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Electrical impedance tomography (EIT)

Calderén’s inverse conductivity problem:
Imaging an electrical conductivity o(x) via
noninvasive voltage /current measurements at
the surface of an object.

+ Major theoretical and numerical advances
over last 35 years.

— Plain EIT has seen limited application in
clinical /industrial settings.

— Hybrid imaging developed to overcome
disadvantages of EIT and other modalities.
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e Interior of a region () C R",n =2, 3,
filled with matter having conductivity o(z).
(€2 = human body, industrial part,...)

e Place electrodes on the boundary, o).

Connect to DC sources to create a
prescribed voltage distribution, f, on 0).

f induces a electric potential u(z) in ).

e Measure resulting current flow [ across 0f).

Ohm’s Law —
ou

[ =0 -—

Ov



Quasi-static regime: Electric potential u(z)
satisfies conductivity equation,

V- (oVu)(z) =0 on (,

with Dirichlet boundary condition
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Quasi-static regime: Electric potential u(z)
satisfies conductivity equation,

V- (oVu)(x) =0 on £,

with Dirichlet boundary condition

ulgn = f = prescribed voltage on 0f).

Dirichlet-to-Neumann operator

Ou
f—>0-$—./\g(f) on Of).

Ao : H%(GQ) — H_%(ﬁﬂ) bounded lin. oper.
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Calderon’s Inverse Problem (Isotropic)

(i) Uniqueness: Does Ay, = \yy = 01 = 097

(ii) Reconstruction: Can we find o(x) from A,?

(iii, ...) Stability of Ay — 0, numerics, ...

A: Yes to (i), (ii), but poor stability.
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1980, Calderodn: linearization around o =1

1984, Kohn and Vogelius: uniqueness for
piecewise - Y conductivities

1986, Sylvester and Uhlmann: uniqueness
for o € C?%, n > 3. Introduced CGO solutions.

1988, Nachman: reconstruction, n > 3

1996, Nachman: uniqueness+reconstr., n = 2
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2006, Astala and Pavarinta: uniqueness and
reconstruction for 0 € L°°, n =2

For n = 3:

2013, Haberman and Tataru: uniqueness for
o € C! or Lipschitz close to constant.

2015, Caro and Rogers: ! for Lipschitz o.

2015, Haberman: ! for o € W13te,

Q.: Does uniqueness hold for ¢ € L°° ?



Problem: EIT has high contrast sensitivity,
but low spatial resolution.

Figure 1: EIT tank and measurements. Source: Kaipio lab, Univ. of Kuopio, Finland
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Hybrid inverse problems

(QQ: Can one improve imaging by using data
from more than one type of wave?

(i) Image registration, e.g., CT+MRI

(ii) Stabilization: collect data for two types
of waves, X and Y, simultaneously. Either
use

e Y data to provide a priori information
that stabilizes reconstruction from X data;

or

e an algorithm using both X and Y data.



Ex.: Current Density Impedance Imaging
(CDI) - Magnetic Resonance EIT (MREIT):

Measure both voltage/current at 02 and
current density ¢|Vu/| in the interior (via MRI).

— J-substitution algo. of Kwon, Woo, et al.



Ex.: Current Density Impedance Imaging
(CDI) - Magnetic Resonance EIT (MREIT):

Measure both voltage/current at 02 and
current density ¢|Vu/| in the interior (via MRI).

— J-substitution algo. of Kwon, Woo, et al.

However, want to discuss

(iii) ‘Multi-physics’ hybrid methods in which
two different kinds of waves are physically
coupled.
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Multi-physics methods often combine two
illumination and detection modalities,
one with

e high contrast sensitivity but low resolution,
and the other one

e low contrast but high resolution,

linked by a physical interaction.

Mathematically: couple an elliptic PDE
with a hyperbolic PDE.
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Thermo-acoustic tomography (TAT)

Illuminate object with short microwave pulse.
EM energy is absorbed preferentially by
subregions of interest, e.g., tumors.

Photo-acoustic effect: Thermal expansion
produces acoustic waves (often ultrasound)
with sources at loci of high EM absorption.

Acoustic waves then propagate out to 0f),
where measured.

EM governed by diffusion eqn. (elliptic),
US by acoustic wave eqn. (hyperbolic).



e Solve hyperbolic inverse problem for US.

Reconstructs with good spatial resolution
an internal measurement: a functional F'(z,u, Vu)
of the solution u(x) of the elliptic problem for
the EM field.

e Then solve the elliptic inverse problem of
finding absorption coefficient in () from

e 1 on Of)

e [ on ()

e Other a priori information/assumptions
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Ultrasound Modulated Optical Tomography
(UMOT):

Illumination by ultrasound,

detection by infrared.

Acousto-Electric Tomography (AET/UMEIT):

Illumination by ultrasound,
detection by EIT.



Model of PAT

e Illuminate with short pulse.
Scalar EM field in () satisfies

—V - (o(x)Vu(z)) + a(x)u(z) =0,

u|gn (known)

a(x) = absorption coeff. (desired)

o(x) = diffusion coeff.



e Resulting pressure p(z,t) satisfies
((9752 — c(zz:)QA)p(zE,t) =0 on 2 x |0, 00)
p(z,0) = F(z,u(z)), Jip(z,0)=0

F =T(x)a(x)u(x), where I'(x) = Griineisen coeff.

Then: (1) solve hyperbolic IP and find F'(x, u(x))
from p|soxj0.7]
(2) solve problem finding a(z) from F, u|gn, I’
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Real principal type (RPT) operators

P(x,D) € V"™(R"), n > 2, is of RPT if
(i) principal symbol p;,(z, &) is R-valued
(ii) dpm(z, &) # (0,0) at

Sp = {(x,6) € T"R", £ #0: pp(x,€) = 0}

Thus, Y.p is foliated by bicharacteristics =
integral curves of

Z Opm O 6pm 0
' 0 Ox;  Oxj O&;

(iii) No bichar is trapped over a compact
set K C R".
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Duistermaat and Hormander (FIO II):
constructed parametrices for RPT ops,
showed they are locally solvable,

and singularities of Pu = f propagate along
the bicharacteristics.

Thm. For all f € £'(X), Pu = f is solvable,
and if (x,&) € WF(u) \ WF(f), then WF(u)

contains the bicharacteristic through (x,¢).

Did this by conjugating P(x, D) to model,

9,

Q1($7D> — 8—:171+ Q—OO(aj?D)

whose Green’s function 0%1 is H(xq1)-6(z")+ ...
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Current work: virtual ‘hybrid’ imaging in 2D

Only one kind of wave: electrostatic.

Good propagation of singularities is obtained
not via coupling with another physics,
but by mathematical analysis.

After a transformation, singularities of D2IN
data propagate interior details efficiently
from any xg € ) to any yy € 0f).

Q.: What kind of PDE have this kind of
propagation of singularities?



Complex principal type (CPT) operators

pm(,€) = plt(x,&) +ipl (v, €) with

(i) nyng, V%fp] linearly indep. at
Y ={(,8): pm(x,§) = 0} (codim 2)
(ii) Poisson bracket {pﬁw pfn} —

(vfp}?z) (Vg pgn) — (Vy prfr{;,) : (Vgp{n) =0 on X

(i), (ii) < Y is a codimension 2 coisotropic
submanifold of 7" X. —



Y. is foliated by 2-dim bicharacteristic leaves,
which project to characteristic surfaces in X.

(iii) a nontrapping assumption.

Thm. (D.-H.) P(x, D) is locally solvable and
if Pu= f, then

WF(u) \ WE(f)

1s a union of bicharacteristic leaves.



Virtual hybrid edge detection: Exploit CPT
operator structure underlying EIT to extract
information about interior singularities of the
conductivity.

Singularities propagate efficiently
along 2D characteristics to 0X).

Recently available CGO solutions have made
numerics doable.



Virtual hybrid edge detection: Exploit CPT
operator structure underlying EIT to extract
information about interior singularities of the
conductivity.

Singularities propagate efficiently
along 2D characteristics to 0X).

Recently available CGO solutions have made
numerics doable.

Thank you!



