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Ellipsoid

Conformal curvature line parametrized ellipsoid
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Open problem. Discrete ellipsoid
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Open problem. Discrete confocal quadrics

As a referee stated:
“Confocal quadrics is an ubiquitous subject that goes back to
Jacobi and Chasles; it is also an evergreen topic, studied, in the
20th century, by J. Moser and V. Arnold, among others.
Quadrics provide basic examples of continuous- and
discrete-time integrable systems, namely, the geodesic flows
and billiard ball maps.”
“I expect this [...] to generate much more research: one cannot
help wondering which of the numerous features of conics and
quadrics, described in the classic geometry literature, have
discrete analogs, and what these analogs may look like.”
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Discrete ellipsoid (and confocal quadrics) in this talk
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Confocal quadrics

For any numbers a1 > · · · > aN > 0, the one-parameter (λ)
family of quadrics defined by

x2
1

λ+ a1
+ · · ·+

x2
N

λ+ aN
= 1

is known as a family of confocal quadrics in RN .

N = 2 N = 3
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Confocal (elliptic) coordinates

Through each point x = (x1, . . . , xN) ∈ RN subject to
x1 · · · xN 6= 0, there pass exactly N orthogonal quadrics
(different signatures) corresponding to some values
λ = u1, . . ., λ = uN . Obtained by solving the equations

N∑
k=1

x2
k

ui + ak
= 1, i = 1, . . . ,N,

−a1 < u1 < −a2 < · · · < −aN < uN .
The parameters u1, . . . ,uN are known as confocal (or elliptic)
coordinates and represent an orthogonal coordinate system in
each of the 2N hyperoctants via

x2
k =

∏N
i=1(ui + ak )∏
i 6=k (ak − ai)

, k = 1, . . . ,N. (Discretisation?)
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Algebraic properties

Confocal coordinates (in the first hyperoctant)

x : U → RN
+, xk =

∏k−1
i=1

√
−(ui + ak )

∏N
i=k

√
(ui + ak )∏k−1

i=1
√

ai − ak
∏N

i=k+1
√

ak − ai

U = {(u1, . . . ,uN) : −a1 < u1 < −a2 < · · · < −aN < uN}
enjoy the following properties:
(1) xk = ρ1

k (u1) · · · ρN
k (uN) (separability)

(2) xk (uk ↗ −ak ) = xk (uk−1 ↘ −ak ) = 0 (boundary
conditions)
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Algebraic properties

(3) x is a solution of the Euler-Poisson-Darboux equations

∂2x
∂ui∂uj

=
γ

ui − uj

(
∂x
∂uj
− ∂x
∂ui

)
, γ =

1
2

(i 6= j) which are multi-dimensionally consistent. The coordinate
lines on the surfaces x(ui ,uj) are therefore conjugate.

(4)
〈
∂x
∂ui

,
∂x
∂uj

〉
= 0 (orthogonality)

Conjugacy and orthogonality means that the confocal
coordinates (ui ,uj) are curvature coordinates on the surfaces
x(ui ,uj).
All two-dimensional coordinate surfaces are isothermic

The properties (1) - (4) characterise confocal coordinates
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Formulas

Theorem. Separable solutions (1) of the
Euler-Poisson-Darboux equations (3) subject to the boundary
conditions (2) are given by

xk = Dk

k−1∏
i=1

√
−(ui + ak )

N∏
i=k

√
(ui + ak ).

The orthogonality condition (4) is satisfied if and only if (up to a
global scaling)

D−1
k =

k−1∏
i=1

√
ai − ak

N∏
i=k+1

√
ak − ai

so that (u1, . . . ,uN) constitute confocal coordinates.

What are the discrete analogues of the properties (1) - (4)?
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Discrete Euler-Poisson-Darboux equations

For some U ⊂ ZN , we consider discrete nets

x : U → RN , (n1, . . . ,nN) 7→ (u1, . . . ,uN),

satisfying the discrete Euler-Poisson-Darboux equations

∆i∆jx =
γ

ni + εi − nj − εj
(∆jx −∆ix), γ =

1
2
,

where i 6= j and ∆i f (ni) = f (ni + 1)− f (ni).

I The discrete EPD equations are multi-dimensionally
consistent and define particular discrete conjugate nets,
i.e. the discrete surfaces x(ni ,nj) are composed of planar
quadrilaterals.

I The discrete EPD equations were introduced by
Konopelchenko and Schief (2014).

I All two-dimensional subnets are Koenigs.
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Discrete Koenigs nets

I A discrete surface f : Z2 → R3 with planar faces and
non-planar vertices is a discrete Koenigs net if the
intersection points of diagonals of any four quadrilaterals
sharing a vertex are co-planar. [B., Suris ’09]

I Koenigs + orthogonal = isothermic
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Separability

Introduce the “Pochhammer symbol” (Gelfand et al.)

(u)1/2 =
Γ(u + 1

2)

Γ(u)

which (up to rescaling) may be regarded as a discretisation of√
u since

lim
ε→0

ε1/2
(u
ε

)
1/2

= u1/2.

Theorem. A separable function

x(n1, . . . ,nN) = ρ1(n1) · · · ρN(un)

is a solution of the discrete EPD equations if and only if

ρi(ni) = di(ni + εi + c)1/2 = d̃i(−ni − εi − c + 1
2)1/2,

where c is a constant of separation.
Alexander Bobenko Discrete confocal quadrics



Combinatorics

Classical case: U = {(u1,u2) : −a1 < u1 < −a2 < u2}

Discrete case: U = {(n1,n2) : −α1 ≤ n1 ≤ −α2 ≤ n2}
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Boundary conditions

Consider the region

U = {(n1, . . . ,nN) ∈ ZN : −α1 ≤ n1 ≤ −α2 ≤ · · · ≤ αN ≤ nN}

for some positive integers α1 > · · · > αN and discrete nets
x : U → RN

+. Then, the parameters εi and the constants of
separation ck may be adjusted in the following manner:
Theorem. Separable solutions of the discrete EPD equations
subject to the 2N − 1 boundary conditions

xk (nk = −αk ) = xk (nk−1 = −αk ) = 0

are given by

xk = Dk

k−1∏
i=1

(−ui − ak + 1
2)1/2

N∏
i=k

(ui + ak )1/2,

ui = ni −
i
2
, ak = αk +

k
2
.
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Orthogonality

The standard notion of discrete orthogonality (+ conjugacy),
that is, circularity turns out to be incompatible!
Instead, we extend the discrete net x to

x : U ∪ U∗ → RN
+

U∗ = {(n1, . . . ,nN) ∈ (Z + 1
2)

N
: −α1 ≤ n1 ≤ −α2 ≤ · · · ≤ αN ≤ nN}

and demand that any edge of x(U) be orthogonal to the dual
facet of x(U∗).
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Discrete confocal quadrics

Theorem. The discrete orthogonality condition is satisfied if and
only if (up to a global scaling)

D−1
k =

k−1∏
i=1

√
ai − ak

N∏
i=k+1

√
ak − ai

so that discrete confocal quadrics are uniquely defined.
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Discrete vc. Continuous

Three confocal quadrics and their discrete counterparts
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Algebraic identities

A lattice point x(n) and its nearest neighbours x(n + 1
2σ) are

related by

x(n)x(n + 1
2σ)

u1 + a1
+

y(n)y(n + 1
2σ)

u1 + a2
+

z(n)z(n + 1
2σ)

u1 + a3
= 1

x(n)x(n + 1
2σ)

u2 + a1
+

y(n)y(n + 1
2σ)

u2 + a2
+

z(n)z(n + 1
2σ)

u2 + a3
= 1

x(n)x(n + 1
2σ)

u3 + a1
+

y(n)y(n + 1
2σ)

u3 + a2
+

z(n)z(n + 1
2σ)

u3 + a3
= 1,

where σ = (σ1, σ2, σ3), σi = ±1 and

u1 = n1 + 1
4σ1 − 3

4 , u2 = n2 + 1
4σ2 − 5

4 , u3 = n3 + 1
4σ3 − 7

4 .

This discretisation of the defining equations for confocal
quadrics exists for any N.
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Discrete umbilics

The umbilics (“spherical” points) on confocal ellipsoids lie on
the focal hyperbola

x2

a1 − a2
− z2

a2 − a3
= 1, y = 0.

The discrete umbilics (verices of valence 2; n1 = n2 = −α2)
likewise lie on a discrete focal hyperbola.
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Where to go from here

We can discretize confocal quadrics parametrised in terms of
arbitrary curvature coordinates. For instance, we can discretise
the following classical parametrizations:
N = 2:

x =

(
cos u cosh v
sin u sinh v

)
N = 3:

x =

 sn(u, k) dn(v , k̂) ns(w , k)

cn(u, k) cn(v , k̂) ds(w , k)

dn(u, k) sn(v , k̂) cs(w , k)


k2 =

α1 − α2

α1 − α3
, k̂2 = 1− k2.
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Discrete confocal quadrics
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