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Outline

Motivation for studying bow integrable systems:
- Moduli spaces of Yang-Mill instantons on ALF spaces.
- Solutions of supersymmetric 3D quantum field theories.
- (Geometric Langlands for complex surfaces.
- String theory brane dynamics.
- Bow's internal beauty.

Analytic results: curvature decay, asymptotic form, and Index.

Up Transform: Bow -> Instanton.

Down Transform: Instanton -> Bow (via scattering or via index bundle).
Spectral Curves and Dynkin diagrams.

Ké&hler potential on the space of solutions.



Motivation
Physics

a) Yang-Mills Theory (Strong, Week, and Electromagnetic interactions) studies
connection one-form A
on a Hermitian bundle E — M4,

with curvature of A is F=dA+AAA and action S[A]=] tr FA*F

Its Euler-Lagrange equation is the Yang-Mills Equation da*F=0. Extremum

b) Euclidean Feynman Path Integral
< O(A) >= /O(A)e—%S[A1DA

/tr(Fi*F)/\(Fi*F)>O — S[A]Z/:I:trF/\F
second Chern character
dominant contributions are delivered by the minima of the Yang-Mills action:

F = —x F  Anti-Self-Duality Equation
Minimum

Def: An Instanton is a connection A, with square integrable curvature and F=-*F.



Geometry

Ao ALE: Flat metric in “radial coordinates” R~ 5 g = ae’ s withapure imaginary
(x,T) are “polar coordinates” on R* r=x11l+x2J + 23K :=qlqg=ala
1 (1 dr + w)?
ds? = dqdq = 1 (—daz2 + (7 : w) ) dw = x3dV (x)
* ]
Ag ALF: Taub-NUT space (TN)
1 (dT + w)?
ds* = dqdg = =~ | V(z)dz?
= datq = (Vi + )
1
xr
Ak.1 ALF:multi-Taub-NUT space TNk
G
V =3
() =1+ P



Analytic questions about
Instantons on Taub-NUT:

Does L2 Yang-Mills solution have to be L=7
Does Fanecessarily decay at infinity”

How fast does Instanton curvature decay?
(e.g. on R* it decays as 1/r4, what is it for ALF?)

What is its asymptotic form?
What is the behavior of Harmonic Forms?

How many of them? Index theorem?



Analytic Results:

with Andres Larrain-Hubach and Mark Stern

Theorem (Decay): For (M,g) a complete Riemannian manifold of bounded geometry
and a connection Aon E— M

1) FelL? and dyx F =0 — lim |F(x)| =0.

|z|— 00

2) It F="F and Fel.2 and M is the multi-Taub-NUT space,
then there is C>0, such that [r*2 F|<C.

Theorem (Asymptotic):

An instanton on TNk with generic holonomy can be put (by a choice of trivialization) in the form

- 1
A = —idiag(ay,ao,...,a )+O<r2)
/ —— Monopole charges
=Chern number of
o | mj dT + w mj _u
with a; = |\ + + —w. holonomy eigenbundles
J J r V k

Def: For a point 77, write eigenvalues of the holonomy of A around S as 1T /1

An instanton A has generic holonomy, if there is a direction N such that the limits hm ,u]( A) — )\j
exist with all )\ distinct. r— 00



Theorem (Up):

The connection resulting from the Up Transform is an instanton on TNk, Instanton 4 dim
with the instanton asymp. holonomy and topological class

=
determined by the bow representation. S <
5
= @
< o
5 3
Theorem (Bijection): =
Up Transform is a bijection of Bow and Instanton moduli spaces. Bow 1 dim

Up-Down=It Down-Up=lgow

Theorem (Isometry):

Up Transform is an isometry of the hyperkahler moduli space of a Bow representation and
the corresponding moduli space of an Instanton on TNk.



Index of the Dirac Operator

Theorem (Index):

.

J

ind;2D} =Y ((% — /(KN /1] —my) — g{,\j/z}z> N 8% /F/\ F,

1
Here A = —idiag(ai,a9,...,a,) + O (—> :

mj) dr +w  m;

with  a; = (Aj + - A

r



Up Transform

TNk corresponds to Ak-1 Bow Bow:
(example for k=3):

Representation R of the bow: Circle diagram:

{)\j}, R(s) constant on each subinterval

R(s) determines the rank
of the Hermitian bundle E
over each subinterval.

If R is continuous at A,
introduce W)=C




Let e1, 2, and ez denote quaternionic units representation and
S be a 2-dim representation space.

o Affine space: Dat(R)=B®F®N is

hyperkahler T
B: Bl = B € Hom(E,, _,S® E,_4)
Ba—i—l,a 7
Ji
F: Qy = <I>\> € Hom(W), S ® E))
A
d
N: DZE—FTO—F@jTjECOH(S@E)

 The group G of gauge transformations on E
act triholomorphically on Dat(R)!

Bf — g(po—)BF g(po+),
Qx — g(N)Qx,
d

To(s) = 97" (s)Tog(s) + 97" (s) 9(s),

Ty(s) g~ (s)T9(s).

 Bow moduli space is the hyperkahler reduction Mr=Dat(R)///G.
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Moment Map Conditions

For a bow representation its moment map conditions are:

Big
Real form:
( d ' ; ' ]
‘ %Tl + _T07T1_ — _T27T3_
d - - - -
1/2 < _T2 + _T07T2_ — _T37T1_
Ir W Jr \ dS T3 —|_ -T()’ T3- — -T]-7 T2
Wgr 1
Ty(M) - Th(A-) = 3 (I,\JA +J )
, , ]
To(A+) —T2(A—) = 3 (J 1 —IAJA).-
o 1
Ts(A) - Ts(A-) = 3 (I - IAI/\) ,
Ty(por) = Y (% (BLRBEL | (BRL)i{ BLR)) —uel) . Tipm = Y (%
hljc? EpaL ”:C:c. tl.’aR
Ty(Por) = . (2( BRL (BT — BERBRL) VCQ) . Talper) = :\; (3
t(c:ci)aL tlel=poRr
o 1
T3(poL) = 2 (%(:’BfL]iBCRL — BfR:'BfR)f) - Vc3) , T3(psr) = 2; (5
- &E “:C:c PoR
tlel=psL

Nahm’'s Eqgs

(BRLBLR | (BLR)i (BRL)1) Vcl)
((BLR)i( BRL)i _ gRL BLR) _ch)’

(BRL(BRL)I _ (BLR)I gLR) _ Vca) _

This is the Integrable System associated with a Bow Rep.



Complex form:
D=4 —iTy—Tyand T =T, + iTs,

1D, T — 0(s+%)Bo1B1g + 0(s—%)B1gBo1 + Z O(s=A) 0o =0
ac{L,R} N
(DY, D] + [T, T] + 6(s+ 1) (BjoBio — Bo1 BYy) + 6(s-4)(Bly Bor — BioBjo)+

+ Y e a) (e = Ld]) = 0.

ac{L,R}
Quaternionic form:
t d ., - g /AN T2 o ¢ \\ Pa
) = (——z[,:,—j( ) t (’)I_..S:-—,\a _,0(.20 t ((‘)l._.\‘—-fl‘.(z )) 8 . (‘)IIIS—'IZI!(I .,II,IB )
(13 ' ac{Arrows}

ImH @TQ =
|

Moment map



w/ SC ‘11

Ker ©f
Ker D}

Ker ©F

D =Dte1+1x0t [ @IT = ( J

the self-dual connection on TN is




| 4

1) Find solutions of the LARGE bow rep. and a small bow rep.

2) Form Dirac operators

J
Dt — —— =Y 1EFE o (s—A, )4 Ss—tla)) ., d(s—h(a))B*).
('1\' - \ - \ Ct v Q J ) J )

ac{Arrows} (

—1/2 l/2

with opposite moment map values

and the twisted operator

'DI =D'T®1+1®0

3) Form the orthonormal basis of solutions T = (x(s), fx, vy, v-)
to the Bow Dirac equation  oir =

4) Find the Higgs field and the gauge field of the singular monopole
from

A= (T, ( )T)



Down Transform

Since the Taub-NUT space is a moduli space of a small bow representation s

It comes not only equipped with a metric,

but also equipped with a series of instantons. It is assembled of

O_dT—|—w 00

VoV

and, also for each NUT

a , which can be multiplied by ay real factor, and

B 1 dr + w
- z—v,| V

0% T 770

These assemble into the connection on the tautological bundle:

a(s) = sa’ + Z Ao -

olps<s



Dirac Operator

Clifford Algebra: {cP,ca}=-26ra, cP=CI(BP), yo=cOc'c2cs

Spin bundle splits into S=S+&S-, S-carries a representation of quaternions li=cOc! !
N
Not trivial Trivial

The fiber of S+, after being trivialized, is identified with S on the bow of the Up Transform.
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* TNk space can be viewed as a HK quotient,
TNk=(Level Set)/G where G is the group of bow gauge transformations.

* Let HscG be its subgroup of gauge transformations acting trivially on the fiber @
at s. We have Hs—=G—Gs, where Gs is the group acting on the fiber at s.
Thus TNk space comes with a family of Gs tautological principal line bundles
(Level Set)/Hs=Ls—ALF,
moreover, since the Level Set inherits a metric, Ls comes with ASD connection
as.

» Associated family of Dirac operators: ds acting on S®Ls.

e Given an instanton on &—~ALF, there is an associated Dirac operator D acting
oNn S®E.

* Form a family of Twisted Dirac operators Ds:=D® 1 s+1s®ds,
« Due to anti-self-duality it satisfies DsDs=-V'V (covariant Laplace-Beltrami) on S-.

« We obtain the index bundle (Ker Ds)=E—Bow. This is the bow representation.

Es=Ker Ds, R(s)=Ind Ds, Wa=Kersounded V*V
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« Family of Dirac operators parameterized by the point s on the Bow: D,V = 0

L2 solutions span E—Bow

* Whenever s matches a holonomy eigenvalue A there is a covarianthiWevigiaat @t infinity
solution to the Laplace equation:

 Small bow rep. data (t,b) induces similar data on the LARGE rep. E—Bow:

d
To(s) = / \Iﬁz’d—xpd‘l\fol T;(s) = / Tt d* Vol
S
o o Qx = / vl D, frd*Vol
TN
By (s) = / Ulb,, ¥ p,d*Vol Bpi(s) = / Ul by, U, d* Vol
TN TN

 (T,B,Q) satisty the moment map conditions on the Bow for the LARGE bow rep.

(T,B,Q) is a solution of the integrable system associated with the bow representation R.



Completeness

Question: Are these the same as the initial bow data, i.e. is Down.-Up=1gow~

To answer this question we express solutions W of the Bow Dirac equation
INn terms of solutions Y of the TN Dirac equation.



Quaternionic units rep. on S+ Key technical relations:
R A , ! : : -
[ = J Dg,10s| = Cllag) = — D V| =1'Cllag) = I’ ——

Clifford(vierbein)

e To relate Down and Up transforms express solution ( y,v,f) of Bow Dirac
through solutions  of TN Dirac:

bTo\

U - U "V =it S @ V*Vfr=0
% V*Vu_ Zzt\/_ h f>\

These form an orthonormal basis of solutions of the Bow Dirac equation!

(10 + P () —T7))x + (6(s —t)by — 6(s — h)By)vy + (6(s —t)B_ —8(s —h)b_)v_ —6(s —A\)Q =0

In short
Ds( y,v+,v-,11)=0

Moreover, just as (y,v+,v-,f2) satisfy the Poisson equation on ALF,
¥ satisty the Poisson equation on the bow:

((i0s —T°)? + (' —T7)*) ¥ = 4\;—;x

20



These Dirac and Poisson relations

DU =0 Ds( y,v+,v-,14)=0
V*Vy = i\p ((i0s —T°)? + (' —T7)*) ¥ = 4ix
VvV VvV

together with the appropriate index theorem

ind; Dt = tr (g{A}Q _ g{A} — {A}KA — M) + %(kA _ M))

+L trF' N F.

2
prove that am

Up-Down=1 and Down-Up="1

21



|lsometry

Infinitesimal deformation A— A+« oOf an instanton satisfies (dsa)™ =0, d%a=0.

Leading to a change in Ker D DSV + Cl(a)¥ =0

DAV =0
W = —D(V*V) 'Cl(a)¥

* Key observations: - Dirac operator on the Bow is ® = ¥V

- and the commutator has a particularly simple form
bl bl
[D,D] — (17 2—t72—t70) = R

* The resulting deformation of the Bow data is 4 := §(T, B) = (R¥, (V*V)"'Cl(a) V)

<a,d >=< (V*V)"'Cl(a)¥, RVd >=< Cl(a)V, RV&' (V*V) ™ = (Cl(a)¥, Cl(a")Y)

Ve

Cl(a')Y

* |dentical calculation on the bow side (using analogous Up relations) gives
(a,a’) = (a((=i0s — T°)* + (# — TH*)~'7,a'Y).

Ve

)\
e Thus (a,d')=<a,a’ > andthe Up and Down transforms are isometries.

22



Bow Integrable System
U(n) YM instanton on Ax ALF space => two Dynkin diagrams:  Ak-1 and An-

N In a balanced bow representation,
each A interval carries the Nahm system:

1 (LT + [Ty, T1] = [Ts, T3]
\ d%Tz + [To, o] = [13, T4

LTy + [Ty, T3] = [T1, T3]

with Lax pair:

d
M = -+ Ty —iTy = ((T1 — iTy),

L =17 +15 + 2C7/T3 — Cz(Tl - /I:TQ)a

d
— +M,L| =0

and spectral curve

d
TP' > 5, == {"d_c € TP'|det(L — n)} =0




Spectral Curve changes across a A-point, but remains the
same across a p-point:

moment map conditions at a p-point read

on the right:  L(po+) = (Bo,rr + CBL ;1) (Bo,Lr — CBL ) — (v1 + ive) + 2Civs — (P (v1 — ivs))

<

onthe left:  L(ps—) = (Bo,or — (Bl pr)(Bore + (Bl 1 p) — (v +ive) + 2Civs — (2(v1 — i)

g &’ (ﬁ & Reciprocal bow (cutting at A-points instead) is of An type
l.e. It Is determined by the gauge group.

A1
Ao A3 o

O X—
CPay
Uaff(n) Dynkin Diagram:
/ What is the significance of p-points?
g Each p-point has an assigned moment map level:

each determines a section of TP

\.\M/ n = ((v1 + iva) + 2Civs — (*(v1 — iva))

(e



O

Ve

« Each vertex of the affine Dynkin diagram carries a spectral curve.
p-points assign P1 curves (moment P1) to some vertices.

 All of these curves are in TP,

/&j « (Connected vertices => respective curve intersection divisor.

e A curve at a vertex intersection with the moment P'’s of that vertex.

« Ignore all other intersections.

Alternatively, one can view this as a single multi-component curve



Exact Metric via

the Generalized Legendre Transform "/ Foger Bielaws

In terms of finite HK quotient ingredients
the symplectic structure on each interval is

w=Tr(H 'dH NdL + LH 'dH N H™'dH) mt+ai(On" T+ +al, i (On+al_1(¢) =0

Spectral curve on it interval is

with polynomial coefficients

az}(c) = 2 + UiC + w2,i<:2 4+ w2ri_2’ic2m—2 + (_1>7“ —lvzc27‘i—1 + (_1)7“122627“1

Form Legendre potential which is a function of coefficients of these polynomials

n; dg
F = j{ —5dC + Z j{ 77h(e) nt(e)) log(1n(e) — Nt(e)) 75 2
27TZ C P Fowemsewe C
zEIntervals eEEdges
dg
) _ 1 ) T
+ Z 577 é i) Vx) og(n ) V/\)g
we|ghts
more succinctly
1
F=———¢ —d —d
i ) ¢ “740 e
performing Legendre transform m the spectral curves.
OF OF
Uy = ) - 07
0, awa,z’
gives the Kahler potential: K (2, Z, u,u) = F(2,2,v,0) — uv — UU.  ysing GLT of

Hitchin, Karlhede, Lindstrom, Rocek ‘87



Conclusion

Yang-Mills instantons on multi-Taub-NUT (with generic
asymptotic holonomy) have abelian instanton asymptotic.

Solutions of Bow integrable system are in 1-to-1 isometric
correspondence with the instantons.

A bow combines two Dynkin diagrams:
- one of the gauge group,
- another of the underlying base space.

Kéahler potential on the moduli space of U(n) instantons
on TNk (and a conjecture for G instantons).
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