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Model problem

Transmission problem between a homogeneous and a periodic media
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To reduce the computational cost, a natural idea is to replace the periodic medium by an
effective homogeneous one. This process is justified by the homogenization theory.
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To reduce the computational cost, a natural idea is to replace the periodic medium by an
effective homogeneous one. This process is justified by the homogenization theory.



Reminder of the homogenization principles
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Reminder of the homogenization principles
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Reminder of the homogenization principles
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Reminder of the homogenization principles
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Reminder of the homogenization principles
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Reminder of the homogenization principles
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> The homogenized tensor A* is symmetric and positive definite
(but not necessarily isotropic)

> |t does not depend on ¢.

>~ Cheap computation (cell problems and homogeneous media)
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Reminder of the homogenization principles
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Reminder of the homogenization results

Transmission problem between an homogeneous and a periodic media
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Reminder of the homogenization results

Transmission problem between an homogeneous and a periodic media
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Error estimates

Under suitable assumptions on the coefficients
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Numerical results
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The source term in a gaussian localised near the interface.

We will describe latter the numerical method for the computation

Periodic coefficient in one cell of the exact solution and the approximate solutions.
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Numerical results
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Numerical results

ap =1
w=2++0.01¢
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Numerical results
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The source term in a gaussian localised near the interface.

Periodic coefficient in one cell
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Numerical results

ap =1
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The source term in a gaussian localised near the interface.

Periodic coefficient in one cell
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Numerical results
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The source term in a gaussian localised near the interface.

Periodic coefficient in one cell
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Objectives of this work

v This problem is well known and linked to the presence of boundary layers.

v The ansatz is adapted in infinite periodic media but not in presence of
boundaries or interfaces.

For Dirichlet or Neumann boundary conditions

Babuska 1977, Bensoussan-Lions-Papanicolaou 79, Brizzi-Chalot 1978, Sanchez-Palencia 1980,
Bakhalov&Panasenko 1990, Moskow-Vogelius 1996, Allaire&Amar 1999

Birman-Suslina 2006, Zhikov-Pastukhova 2005, Griso 2004-2006

Gerard-Varet - Masmoudi 2006-2007

For transmission problems (very few works)

D Cakoni-Guzina-Moskow (to appear)



Objectives of this work

v This problem is well known and linked to the

v The but not in presence of
boundaries or

v One cannot expect a simple asymptotic expansion that would be valid
uniformly in the whole space.
We use the which allows to postulate different
ansatz for the expansion of the solution.

v We want to construct at the interfaces.
The equation in the bulk has to be as simple as the classical homogenized one.

v The allows us to justify rigorously the



The steps of our approach

1. The asymptotic expansions of the solution
The formal steps of the matched asymptotic expansion

Existence and uniqueness results

2. Construction of the approximate conditions for the asymptotic expansion

3. Stability and error estimates for the approximate problem

4. Numerical implementation and validation



Numerical results to motivate the rest of the talk
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Numerical results to motivate the rest of the talk
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The steps of our approach

1. The asymptotic expansions of the solution
The formal steps of the matched asymptotic expansion

Existence and uniqueness results

2. Construction of the approximate conditions for the asymptotic expansion

3. Stability and error estimates for the approximate problem

4. Numerical implementation and validation



The asymptotic expansions of the solution

We cannot expect a single asymptotic expansion far from the interface and in
the neighbourhood of the interface.

We will distinguish different regions in which we postulate different ansatz.

r

v Two Far Field zones : regions far from the interface

v One Near Field zone : region in the neighbourhood
of the interface

The regions overlap and the different asymptotic expansions have to coincide
in the transition zones (matching principle).



The asymptotic expansions of the solution
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The different asymptotic expansions have to coincide in the overlapping zone.

The matching conditions link the behaviour ut's at I' to the behaviour of U, 's at +oc.
the behaviour U, 's at " to the behaviour ofU,'s at —.

where U,(xo, y1, ¥2) IS 1-periodic where Ul (x,y) is 1-periodic
. with respect to y,but not in



The asymptotic expansions of the solution

Q; = {(x1,%), X < —3(¢)} :

Ansatz in Q.
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Ansatz in Q}
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. with respect to y.

The different asymptotic expansions have to coincide in the overlapping zone.

The matching step relies on Taylor expansion of the far field terms v

and the behaviour at +-cc of the near field terms U, .
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Equations for the tfar fields

Ansatz :  Ug(x) =Y &"u, (x)
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To determine uniquely the far field, we need additional conditions :
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The asymptotic expansion in the near field zone
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The equations for the near field terms
I 2.
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The U, are solutions of for (y1, y2) in the infinite strip S =R x (0,1),
and in which xz plays a role of a through the right hand side.

We impose that U, does not increase exponentially at infinity
but it may increase

V1+ : functions locally H', periodic w.r.t. y2,increasing at least polynomially at infinity

These equations determine by induction the U, up to an element of the of
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The equations for the near field terms
Lo =-Vy(a(y)Vy)
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Theorem

In VIr , the kernel of Ly is of dimension 2 and more precisely
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and U* exponentially decreasing at +oc

Tools for the proof : Floquet-Bloch Transformation + Kondratiev Theory
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The equations for the near field terms
Lo = —Vy(a(y)Vy)
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The equations for the near field terms
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The equations for the near field terms
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The equations for the near field terms
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The equations for the near field terms
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solutions of cell problems

profile functions, solution of band problems



The equations for the near field terms
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To determine uniquely the near field, we need two additional conditions :
Matching conditions



The matching conditions

The missing information will be provided by the matching conditions that are obtained by
expressing that the expansions have to coincide in the overlapping zone.

lim 6(g) =0
e—0
e—=0 €&

Q. QF
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The matching conditions link the u! at I to the behaviour of U, at +oc .
the u_ at I' to the behaviour of U, at —cc .

The matching step relies on Taylor expansion of the far field terms v
and the behaviour at +occ of the near field terms U, .

One gets for (u,, u') by eliminating the U, .



The matching conditions

At order O:

Dirichlet conditions for the order O
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The matching conditions

At order 1:
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The matching conditions

At order 1:
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The matching conditions

At order 1:
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The matching conditions

The matching conditions at order 2 give

Neumann conditions for the order 1

A*VU+ €1 ‘F —agp——
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0 X1
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Dirichlet conditions for the order 2

where Y1, Y2 and Y3 depend on the




The first far tield problems
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with Ay = {A* o

—apAu;y —w*u;y =0, InQ”
[U1]r = Cg” < ASVUO ‘€1 >r —I—Cg) < Ox,Up >r
v _ (2 A* . C(Q) 2 C(Z) 2
[AOVU1 edr = C1 < 8)(2( QVUO 81) >r +0, 7 < 5’X2uo >r + 3 W < Uy >r
ASVUS_ - €1 {F + aoc‘?ug
2

0X2U8L‘r +8X2U5‘r
2

with < ASVUO €1 >r= ’F

< Ox,Up >1=

where all the constants are defined thanks to and



The first far tield problems
—ap AUy —wuy =f inQ”
-V [AVU] -wful =0, inQF
(Up)r =0 and  [Ay VU -eq]r =0

. . a InQ
with Ay = {A* o aF
—apAu;y —w*u;y =0, InQ”

[U1]r = Cg” < ASVUO ‘€1 >r —I—Cg) < Ox,Up >r

AVU e = C?) < 05, (AsVUp - €1) >r +CF) < 02 Up >t +CY w? < up >r

The near fields Uy and U, can then be determined thanks to the far fields.



The steps of our approach

1. The asymptotic expansions of the solution
The formal steps of the matched asymptotic expansion
Existence and uniqueness results

Error estimates

2. Construction of the approximate conditions for the asymptotic expansion

3. Stability and error estimate for the approximate problem

4. Numerical implementation and validation



The approximate problem

A natural candidate to provide a better approximation of the problem is

(U (%) + eu; (%) xe Q

Ue.1(x) = < ug (x) + € (Vuo(x) : { x;g;z; + &f(x)) xe QF

Let us introduce

e 1(x) = {U(—)F(X) + 8511_(x) xe Q
’ ug (x) + el (x) xe QF

V- [AsVxlst] — w1 =1 inQTUQ™

(U 1]r = 3C§1) < ApVUg1-€e1 >r +80§) < OxUg 1 >r +(9(82)

A5V e 1 - e1]r = £C7) < 8y, (A5V g1 - €1) >r +6CE < B2 Uey >r
—|—8ng) w? < Ugq >r +OLE°)

da In Q-

with A5 = {A* ot



The higher order transmission problem

AV - €] :@cgz) < Oy, (ASV Ve - €1) >r +e:‘§2) < 8,32 Ve >r +e:§2)w2 < Vg >r

with A — {a" nQ

A inQT
v The volumic equation is as simple as the original homogenized problem.

Sw(f)

a-
v The problem depends simply on € without intfroducing a microscopic scale.




The higher order transmission problem

Veln= eC\V[< AsVV; - €1 >rl+eCY) < 0y, Vs >t

A5V Ve - e1]p /= eC7 < 0, (ASV Ve - €1) >P+eCY) | < B2 Ve >r+eCP w?| < Vs >r

. ap Q-
with Ay = o n
A* in Q
- A‘,/g; _|_ ‘78 _ . A*VVE : e‘l + _l_ aoax1 T/g —
< Vg >r= & C < ASVV./eq >r= r -

2 2



The higher order transmission problem

Velr = eC\V < ASVV; -1 > +€C5) < Oy, Vs >t
A5V Ve - e] = eCP) < 0, (ASV Ve - €1) >r +8Cy) < 2 Ve >r +eCP w? < Vs >r

ao in QO

with Ay = {A* o

v This problem is not necessarily well posed.

Remedy : write the transmission conditions in two separated boundaries on

both sides of the interface. <g>

>
Supp(f)
.

To simplify the rest of the talk,
| suppose that the problem is well posed...




The higher order transmission problem

Ve = dC\V < A5V, - €1 >r +6C5) < Oy, Ve >r
A5V Vs - e4] = 8C,7) < O, (A5 V Ve - €1) >1 +8C5) )< 82 Ve >r +ECIw? < Vg >r

a In Q-

with Ay = {A* ot

» All the constants appearing in the transmission conditions are determined via the

solutions of
‘ Y = (07 1)2

and solutions of
Ao

0000 |
Y1




The higher order transmission problem

Velr = eC\V < ASVV; -1 > +€C5) < Oy, Vs >t

A5V Ve - e] = eCP) < 0, (ASV Ve - €1) >r +8Cy) < 2 Ve >r +eCP w? < Vs >r

: ao in Q
with Ay =
° {A* in Q"
We expect that
(Ve (x) xe Q
Ve(x) = < Ve(x) + eV Ve(x) Wi (x/¢€) xec QF
\ Wo (X/E
IS a of the original solution u, .

Error estimates

Foranyopenset O c Q- uQ"
U — Vellm (o) < Ce

lue — Ve|l12(0) < Ce®



The higher order transmission problem

Velr = eC\V < ASVV; -1 > +€C5) < Oy, Vs >t

A5V Ve - e] = eCP) < 0, (ASV Ve - €1) >r +8Cy) < 2 Ve >r +eCP w? < Vs >r

: ao in Q
with Aj =
° {A* in Q7
We expect that
(Ve (x) xe Q
Ve(x) = { - . wi(x/€) > 611(y) 612(y) . T
Ve(x) +H eV Ve(X) - + &Vy - ViVe(x) x€ Q
\ o) o) [ W2 (x/€) ) 621(y) 622(y) Vel
IS a of the original solution u, .

Error estimates

Foranyopenset O c Q- uQ™*
|ue = Vellmo) < Ce®/?

If we perform the asymptotic expansion at order 3, we could show
[Ug — Ve||H(0) < Ce?



The steps of our approach

1. The asymptotic expansions of the solution
The formal steps of the matched asymptotic expansion
Existence and uniqueness results

Error estimates

2. Construction of the approximate conditions for the asymptotic expansion

3. Stability and error analysis for the approximate problem

4. Numerical implementation and validation



Numericg\ method for the exact solution

Supp(1)
»

00

00 [a(%)wg(x) — @ us(x) = f(x), x=(x1,%)c R
00

¢

- * Floquet Bloch Transform

Vke (—mr/e,m/e) xeRx(0,¢)

Supp (f( .

“ ' 00 V¥ [a(g) (V = 1K) U (x, k)| — @? e, k) = x, K)

Ug(-; k) per. in the xo — direction

*Construction of DtN operators
Vke (—m/e,m/e) xe(—L,L)x(0,¢)
A ~(V =1k - [a(%) (V= k) Ue(x, )| — @ e, K) = x, K)
Supp (f(-; k)| X
PP ( ( )> Us(-; k) per. in the xo — direction
» "

E
o L
Zl:a—UE( k)—l—/\ (k)Ug(,k):O on X =+
1




Numerical method for the approximate solution

v Resolution of the cell problems, computation of w; and 8y, for j j e {1,2}

‘.)%:@Jf

v Resolution of the band problems, computation of profile functions

A

2

0000 |
2

—Va(y)VU =g
<af>=a and <BF>=78

*Construction of DtN operators |

U is the solution up to a of

(N~ =AU =F(g,B) onZX

U can be reconstructed in the whole band




Numerical method for the approximate solution

v Resolution of the cell problems, computation of w; and 8y, for j j e {1,2}

‘ Y=(0,1)?

v Resolution of the band problems, computation of profile functions

A
—Valy)VU =g

““»'1 <at*>=a and <BT>=0
Y1

2

*Construction of DtN operators

U 1s the solution up to a of
‘ (N =AU =F(g,B) onZ

U can be reconstructed in the whole band

v Computation of all the constants

v Solve the approximate problem



Numerical results

ap =1
w=2+0.01,

The source term in a gaussian localised near the interface.

Periodic coefficient in one cell

Fore =1

Salution exacte, delta = 1

~ with our high order
~ transmission condition



Numerical results

ap =1
w=2-+0.01.

The source term in a gaussian localised near the interface.

Periodic coefficient in one cell

For e =1
NN \\ NI '
’ with our high order -
atransmlssmn condition ‘t
\ o‘
‘)900‘

-

~

Ugs — Vg Ug — Ve



Numerical results
et e~ (o) + £ V()| w2 | o)

Difference entre solutions exacte et homogeneisee, delta » 1 Difference entre solutions exacte et homogeneiseescorreciour ardre 2, delta = 1

Ly -

. 4

For e =1
e B | |
b \\\ with our high order d

” \\ \ ‘ | transmission condition

A .z‘i

:
B

¢

)

“
. ’
NS0T h
_ Vg

Ue — Ve



Numerical results

Wilx/ &
Us — Ug Ug — | Uo(x) + & Vxlp(x) - (X§8) XQ+)
2 Difference entre solutions exacte othanoqcndu‘d‘ﬂa\- 05 g Ddlomcoentn sdumnsuncbﬂhomoomdm correcteur ordre 2, delta = 0.5
v\
SANNANN
. . \\\\
| "\ with classical
| ~ }ltransmission condition
' SASs
SN
\\\ 5 ‘
5
=S p
4 l ‘
Fore =0.5
Difference entre solutions exacies et homogeneisee, delta = 0.5 , Difference entre sclutions exactes et homogeneisee+comrecteur ordre 2, deka = 0.5

\‘\‘\ p )
SIS \
NN ‘_ Y




Numerical results

Us — Ug Ug — (uo(x) + & Vylp(x) - [ wi(x/8) ] XQ+)

Difference entre solutions exacte ot hamogeneisee, delta = 0.25
LR

with classical

For € =0.25

Difference entre solutions exacies et homogeneisee, delta » 0.25

" l

. with our high order
S transmission condition
B

Us — Vg

transm|SS|on Condmon

S
A @

WQ(X/S)

, I_)Hhmco entre solutions exacte et homogeneisee+correcteur ordre 2, delta » 0.25

o

Difference entre sclutions exactes et homogeneisee+comecteur ordre 2, deRa = 0.25 107

Ue — Ve



Numerical results




Ongoing works

v Higher order approximate problems

v Extension of the method to the following situations ?

Direct extensions

Extensions raising challenging questions

2©®
200\
{ X X X
X X X X X\
>0o0000@
( X X X X X )
¥ X X X X X\

L A A A RS
000000.
0000000
00000001
0000000/
000000
0000~

v Extension of the case without dissipation (the transmission problem
IS not well-posed. What radiation condition in infinite periodic media?)

v Extension of the method to 3D and Maxwell equations



Ongoing works
» Why have we spent so much effort for so little?

Some high contrast materials behave as effective negative materials at some
ranges of frequencies.

For frequencies for which the contrasts of permittivity or/and of permeability is/
are equal to -1, the transmission problem at order O can be

We think that higher order transmission condition will settle the problem.

Extension to

A simple case in 2D




The higher order transmission problem

|deas for the proof of the error estimates :

1. Error estimates between the exact solution and the matched asymptotic expansion
r
|

0

lim &(¢€)
e—0
lim 208) _
e—>0 €&

|
8

Q; Q;F
<>
6(€)25(¢)

We use the stability of the original problem.

2. Error estimates between the matched asymptotic expansion and the
approximate solution

We use the stability of the higher order transmission problem.



