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Physical motivation: broadband passive cloaking

Vacuum: R3\ €, I

Cloak: Q\ O, e(x,w)

Issue: is it possible to construct a passive cloak that will cloak a dielectric
inclusion O over a whole frequency band: [w_,wy]?

—> We answer here negatively to these question for the quasistatic regime
of Maxwell’s equations.
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Vacuum: R3\ Q, gl

Eo
Quasistatic regime of Maxwell’s equations: &

V- (e(x,w)VV(x,w)) =0 on R3,
V(x,w)=—-Eo-x+O(1/|x]) as |x|] = oo.
where E(x,w) = -VV(x,w).

Main correction of the far field of V(x,w):

_ b(w) -x
Vix,w)=—-Eo -x+ A |x]? +o(1/[x[?).

Definition of the polarizability tensor a(w)

b(w) = a(w)Eo = /Q (e(x, ) — 2oD)B(x, w) dx.

Question: Can one construct a passive cloak such that: a(w) =0 on [w_,w]|?
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The cloak: a p e material

Constitutive law of the cloak:
D:50E+50XE;’(E = D('vw) :E(-,M)E(',w),
L: Fourier-Laplace transform
where: e(x,w) = eo(1 + Li(xE)(x,w)).
Passivity of the cloak in the frequency domain:
> (Hi): Vx€Q\ O, e(x,-) is analytic Ct = {w € C | Im(w) > 0} and
continuous on cl (C+ (musality, xe(x,-) € LY(R)),

Hy): ¥x € Q\ O, Vz € cICT, e(x,w) = e(x, @)
real fields in the time domain),

>

passivity: energy balance)

(
(

> (H3): Vx € Q\O,Vw € RT, Tme(x,w) > 0,
(

> (

Hy): Vx € Q\ O, e(x,w) — eol as [w| — coin cICT
(xe(x,-) € L'(R))

@ M. Cessenat (1996),G. Milton (2002), P. Joly’s talk this morning - - -
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Tools and bibliography

Derivation of quantitative bounds on the cloaking effect over a frequency
band.

Main tools:

| A\

Existence of a Stieltjes or/and a Herglotz function associated to the passive
linear system in the frequency domain and use of sum rules.

Bibliography:

» Bounds in electromagnetism: @ G. Milton, D. Eyre and J. Mantese
(1997), R. Lipton (2000, 2001, 2004), M. Gustafsson and D. Sjoberg
(2010), A. Welters, Y. Avniel, and S. Johnson (2014), O. Miller and al.
(2015)

» Sum rules: @ A. Bernland, A. Luger and M. Gustafsson (2010, 2011),

, and many others, - - -

» Cloaking: @ Steven Johnson and al. (2012), F. Monticone and A. Alu
(2014, 2016), A. Norris (2015),
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Outline

@ New bounds on Stieltjes functions

© Applications to our cloaking problem
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@ New bounds on Stieltjes functions




New bounds S jes functions

Herglotz functions

An analytic function h : CT — C is a Herglotz if

Imh(z) >0, Vz€ C*.

Theorem (Representation)

A necessary and sufficient condition to be a Herglotz function is given by
the following representation:

h(z)zaz+,3+/

R

(giz =4 f£2> dm(¢), for Im(z) > 0,

where a € RT, B € R and m is a positive reqular Borel measure for which

fR dm(€)/(1 + €2) is finite.

@ F. Gesztesy and E. Tsekanovskii (2000), C. Berg (2008), - - -
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New bounds S jes functions

Stieltjes functions

A Stieltjes function is an analytic function g : C\ R~ — C which satisfies:

Img(z) <0 Vze Ct and g(z) >0 Vz > 0.

Theorem (Representation)

A necessary and sufficient condition to be a Stieltjes function is given by the
following representation:

g(z):a—i—/ﬂﬁimT(? Vze C\R™,

where o = " hm g(2) € RT and m is a positive regular Borel measure,
z| =400

uniquely defined, for which [, dm(€)/(1+¢) is finite.

@ G. A. Baker Jr. and P. R. Graves-Morris (1981), C. Berg (2008),
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Objective: A bound on f over a finite frequenc;

We consider a function f which satisfies the following hypothesis:
» (Hi): f is analytic on C* and continuous on cICt,
| 4

Hy): f satisfies f(—2) = f(z), VzcclCTH,

(Hz):
> (Hs3): Im f(2) >0 for all z € RT,
> (Ha):

Hy): f(2) = foo >0, when |z| — coin clCT.

For instance: f(z) = e(z), f(z) = p(z), --- and we will see that
f(Z) = a(Z)E() . E().

—> Construct a Stieltjes and a Herglotz function associated to f.
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New bounds on Stieltjes functions

Construction of a Stieltjes function

Imf(z) = 0

Imf(z)

Imf(z) <0

Imf(z) =0

=0

Imf(z) >0

Definition of the complex square root (branch cut on the positive axis):

Vz = |z|% e 282/2 if arg > € (0,27) and Vz = |z\% if z € RT.

We define: u(z) := f(v/—2).




New bounds S jes functions

Construction of a Stieltjes function

Theorem

If a function f satisfy the hypothesis H1-4, then the functions u defined by
u(z) = f(vV/—=2), Vz€ C

is a Stieltjes function.

Corollary

| A

The function v defined by

v(2) = zu(=2) = 2f(Vz), V2 € C

is a Herglotz function which is analytic on C\ RT and negative on R™*. Its
associated measure is supported in RT and its coefficient o is equal to foo.
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New bounds on Stieltjes functions

Sum-Rules

Let h be a Herglotz function which admits the following asymptotic
expansions (in any Stolz domain):

and h(z) = — +o(1) as |z| = +oo.
z z

Then, one have:

1
lim lim f/ Imh(z +iy)de =a—1 — b_1.
n<|z|<n—1!

n—0t y—0t T

@ A. Bernland, A. Luger and M. Gustafsson (2011)

Objective: To use sum-rules to derive bounds on f over a finite frequency
band [w_,wy]. More precisely, to genrelasize the approach of @ A.

Sernland, A. Luger and M. Gustafsson (2010,2011) to derive bounds by
using the zero order sum rule.
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New bounds on Stieltjes functions

Composition of Herglotz functions

Let us introduce:
M = {probability measures m on R | sup(m) C [—-A, A]}.
For any m € M, one defines the Herglotz function:

hm(z) = /A dm(§)7 vz e Ct.

_a €—2

Thus, vy, = hm o v is also an Herglotz function.

One can easily prove that vy, admits the follow assymptotics:

Vm(2) = %w (%) as |z| = 0 and vm(z) = 1 G) as |z] = +oo.

For any interval [x_,z+] C R"T*, one gets

N Y s . 1 m({0})
lim /z_ Imvm(x+1y)dx§foo 7(0) Sfoo.
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New bounds on Stieltjes functions

Optimal bounds

Theorem

Let A be a positive real number and [z_,zy] be a finite frequency band
included in R, then one has

1
sup — lim Imvm(z+iy)de = sup — lim Im vs, (z+iy)dz,
meMa T y—0+ /o ce[—A+A] T y—=0t Jp

where d¢ denote the Dirac measure at §.

= For any A € R, the family of Dirac measures (d¢)cer optimizes the
sum-rule on the interval [x_,z4] on the set of measures Ma.
For m = J¢, the sum rule can be rewritten as:

lim I+Im(;> dz < = vE e R
y=0t Jy_ §—v(z+iy) T feo’ '

N
o
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jes functions

Explicit bound on a transparency window

By definition, in a transparency window [w_,w]
Imf(w) =0 , Vw € [w_,w4].
————
physically: no loss

— [ can extended analytically through the real axis for w € (w—,w;).

Using the family of measures (¢)ecr for the measure m, one revover a
bound derived in @ G. Milton, D. Eyre and J. Mantese (1997):

Proposition (bound in a transparency window)

In a transparency window [z—,z+] = [w—2,w?], the function v satisfies
foo(x — z0) < v(z) —v(20), VX,20 € [x—, 4] such that zo < z,

Since v(z) = zf(1/2), it yields to the following bound on f:

’woz(f(wo) — foo) S WA (f(W) — foo), Yw,wo € [w—,w] such that wo < w.

Remark: We proved that this last bound can be also obtained by applying
Kramers-Kronig relations on the function f.
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The lossy case

By choosing the uniform distribution of Ma defined by:

1-a,4)(&) .
dm(¢) = %d& with A= we[fj%iﬁ] |v(z)]
in the sum rule:
.1 e . v(z+1iy) — A 1
1 - Im v, de = — 1 dz < —,
S [ et = gty [ e (REER) < 7

one recovers a bound similar to one derived in

@ A. Bernland, A. Luger and M. Gustafsson (2011)"

Proposition (bound for the lossy case)

Let [w—,wy] C RT™ then the function f satisfies the following inequality:

 w? =0 ) € max WP f().
4 T€[w_,wy]

Remark: One will recover exactly the bound of @ A. Bernland, A. Luger
and M. Gustafsson (2011) by choosing the Herglotz function v(z) = z f(2)
instead of v(z) = zf(1/2).
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Applications to our cloaking problem

Recall of the problem and the hypoth

Vacuum: R3\ Q, gl
Eo

{ V- (e(x,w)VV(x,w)) =0 on R3,
V(x,w)=—E¢-x+ O(1/|x]) as |x| = oco.

Passivity of the cloak

> (H1): For a.e. x € Q\ O, e(x,-) is analytic C* = {w € C | Im(w) > 0}
and continuous on clC™T,

> (H2): Forae x€Q\O,VzecCh, e(x,w) = e(x, —w)
> (H3): Forae. x € Q\ O,Vw € RT, Ime(x,w) >0,

> (H4): For a.e. x € Q\ O, e(-,w) — eol as |w| — 0o inclCT .
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Applications to our cloaking problem

Recall of the problem and the hypoth

Vacuum: R?\ Q, oI
Eq

a(w)Ey = /Q(e:(x7 w) — eo)E(x, w) dx.

Objective: prove that a(-) satisfy:

» (H1): « is analytic on C* and continuous on clC™,
> (H2): « satisfies a(—) = a(w), Vw €clCT,

> (H3): Ima(w) >0 for all w € RT,

> (H4): a(w) = aee > 0, when |w| — oo in CT.

= v(w) = wa(v/w)Eo - Eg is an Herglotz function VEq € C3.
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Applications to our cloaking problem

Recall of the problem and the hypothesis

Vacuum: R3\ Q, gl
Eo

Objective: prove that a(-) satisfy:

v

(H1): « is analytic on C* and continuous on clC™,

> (H2): a satisfies a(—w) = a(w), Vw € clCT, (from e(x,w) = e(x, —w))

» (H3): Ima(w) >0 for all w € R, (energy balance in the harmonic
domain)

> (H4): a(w) = ae > 0, when |w| — oo in CT. (limit behavior of the
PDE).




Applications to our cloaking problem

Functional framework

Prove that the PDE admits a unique solution which depends analytically of
w in C™ and continuously of w in cIC™.

We define the weighted Sobolev space:
Wi 1 (R?) = {ue S (R | (1+]x>) % ue L*R?) and Vu € L*(R?)}
endowed with the Hilbert norm:
1
3
s -y, = IVl = ([ 1vaPaz)”
Two additional assumptions:
» H5 (Uniformly bounded): Yw € clC*t, 36 > 0 such that

sup le(x, w)| < oo;
x€Q\O, weclCT

» H6 (Coercivity): Yw € clCT, Fy(w) € [0,27( and ca(w) > 0 such that

for a.e. x € Q\ O, |Im(e’ " “e(x, w)u.u)| > ca(w)|ul? Vu € R
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Applications to our cloaking problem

One decomposes V(x,w) as V(x,w) = —Eo - x + Vi(x,w) .
~——
Wi, —1(R3)

To find V;(x,w) € W1,,1(R3) satisfying
V- (e(x,w)VVs(x,w)) = V- ((e(x,w) — 0I)Eg) on R?
Vs(x,w) = O(1/|x|) as [|x| — oo.

is equivalent to solve the infinite linear system

where Yu,v € W1,71(R3):

(b = [

e(x,w)Vu(x)-Vu(x)dx and (f(w),v) :/ (e(x,w)—eoI)Ep)-Vu(x) dx
R3 R3

For all w € C+, the operator A(w) : Wi,—1(R3) — (Wi1,_1(R?))* is an
isomorphism. Moreover, w — A(w) and w — A(w)™* are analytic in CT.
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Applications to our cloaking problem

Theorem
The PDE admits a unique solution Vi (-,w) in Wi —1(R?) defined by

Ve(ryw) = AT (W), ).

Thus w — Vi(-,w) and w — Es(-,w) = =V V;(-,w), endowed respectively

with the norms: || - |lw, _,®sy and || - ||L2®s), are analytic in C* and

continuous in Ct.

From
a(w)Ey = /Q(E(x7 w) — eol) E(x, w) dx.

one finally deduces that

« is analytic on C* and continuous on clC*.

and thus:

v(w) = wa(y/w)Eq - Eg is an Herglotz function which satisfies our bounds.
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Applications to our cloaking problem

Limits of Passive Cloaking (transparency window)

e On a transparency window where Ima(w) = 0 on [w—,wy], we get:

wo?[e(wo) — @] < w? [a(w) — o]

Yw, wo € [w—,w4] such that w < wp.

This bound is sharp: for a fixed wo such that a(wo) < aeo, the function

2 J—
a(w) = ao — M (Drude Model)

satisfies the equality and the hypothesis (H1 — 4).

If one can cloak the dielectric inclusion at wo: i.e. a(wo) = 0, one gets:

2
. w — W
if w>wo and a(w) < ax 0
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Applications to our cloaking problem

The lossy case

For the lossy case, one has:

(wi? —w ?) a(c0)Eg - By < fnax | |w? a(w)Eo - Eo|.
we|w_,wy

-

= a(w)Eo could not approach 0 over the frequency band [w—,w].
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Applications to our cloaking problem

Future work

» Generalize this study for acoustic and full Maxwell’s equations. The
polarizability tensor is replaced by the forward scattering amplitude.

» Question of broadband passive cloaking for close observer in
electromagnetism. Bounds on the DtN map (in progress, joint work
with A.Welters and G. W Milton) @ M. Cassier, A.Welters and G. W
Milton, Analyticity of the Dirichlet-to-Neumann map for the
time-harmonic Maxwell’s equations, to appear in Extending the theory
of composites to other areas of science edited by Graeme W. Milton

In preparation: @ M. Cassier and G. W Milton, Bounds on Stieltjes
Functions and their Applications to fundamental Limits of Passive Cloaking
in the quasistatic regime

Thank you for your attention!
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