 1, . . . , n.

We have γl(θ) > c∗ > 0. The vectors ωl(θ), l = 1, . . . , n, form an
orthonormal basis in N. The coefficients γl(θ) and the vectors ωl(θ),
l = 1, . . . , n, are called threshold characteristics of A(t,θ).
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Method: analytic perturbation theory

The crucial notion of our method is the notion of the spectral germ of the
operator family A(t,θ).

Definition of the spectral germ

The selfadjoint operator S(θ) : N→ N such that

S(θ)ωl(θ) = γl(θ)ωl(θ), l = 1, . . . , n,

is called the spectral germ of the operator family A(t,θ) at t = 0.

Thus, the germ contains information about the threshold characteristics.
Next, we calculate the spectral germ:

S(θ) = b(θ)∗g 0b(θ), θ ∈ Sd−1,

where g 0 is the effective matrix. It turns out that the operator family
A0(t,θ) = Â0(k) which corresponds to the effective operator has the same
spectral germ as A(t,θ) = Â(k).
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Tatiana Suslina (SPbSU) Spectral Approach to Homogenization Durham, July 2016 29 / 38



Method: analytic perturbation theory

Threshold approximations. We find the so called threshold
approximations.

Theorem 5 [M. Birman and T. Suslina]

Let F (t,θ) be the spectral projection of the operator A(t,θ)
corresponding to the interval [0, δ]. Let P be the orthogonal projection of
L2(Ω;Cn) onto N. Let S(θ) : N→ N be the spectral germ of A(t,θ).
Then for t 6 t0 we have

‖F (t,θ)− P‖L2(Ω)→L2(Ω) 6 C1t,

‖A(t,θ)F (t,θ)− t2S(θ)P‖L2(Ω)→L2(Ω) 6 C2t3.

Such approximations are proved by integration of the resolvent
(A(t,θ)− zI )−1 over the contour in C which envelopes the interval [0, δ]
equidistantly at the distance δ.
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Method: analytic perturbation theory

Next, with the help of Theorem 5, we find a finite rank approximation of
the resolvent (A(t,θ) + ε2I )−1 in terms of the spectral germ.

Theorem 6 [M. Birman and T. Suslina]

Let P be the orthogonal projection of L2(Ω;Cn) onto N. Let
S(θ) : N→ N be the spectral germ of A(t,θ). Then

‖(A(t,θ) + ε2I )−1 − (t2S(θ) + ε2IN)−1P‖L2(Ω)→L2(Ω) 6 Cε−1,

0 < ε 6 1, t 6 t0.

Since the effective operator family has the same germ, from Theorem 6 we
deduce the required estimate (13):

‖(Â(k) + ε2I )−1 − (Â0(k) + ε2I )−1‖L2(Ω)→L2(Ω) 6 Cε−1, k ∈ Ω̃.

This completes the proof of Theorem 1.
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‖(Â(k) + ε2I )−1 − (Â0(k) + ε2I )−1‖L2(Ω)→L2(Ω) 6 Cε−1, k ∈ Ω̃.

This completes the proof of Theorem 1.

Tatiana Suslina (SPbSU) Spectral Approach to Homogenization Durham, July 2016 31 / 38



Method: analytic perturbation theory

Next, with the help of Theorem 5, we find a finite rank approximation of
the resolvent (A(t,θ) + ε2I )−1 in terms of the spectral germ.

Theorem 6 [M. Birman and T. Suslina]

Let P be the orthogonal projection of L2(Ω;Cn) onto N. Let
S(θ) : N→ N be the spectral germ of A(t,θ). Then

‖(A(t,θ) + ε2I )−1 − (t2S(θ) + ε2IN)−1P‖L2(Ω)→L2(Ω) 6 Cε−1,

0 < ε 6 1, t 6 t0.

Since the effective operator family has the same germ, from Theorem 6 we
deduce the required estimate (13):
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Method

To prove Theorem 3 (i. e., to obtain more accurate approximation for
the resolvent), we find more accurate threshold approximations and
more accurate finite rank approximation for the resolvent
(A(t,θ) + ε2I )−1.

In order to prove Theorem 4 (to approximate the resolvent of Âε as
an operator acting from L2(Rd ;Cn) to H1(Rd ;Cn)), we study the

operator Â
1/2
ε (Âε + I )−1 in L2(Rd ;Cn) by the same method.

For the study of more general operator Aε, we use the identity
Aε = (f ε)∗Âεf

ε. It follows that the resolvent of the operator Aε is
related to the generalized resolvent of Âε by the identity

(Aε + I )−1 = (f ε)−1(Âε + Qε)−1((f ε)∗)−1. (15)

Here Q = (ff ∗)−1. We study the generalized resolvent of the
operator Âε and then use the identity (15).
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For the study of more general operator Aε, we use the identity
Aε = (f ε)∗Âεf

ε. It follows that the resolvent of the operator Aε is
related to the generalized resolvent of Âε by the identity

(Aε + I )−1 = (f ε)−1(Âε + Qε)−1((f ε)∗)−1. (15)

Here Q = (ff ∗)−1. We study the generalized resolvent of the
operator Âε and then use the identity (15).
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Applications

Operators of the form Âε:

The acoustics operator Âε = D∗g ε(x)D. Then n = 1, m = d ,
b(D) = D.

The operator of elasticity theory can be written as
Âε = b(D)∗g ε(x)b(D) with n = d , m = d(d + 1)/2.
Example. Let d = 2. Then

b(D) =

 D1 0
1
2 D2

1
2 D1

0 D2

 ,

and g(x) is a symmetric (3× 3)-matrix-valued function with real
entries; it is bounded, positive definite and periodic. In the isotropic
case g(x) is expressed in terms of the Lame parameters.
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Applications

Operators of the form Âε:

The model operator of electrodynamics

Âε = curl hε(x)curl −∇νε(x)div.

Here h(x) is a symmetric (3× 3)-matrix-valued function with real
entries, and ν(x) is a real-valued function. Both h(x) and ν(x) are
periodic, bounded and positive definite. In this case d = 3, n = 3,
m = 4,

b(D) =

(
−icurl
−idiv

)
, g(x) =

(
h(x) 0

0 ν(x)

)
.

Such operator with ν(x) = 1 arises in the study of the Maxwell
equations in the case where the magnetic permeability is constant.
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The model operator of electrodynamics
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Applications

Operators of the form Aε:

The Schrödinger operator

Aε = D∗g ε(x)D + ε−2V ε(x).

Suppose that the bottom of the spectrum of the operator
A = D∗g(x)D + V (x) is the point λ = 0. Then there exists a positive
Γ-periodic solution ω(x) of the equation Aω = 0. The operator Aε
admits the following factorization

Aε = (ωε)−1D∗(ωε)2g εD(ωε)−1.

Tatiana Suslina (SPbSU) Spectral Approach to Homogenization Durham, July 2016 35 / 38



Applications

Operators of the form Aε:

The Schrödinger operator

Aε = D∗g ε(x)D + ε−2V ε(x).

Suppose that the bottom of the spectrum of the operator
A = D∗g(x)D + V (x) is the point λ = 0. Then there exists a positive
Γ-periodic solution ω(x) of the equation Aω = 0. The operator Aε
admits the following factorization

Aε = (ωε)−1D∗(ωε)2g εD(ωε)−1.

Tatiana Suslina (SPbSU) Spectral Approach to Homogenization Durham, July 2016 35 / 38



Applications

Operators of the form Aε:

The Schrödinger operator

Aε = D∗g ε(x)D + ε−2V ε(x).

Suppose that the bottom of the spectrum of the operator
A = D∗g(x)D + V (x) is the point λ = 0. Then there exists a positive
Γ-periodic solution ω(x) of the equation Aω = 0. The operator Aε
admits the following factorization

Aε = (ωε)−1D∗(ωε)2g εD(ωε)−1.

Tatiana Suslina (SPbSU) Spectral Approach to Homogenization Durham, July 2016 35 / 38



Applications

The two-dimensional Pauli operator

Aε =

(
P−,ε 0

0 P+,ε

)
, P±,ε = (D− ε−1aε(x))2 ± ε−2bε(x).

Here the magnetic potential a(x) is Γ-periodic Lipschitz R2-valued
function such that div a = 0,

∫
Ω a dx = 0. Next, b = ∂1a2 − ∂2a1.

There exists a real-valued Γ-periodic function ϕ(x) such that
∇ϕ = {a2,−a1} and

∫
Ω ϕ dx = 0. Then Aε admits a factorization

Aε = f εb(D)g εb(D)f ε,

with m = n = 2, g(x) = f (x)2,

b(D) =

(
0 D1 − iD2

D1 + iD2 0

)
, f (x) =

(
eϕ(x) 0

0 e−ϕ(x)

)
.

Tatiana Suslina (SPbSU) Spectral Approach to Homogenization Durham, July 2016 36 / 38



Applications

The two-dimensional Pauli operator

Aε =

(
P−,ε 0

0 P+,ε

)
, P±,ε = (D− ε−1aε(x))2 ± ε−2bε(x).

Here the magnetic potential a(x) is Γ-periodic Lipschitz R2-valued
function such that div a = 0,

∫
Ω a dx = 0. Next, b = ∂1a2 − ∂2a1.

There exists a real-valued Γ-periodic function ϕ(x) such that
∇ϕ = {a2,−a1} and

∫
Ω ϕ dx = 0. Then Aε admits a factorization

Aε = f εb(D)g εb(D)f ε,

with m = n = 2, g(x) = f (x)2,

b(D) =

(
0 D1 − iD2

D1 + iD2 0

)
, f (x) =

(
eϕ(x) 0

0 e−ϕ(x)

)
.

Tatiana Suslina (SPbSU) Spectral Approach to Homogenization Durham, July 2016 36 / 38



Applications

The two-dimensional Pauli operator

Aε =

(
P−,ε 0

0 P+,ε

)
, P±,ε = (D− ε−1aε(x))2 ± ε−2bε(x).

Here the magnetic potential a(x) is Γ-periodic Lipschitz R2-valued
function such that div a = 0,

∫
Ω a dx = 0. Next, b = ∂1a2 − ∂2a1.

There exists a real-valued Γ-periodic function ϕ(x) such that
∇ϕ = {a2,−a1} and

∫
Ω ϕ dx = 0.

Then Aε admits a factorization

Aε = f εb(D)g εb(D)f ε,

with m = n = 2, g(x) = f (x)2,

b(D) =

(
0 D1 − iD2

D1 + iD2 0

)
, f (x) =

(
eϕ(x) 0

0 e−ϕ(x)

)
.

Tatiana Suslina (SPbSU) Spectral Approach to Homogenization Durham, July 2016 36 / 38



Applications

The two-dimensional Pauli operator

Aε =

(
P−,ε 0

0 P+,ε

)
, P±,ε = (D− ε−1aε(x))2 ± ε−2bε(x).

Here the magnetic potential a(x) is Γ-periodic Lipschitz R2-valued
function such that div a = 0,

∫
Ω a dx = 0. Next, b = ∂1a2 − ∂2a1.

There exists a real-valued Γ-periodic function ϕ(x) such that
∇ϕ = {a2,−a1} and

∫
Ω ϕ dx = 0. Then Aε admits a factorization

Aε = f εb(D)g εb(D)f ε,

with m = n = 2, g(x) = f (x)2,

b(D) =

(
0 D1 − iD2

D1 + iD2 0

)
, f (x) =

(
eϕ(x) 0

0 e−ϕ(x)

)
.

Tatiana Suslina (SPbSU) Spectral Approach to Homogenization Durham, July 2016 36 / 38



Further development of the method

Further development of the method allowed us to study more problems:

homogenization for periodic elliptic second order operators including
terms of first and zero order;
homogenization problems for periodic elliptic operators near the edge
of an internal spectral gap;
homogenization of elliptic operators with coefficients periodic in some
directions;
homogenization for high order periodic elliptic operators;
homogenization of the parabolic Cauchy problem;
homogenization of the stationary Maxwell system;
homogenization of nonstationary equations of the Schrödinger type
and hyperbolic type;
homogenization of elliptic boundary value problems with periodic
coefficients in a bounded domain;
homogenization of parabolic initial boundary value problems with
periodic coefficients in a bounded domain.
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