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The model

R

F

Segment RF moves so that the trajectory of R is tangent to
the segment. Notation: γ is the rear track, Γ is the front track.
When the steering angle is 90◦, γ has a cusp. One can do it in
Rn, and on a Riemannian manifold. (animation)

2



The bicycle constraint defines an n-dimensional non-integrable

distribution on S(TRn); the trajectories are horizontal curves.

The rear track γ has a coorientation determined by the direction

of the motion. The map γ 7→ Γ is well defined (it depends

on the length `). Conversely, Γ defines the bicycle monodromy

MΓ,` : Sn−1 → Sn−1.

Theorem. M is a Möbius transformation.

Here Sn−1 is the sphere at infinity of the hyperbolic space Hn,

considered in the hyperboloid model in Rn,1; the Möbius group

is O(n,1).

3



Bicycle (Darboux, Bäcklund) correspondence

Two front tracks that share the rear track, with opposite coori-
entations. Write: B2`(Γ1,Γ2). Equivalently, two points, x1 and
x2, traverse the curves Γ1 and Γ2 in such a way that the dis-
tance x1x2 is equal to 2`, and the velocity of the midpoint of
the segment x1x2 is aligned with the segment. (animation)

Discrete version (in Rn):
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Theorem. The discrete bicycle monodromy is also a Möbius

transformation.

5



The next two results hold in the continuous and discrete settings.

Theorem. If closed curves Γ1 and Γ2 are in the bicycle corre-
spondence, then MΓ1,λ and MΓ2,λ are conjugated for every value
of λ.

Thus the conjugacy invariants of MΓ,λ, as functions of λ (the
spectral parameter), are integrals of the bicycle correspondence.

Theorem. (Bianchi permutability). Let Γ1,Γ2 and Γ3 be three
closed curves such that B`(Γ1,Γ2) and Bλ(Γ1,Γ3) hold. Then
there exists a closed curve Γ4 such that Bλ(Γ2,Γ4) and B`(Γ3,Γ4)
hold.

Conjecture. The bicycle correspondence in Rn, continuous and
discrete, is Liouville integrable; likewise, in the elliptic and hy-
perbolic geometries.
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(Pre)symplectic geometry (S.T., to appear in JGP)

Two differential 2-forms on the space of smooth curves in R3:

ω(u, v) =
∫
u′(x) ·v(x) dx, Ω(u, v) =

∫
det(Γ′(x), u(x), v(x)) dx,

where u(x), v(x) are vector fields along a curve Γ(x). Both forms

are closed (in fact, exact).

The form ω depends on the metric, but exists in all dimensions;

Ω depends on the volume form, but is 3-dimensional only.

Kernels: the constant vector fields, for ω, and the tangent vector

fields (reparameterizations), for Ω.

Theorem. The bicycle transformation preserves the forms ω

and Ω.
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Conjecture. The monodromy integrals commute in the corre-

sponding quotient spaces with respect to the Poisson bracket

induced by ω (all dimensions) and Ω (dimension three).

Furthermore, the forms ω and Ω are compatible (as if they de-

fined Poisson structures that form a pencil)...

Conjecture. The forms ω and Ω are compatible if and only if

M3 has constant curvature.
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Filament equation Γ̇ = Γ′ × Γ′′

It is Hamiltonian flow with respect to Ω, with Poisson commuting

integrals F1, F2, . . .
∫

1 dx,
∫
τ dx,

∫
κ2 dx,

∫
κ2τ dx,

∫ (
(κ′)2 + κ2τ2 −

1

4
κ4
)
dx, . . .

and their commuting Hamiltonian vector fields X0, X1, X2, . . .

−T, κB,
κ2

2
T+κ′N+κτB, κ2τT+(2κ′τ+κτ ′)N+

(
κτ2 − κ′′ −

κ3

2

)
B, . . .

where (T,N,B) is the Frenet frame along the curve Γ.

The vector fields Xi satisfy the recurrence relation

T ×Xn = X ′n−1.
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Theorem. The functions Fi are integrals of the bicycle transfor-

mation (for all length parameters `). The bicycle transformation

commutes with the flows of the vector fields Xi.

Outline of proof: one has

ω(Xn−1, ·) = Ω(Xn, ·) = dFn.

Induction: if Xn−1 is preserved, then so is dFn, and then Xn is

preserved as well.
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Two Riccati equations and two sets of integrals

Let Γ(x) be a space curve, the front track. The motion of the
bicycle is described by a differential equation. In the moving
Frenet frame, via the stereographic projection from T , this is
the Riccati equation

z′ =
1

2
k(1 + z2) +

(
1

`
− iτ

)
z,

where k and τ are the curvature and torsion of Γ.

Let u(x) be the linearization at a periodic solution z(x). Then

u′

u
=
(

1

`
− iτ

)
+ kz.

The monodromy integrals are the integrals of the RHS, expanded
in the powers of `.
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The first two integrals are
∫

1dx and
∫
τdx, and the next ones are

∫
kzjdx, j ≥ 1. They are real for odd j and imaginary for even j.

Conjecture. These integrals coincide, up to constants, with the

filament integrals F1, F2, . . .

Recall the filament hierarchy of the commuting Hamiltonian vec-

tor fields Xn. Consider the generating function

X =
∑

n≥0

`nXn

where ` is a variable. Then the recurrence implies:

T ×X = `X ′, X ·X = 1.
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Rewrite this as a Riccati equation via the same stereographic

projection:

w′ =
1

2
k(1 + w2) + i

(
1

`
− τ

)
w.

This is the same equation, with ` replaced by i`. In particular,

the monodromy integrals are (almost) the same.
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Derivative of the bicycle monodromy at a fixed point in terms

of the rear track.

Let γ be a closed rear track, L its signed length (negative, when

the bicycle moves backwards), and τ its torsion.

Theorem. The derivative of the bicycle monodromy at the fixed

point corresponding to γ equals

e−(L+i
∫
τdx).

In particular, in the plane, the monodromy is parabolic if and

only if the signed length of the rear track is zero.
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Bicycles and planimeters

In dimension 2, hatchet, or Prytz, planimeter:

1

BA

A

How it works: Area ≈ |AB||AA1|, the more accurate, the larger
|AB| is (a power series expansion in 1/`).

A consequence for parallel parking: maximize the area bounded
by the front wheel trajectory.
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In dimension 3, let ` = 1/ε, let Γ(x) be the front track, and v(x)

the unit vector along the bicycle frame. Then

εΓ′ × v = v′ × v.

Write v = v0 + εv1 + ε2v2 + . . . Then v0 is a constant vector.

Proposition. The lowest in ε non-trivial component of the mon-

odromy v(L)− v(0) is

1

2
v0 ×

(∫ L
0

(Γ′ × Γ) dx

)

(space planimeter).

The area (bi)vector is an integral of the bicycle transformation

(and that of the filament equation too).
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Which way did the bicycle go?

In “The Adventure of the Priory School” by A. Conan Doyle,
Sherlock Holmes did not do very well:

No, no, my dear Watson. The more deeply sunk impression is,

of course, hind wheel, upon which the weight rests. You perceive

several places where it has passed across and obliterated the more

shallow mark of the front one. It was undoubtedly heading away

from the school.
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Usually, you can tell which way the bicycle went, but sometimes

you cannot. Trivial example: concentric circles. But also:

Two dimensional bodies which can float in all directions are given by ψper =
2π/n, thus for m = 1 and sufficiently small ε. In this limit the δu can be
determined from eq. (141) with

ζ(ω′ + δz) =
n2

12
(ω′ + δz) − ni − n

2
tan(

nδz

2
) + O(q), (199)

σ(ω′ + δz) =
2i

nq̂
e−inδz cos(

nδz

2
)en2(ω′+δz)2/24 + O(q̂), (200)

where eqs. (349) and (355) and π
ω3

= n, η3

ω3
= n2

12 have been used. Then eq.
(141) yields

tan(n δu ) = n tan( δu ), (201)

in agreement with the results obtained in refs. [7, 12, 8], where δu corresponds
to π

2 − δ0 and in ref. [6], where δu corresponds to πρ.
A few cross-sections of the bodies are shown in figs. 10 to 23. For odd n the

innermost envelope corresponds to density ρ = 1/2.

Fig. 10 m/n = 1/3,
ε = 0.1

Fig. 11 m/n = 1/3,
ε = 0.2

Fig. 12 m/n = 1/3,
ε = 0.5

Fig. 13 m/n = 1/4,
ε = 0.1

Fig.∗ 14
m/n = 1/4, ε = 0.1

Fig. 15 m/n = 1/4,
ε = 0.2

31
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Fig. 16 m/n = 1/5,
ε = 0.1

Fig.∗ 17
m/n = 1/5, ε = 0.1

Fig.∗ 18
m/n = 1/5, ε = 0.1

Fig.∗ 19
m/n = 1/5, ε = 0.2

Fig. 20 m/n = 1/6,
ε = 0.05

Fig.∗ 21
m/n = 1/6, ε = 0.05

Fig.∗ 22
m/n = 1/6, ε = 0.05

Fig. 23 m/n = 1/7,
ε = 0.1

7.2 Periodicity

In eq. (115) an angle of periodicity ψc has been defined. Here the periodicity is
discussed for several regions in fig. 4. The angle of periodicity ψper is defined
as the change of the angle ψ, as one moves from a point of extremal radius ri

along the curve until a point of this extremal radius is reached again. Its sign
is defined by the requirement that watching from the origin one starts moving
counterclockwise. This yields

ψper =
∆ψ

sign (dψ
du )

∣∣∣
r=ri

, (202)

∆ψ = ψ(u + 2ω3) − ψ(u) (203)
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F. Wegner, Three Problems – One Solution

http://www.tphys.uni-heidelberg.de/~wegner/Fl2mvs/Movies.html.
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Ulam’s problem: which bodies float in equilibrium in all posi-
tions?

In dimension two (floating log), it’s the same problem!

(The role of relative density is played by the relative length of
the arc subtended by the moving segment.)
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Wegner’s curves: in polar coordinates r = r(ψ),

1√
r2 + r2

ψ

= ar2 + b+
c

r2

with parameters a, b, c. One has, for the curvature,

k = 4ar2 + 2b.

Let X2 = k2

2 T + k′N be the planar filament vector field.

Theorem. The Wegner curves are solitons: under X2, they
evolve by rigid rotation and parameter shift. Their curvature
satisfies

k′′+
1

2
k3 + λk = µ

with λ = 8ac − 2b2, µ = 8a (the Euler-Lagrange equation for
pressurized elastica).
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A special class of solutions. Consider the n-fold unit circle. Its

bicycle monodromy is trivial for

`k,n =
1√

1− k2

n2

, k = 1,2, . . . , n− 1.

This gives a family of curves Γk,n that admit a trigonometric

parameterization.

The bicycle correspondence rotates theses curves.

Theorem. The curve Γk,n with 1 ≤ k ≤ n − 2 is in the bicycle

correspondence with itself for n− k− 1 values of the ”density” ρ

satisfying

n tan(kπρ) = k tan(nπρ).
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What about polygons? For even n and odd k, there exist non-

regular self-bicycle (n, k)-gons:
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Theorem. An infinitesimal deformation of a regular polygon as
a self-bicycle (n, k)-gon exists if and only if

tan
(
kr
π

n

)
tan

(
π

n

)
= tan

(
k
π

n

)
tan

(
r
π

n

)

for some 2 ≤ r ≤ n− 2.

In addition to the described polygons (n = 2r, and k odd), there
may be others.

Theorem [R. Connelly and B. Csikos, 2009]. For 2 ≤ r ≤ n/2,
all other solutions of the above equation are

k + r =
n

2
and n|(k − 1)(r − 1)

Problem. Do such polygons exist?
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Thank you!
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