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Part I: Origins of Integrability - classical dynamics



The magic of Johannes Kepler

On January 1, 1600 a teacher of mathematics and astronomy from Graz
Johannes Kepler set off to Prague by invitation of Tycho Brahe, the imperial
astronomer of the Holy Roman Emperor Rudolf II.

Figure: Kepler (1571-1630) and his ”Mysterium Cosmographicum” (1596)

”Forerunner of the Cosmological Essays, Which Contains the Secret of the
Universe; on the Marvelous Proportion of the Celestial Spheres, and on the
True and Particular Causes of the Number, Magnitude, and Periodic Motions
of the Heavens; Established by Means of the Five Regular Geometric Solids”



Second attempt: conic sections

Figure: Apollonius’s ”Conics” (First Latin edition: Bononiae, 1566)



Kepler’s laws of planetary motion

First Kepler’s Law (1605):
The orbits of the planets are ellipses with one of the foci at the Sun

Second Kepler’s Law (1602):
The sectorial velocity remains constant along the orbit

Third Kepler’s Law (1619):
The square of the periods are proportional to the cube of the major semi-axes
of the orbits
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The breakthrough: Isaac Newton

Isaac Newton: Kepler’s laws imply the Universal Gravity Law:

Figure: Isaac Newton (1642-1727) and his own copy of ”Principia” (1687)

The Mathematical Physics was born...
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How lucky were we?

Very lucky...

Consider the motion of particle under a central force with magnitude
depending only on the distance r from the origin (centre):

Bertrand (1873): If a central force system has all bounded orbits closed, then
either

F (r) =
k

r 2
(Newton’s, or Coulomb’s law),

or
F (r) = κr (Hooke’s law).

The same is true if we assume that all orbits are conic sections, although in
that case we can allow the force to be repulsive (Bertrand, Darboux).

Albert Einstein: ”God may be sophisticated, but not malicious.”
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Luck continues: Two-fixed centre problem

Leonhard Euler (1760): Integrability of two-fixed centre problem

Figure: Orbits of two-fixed centre problem (produced by R. Sakamoto)



Hamiltonian formalism

Figure: Euler (1707-1787), Lagrange (1736-1813) and W.R. Hamilton (1805-1865)

William Rowan Hamilton (1837): Euler-Lagrange equations of mechanics can
be re-written as Hamiltonian systems

ṗi = −∂H
∂qi

, q̇i =
∂H

∂pi
,

where i = 1, ..., n and H = H(p, q) is called Hamiltonian of the system.

Define Poisson bracket of two functions F and G on the phase space R2n as

{F ,G} :=
n∑

i=1

(
∂F

∂pi

∂G

∂qi
− ∂F

∂qi

∂G

∂pi
).

The equations of motion can be re-written then in an elegant form

Ḟ = {H,F}.
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Poisson algebra

Poisson bracket has the following properties:

{F ,G} = −{G ,F}

{c1F1 + c2F2,G} = c1{F1,G}+ c2{F2,G}

{FG ,H} = {F ,H}G + F{G ,H}

{{F ,G},H}+ {{G ,H},F}+ {{H,F},G} = 0 (Jacobi identity).

In particular, the space of functions F2n on the phase space R2n forms an
infinite-dimensional Lie algebra with respect to Poisson bracket.

F is called an integral of the Hamiltonian system with Hamiltonian H if it is
preserved by the flow: Ḟ ≡ 0, or equivalently to

{F ,H} ≡ 0.

Poisson’s theorem. Poisson bracket of two integrals is an integral of the same
Hamiltonian system.

Corollary. The integrals of a Hamiltonian system also form a Lie algebra with
respect to the Poisson bracket.
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Integrals and symmetries: Noether’s principle

Figure: Emmy Noether (1882-1935)

Emmy Noether (1918): there is a correspondence between integrals and
symmetries:

INTEGRALS ↔ SYMMETRIES

In particular, if F is an integral of the system Φ̇ = {H,Φ}, then Φ′ = {F ,Φ}

is a (continuous) symmetry of this system.

Example. For a central force system in R3 we have

Angular momentum M = p × q ↔ Rotational symmetry .

Poisson algebra of components of M is nothing but the Lie algebra so(3):

{M1,M2} = M3, {M2,M3} = M1, {M3,M1} = M2.
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Isotropic harmonic oscillator

H =
1

2
|p|2 +

1

2
ω2|q|2, p, q ∈ Rn

has the integrals Mij = piqj − pjqi , i < j , corresponding to rotational
symmetry, and additional integrals

Nij = pipj + qiqj , i ≤ j ,

and the full symmetry algebra is the unitary Lie algebra u(n).

The orbits of isotropic harmonic oscillator are ellipses with centre at the origin.

Indeed, assume for simplicity that ω = 1, then the equations of motion are
ṗ = −q, q̇ = p, or for z = p + iq ∈ Cn

ż = iz .

Its solutions are circles z = z0e
it . The orbits are their projections on q-space,

which are ellipses.
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Hidden symmetry of Kepler system

Kepler system has the Hamiltonian

H =
1

2
|p|2 − k

|q| , p, q ∈ R3.

It describes also the Hydrogen atom, which makes it probably the most
important system in natural sciences.

Laplace (1799): a ”hidden symmetry” of Kepler system: Laplace’s vector,
(also known as Runge-Lenz vector):

L = p ×M +
kq

|q| .

Components of M and L form together a Lie algebra isomorphic to so(4),
which is the full symmetry of Kepler system.
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Liouville integrability

We say that a Hamiltonian system in R2n is integrable in Liouville sense (or,
simply, integrable) if it has n independent integrals F1, . . . ,Fn in involution:

{Fi ,Fj} ≡ 0.

Liouville-Arnold theorem. Assume that a Hamiltonian system in R2n has n
independent integrals F1 = H,F2, . . . ,Fn in involution and consider a level set

Mc = {x ∈ R2n : Fj(x) = cj , j = 1, . . . , n}.

Assume that grad Fj are linearly independent on Mc . Then

1. Mc is a smooth manifold, invariant under the phase flows with Hamiltonians
F1, . . . ,Fn.

2. If Mc is compact and connected, then it is diffeomorphic to a torus
T n = {(φ1, . . . , φn) mod 2π}.

3. In a neighbourhood of such Mc there is a canonical change of variables
(p, q)→ (I , φ mod 2π) (action-angle variables), such that in the new
coordinates the Hamiltonian H = H(I ). The flow is linear in angle variables:

φ = ω(I )t + φ0, ωj(I ) =
∂H

∂Ij
(I ),

so the orbits are winding lines on the corresponding torus.
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Liouville tori

Figure: Joseph Liouville (1809-1882), Vladimir I. Arnold (1937-2010) and Liouville
torus in a central force system



Examples of integrable systems

1. Any central force system in R3 (in particular, Kepler system) is integrable
with

F1 = H, F2 = M1, F3 = |M|2.

2 (Euler). Two-fixed centre problem on the plane with

H =
1

2
(p2

1 + p2
2)− m1

r1
− m2

r2
,

where

r1 =
√

(q1 + c)2 + q2
2 , r2 =

√
(q1 − c)2 + q2

2

are the distances from the centres, has an additional integral

F =
1

2
(p1q2 − p2q1)2 +

1

2
c2p2

1 + cq1

(
m1

r1
− m2

r2

)
.

3. Harmonic oscillator with

H =
1

2
|p|2 +

1

2

n∑
i=1

ω2
i q

2
i

has n commuting independent integrals

Fi =
1

2
p2
i +

1

2
ω2
i q

2
i , i = 1, . . . , n.



Examples of integrable systems

1. Any central force system in R3 (in particular, Kepler system) is integrable
with

F1 = H, F2 = M1, F3 = |M|2.
2 (Euler). Two-fixed centre problem on the plane with

H =
1

2
(p2

1 + p2
2)− m1

r1
− m2

r2
,

where

r1 =
√

(q1 + c)2 + q2
2 , r2 =

√
(q1 − c)2 + q2

2

are the distances from the centres, has an additional integral

F =
1

2
(p1q2 − p2q1)2 +

1

2
c2p2

1 + cq1

(
m1

r1
− m2

r2

)
.

3. Harmonic oscillator with

H =
1

2
|p|2 +

1

2

n∑
i=1

ω2
i q

2
i

has n commuting independent integrals

Fi =
1

2
p2
i +

1

2
ω2
i q

2
i , i = 1, . . . , n.



Examples of integrable systems

1. Any central force system in R3 (in particular, Kepler system) is integrable
with

F1 = H, F2 = M1, F3 = |M|2.
2 (Euler). Two-fixed centre problem on the plane with

H =
1

2
(p2

1 + p2
2)− m1

r1
− m2

r2
,

where

r1 =
√

(q1 + c)2 + q2
2 , r2 =

√
(q1 − c)2 + q2

2

are the distances from the centres, has an additional integral

F =
1

2
(p1q2 − p2q1)2 +

1

2
c2p2

1 + cq1

(
m1

r1
− m2

r2

)
.

3. Harmonic oscillator with

H =
1

2
|p|2 +

1

2

n∑
i=1

ω2
i q

2
i

has n commuting independent integrals

Fi =
1

2
p2
i +

1

2
ω2
i q

2
i , i = 1, . . . , n.



Integrability in rigid body dynamics

Euler: motion of rigid body fixed at centre of mass

Lagrange: axisymmetric case with gravity (Lagrange top)

Alfred Clebsch (1871): special case of rigid body motion in infinite fluid

Sofia Kowalevskaya (1888): a special asymmetric top, ”Prix Bordin” (1888),
arguably the most complicated integrable system of XIX century.

Figure: Alfred Clebsch (1833-1872) and Sofia Kowalevskaya (1850-1891)
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Paradise lost: Poincare and chaos

Poincare (1892-99): non-integrability and chaos in 3-body problem in celestial
mechanics

Figure: Henri Poincaré (1854-1912) and homoclinic tangles

Much of this came as a result of correcting the mistake in his early 1887 work...
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A glimpse of hope: KAM-theory

Figure: A.N. Kolmogorov (1903-1987), V.I. Arnold (1937-2010) and J. Moser
(1928-1999)

KAM-theorem (1954-63): most of Liouville’s tori survive under a small
perturbation of integrable system

H = H(I ) + εH1(I , ϕ).
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Renaissance of Integrability: soliton theory (1967-)

Figure: John Scott Russell (1808-82) and his soliton re-created in 1995

More in Mark Ablowitz’s lecture
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Part II: Integrability and XIX-century algebraic geometry



Jacobi and geodesics on ellipsoid

Carl Gustav Jacobi (1843): a famous lecture course on Dynamics in
Königsberg, which were later edited by Clebsch and published in 1866.

Figure: Carl Gustav Jacob Jacobi (1804-51) and second edition of his ”Lectures on
Dynamics”



Geodesics on ellipsoid

To find the geodesics on an ellipsoid Jacobi introduced a ”remarkable
substitution” -Elliptic Coordinates.

Figure: Elliptic coordinates on an ellipsoid

The elliptic coordinates u1, . . . , un are the roots of

x2
1

a1 + u
+

x2
2

a2 + u
+ · · ·+ x2

n

an + u
= 1

and correspond to the confocal quadrics extensively studied in XIX-th century
(e.g. in Salmon and Fiedler ”Analytische Geometrie des Raumes” (1863-65)).
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Abel map and Jacobi inversion problem

Jacobi showed that for n = 2 the elliptic coordinates u1, u2 satisfy

ξ̇1 =
u̇1√
R(u1)

+
u̇2√
R(u2)

= 1,

ξ̇2 =
u1u̇1√
R(u1)

+
u2u̇2√
R(u2)

= 0,

where R(z) is some polynomial of degree 5, and

ξ1 =

∫ u1 dz√
R(z)

+

∫ u2 dz√
R(z)

,

ξ2 =

∫ u1 zdz√
R(z)

+

∫ u2 zdz√
R(z)

is the Abel map of S2Γ→ J(Γ) for hyperelliptic curve Γ given by

y 2 = R(z).

This was the origin of the classical Jacobi inversion problem, which is one of
the most fundamental in classical algebraic geometry.
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Riemann’s solution and θ-functions

In December 28, 1838 Jacobi wrote to his colleague Friedrich Bessel:

The day before yesterday I reduced the geodesic line of an ellipsoid with three
unequal axes to quadratures. The formulas are the simplest in the world,
Abelian integrals, transforming into the known elliptical ones if two axes are
made equal.

However explicit formulas for the geodesics had to wait until 1861 when
Weierstrass used the genus two generalisation of elliptic functions introduced
by Göpel and Rosenhein.

In full generality, the solution was found by Bernhard Riemann, who introduced
the classical Riemann θ-function

θ(z ,B) =
∑
m∈Zg

exp 2πi(mtz + mtBm),

where B is Riemann matrix of b-periods.
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Hyperelliptic case: Klein’s sigma-functions

Figure: Karl Weierstrass (1815-97), Bernhard Riemann (1826-66) and Felix Klein
(1849-1925)

In 1925 Felix Klein complained:

When I was a student, abelian functions were, as an effect of the Jacobian
tradition, considered the uncontested summit of mathematics and each of us
was ambitious to make progress in this field. And now? The younger
generation hardly knows abelian functions.
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Modern development

The situation changed from 1974 when θ-functions became common tool in the
theory of integrable PDEs (S.P. Novikov, Dubrovin, Its, Matveev, Krichever).

This led to remarkable results in algebraic geometry, including

I Proof of Novikov’s conjecture on Schottky problem (Shiota, 1986)

I Proof of Welter’s trisecant conjecture (Arbarello and De Concini, 1984;
Krichever, 2006)

I Geometric characterization of Prym varieties (Grushevsky, Krichever, 2010)

Another very important development was

I ADHM construction of instantons (Atiyah, Drinfeld, Hitchin, Manin, 1976)
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Part III: Integrability in classical differential geometry



Line congruences in R3

Line congruence is a 2-parameter family of straight lines in R3. For a general
line congruence there are exactly 2 focal surfaces:

Figure: Focal curve (envelope) in the plane and 2 focal surfaces in space

Luigi Bianchi (1879): Suppose that the distance between corresponding points
of focal surfaces is 1 and that the corresponding normals are orthogonal, then
both surfaces have Gaussian curvature K = −1 (pseudospherical surfaces).

Lie (1879), Bäcklund (1883): converse to this statement and one-parameter
generalization
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Bäcklund transform and sine-Gordon equation

Figure: Luigi Bianchi (1856-1928), Sophus Lie (1842-99) and Albert Victor Bäcklund
(1845-1922)

The angle φ between the asymptotic lines of pseudospherical surfaces satisfies
sine-Gordon equation:

φxy = sinφ.

Lie-Bäcklund transform:

ψx = φx + 2a sin

(
φ+ ψ

2

)
, ψy = −φy +

2

a
sin

(
ψ − φ

2

)
.
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Bianchi permutability

Bianchi: Lie-Bäcklund transforms commute:

Figure: Bianchi permutability diagram

Corresponding solutions of sine-Gordon equation satisfy the relation

φ12 = φ+ 4 tan−1

(
a2 − a1

a2 + a1
tan

φ2 − φ1

4

)
,

which is an example of integrable purely discrete 2D equation.
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Menelaus theorem and discrete SKP equation

Figure: Menelaus of Alexandria (70-140AD) and his theorem

Menelaus theorem: φ13, φ23, φ12 lie on a straight line iff

(φ1 − φ12)

(φ12 − φ2)

(φ2 − φ23)

(φ23 − φ3)

(φ3 − φ13)

(φ13 − φ1)
= −1.

Konopelchenko, Schief (2001): this is nothing but Bianchi theorem for the
Schwarzian KP equation!

Adler, Bobenko, Suris (2010): classification of integrable discrete equations of
this (octahedral) type
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Hilbert on XIX-century mathematics

When David Hilbert was asked about the most important results of
XIX-century mathematics, he allegedly mentioned

I Cantor’s proof of uncountability of the real numbers

I Salmon and Cayley result about 27 lines on a generic cubic surface

I Staude’s string construction of an ellipsoid.

Figure: David Hilbert (1862-1943) and Staude’s construction from Hilbert-Cohn
Vossen ”Anschauliche Geometrie”

The last one is based on the integrability of Jacobi’s geodesic problem.
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Part VI: Integrability and quantum theory



Hamilton-Jacobi equation and separation of variables

W.R. Hamilton (1834) used deep analogy between mechanics and optics to
introduce Hamilton-Jacobi equation

∂S

∂t
+ H(

∂S

∂q
, q, t) = 0

where S = S(q, t) is the action of the corresponding Hamiltonian system.

An amazing discovery of Jacobi that this PDE is sometimes easier to solve than
the original system of ODEs !

Namely, the complete solution can be found as a sum (?!)

S = Et + W1(Q1, α) + W2(Q2, α) + ...+ W (Qn, α),

where Q1,Q2, ...,Qn are some new coordinates. This method is known as
separation of variables in the Hamilton-Jacobi equation and still remains
arguably the most effective method in the theory of integrable systems.
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”Older Quantum Theory”

Bohr, Sommerfeld (1913-15): quantisation conditions∮
pkdqk = nk~,

where nk are integers, ~ is a Planck constant.

Schwarzschild, Epstein (1916), Einstein (1917): true only in separation
coordinates of Hamilton-Jacobi equation...

Figure: Karl Schwarzschild (1873-1916) and Paul Epstein (1871-1939), who were first
to emphasise the role of Jacobi’s work in the ”Older Quantum Theory.”
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New Quantum Theory: Schrödinger equation

Quasi-classical limit: setting Ψ = exp iS/~ and neglecting ~2-terms we come
to

∂S

∂t
+

∣∣∣∣∂S∂x
∣∣∣∣2 + V (x) = 0,

which is exactly the Hamilton-Jacobi equation with H = |p|2 + V (q).

The separation of variables in the quantum case looks quite natural:

Ψ = Ψ1(X1)Ψ2(X2)...Ψn(Xn).

So Jacobi’s method is SEMI-QUANTUM !
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Quantum integrability in modern Mathematics

I Spectral theory: existence of commuting operators imply ”finite-gap”
properties (S.P. Novikov; Lax (1974))

I Special functions: Jack polynomials as eigenfunctions of quantum
Calogero-Moser problem (Jack (1970); Calogero, Sutherland (1971))

I Algebra: QIST method and quantum groups (Drinfeld; Jimbo (1986)),
Dunkl operators and Cherednik algebras (Cherednik (1993))

I Topology: Yang-Baxter equation and knot invariants (Turaev (1988)),
Chern-Simons theory and Jones polynomial (Witten (1989))

I Differential geometry: TQFT and Frobenius manifolds (Dubrovin (1993))
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