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Outline
• Motivation for studying bow integrable systems: 

- Moduli spaces of Yang-Mill instantons on ALF spaces.  
- Solutions of supersymmetric 3D quantum field theories. 
- Geometric Langlands for complex surfaces.  
- String theory brane dynamics. 
- Bow’s internal beauty. 

• Analytic results: curvature decay, asymptotic form, and Index. 

• Up Transform: Bow -> Instanton. 

• Down Transform: Instanton -> Bow (via scattering or via index bundle). 

• Spectral Curves and Dynkin diagrams. 

• Kähler potential on the space of solutions.



Motivation
Physics

a) Yang-Mills Theory (Strong, Week, and Electromagnetic interactions) studies  
connection one-form A 
on a Hermitian bundle E ⟶ M4.

with curvature of A is F=dA+A⋀A and action  S[A]=∫ tr F⋀*F

Its Euler-Lagrange equation is the Yang-Mills Equation dA*F=0.

b)  Euclidean Feynman Path Integral
< O(A) >=

Z
O(A)e�

1
~S[A]DA

Z
tr(F ± ⇤F ) ^ (F ± ⇤F ) > 0

second Chern character

⇒

dominant contributions are delivered by the minima of the Yang-Mills action:
F = � ⇤ F Anti-Self-Duality Equation

Def: An Instanton is a connection A, with square integrable curvature and F=-*F.
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Geometry

Flat metric in “radial coordinates” R4 ' H 3 q = aeI
⌧
2 with   pure imaginarya

x = x1I + x2J + x3K := qIq̄ = aIā

ds

2 = dqdq̄ =
1

4

 
1

|x|d~x
2 +

(d⌧ + !)2

1
|x|

!

Taub-NUT space (TN)

ds

2 = dqdq̄ =
1

4

✓
V (x)d~x2 +

(d⌧ + !)2

V (x)

◆

V (x) = l +
1

|x|
multi-Taub-NUT space TNk

V (x) = l +
kX

�=1

1

|x� ⌫�|

d! = ⇤3dV (x)

A0 ALE:

A0 ALF:

Ak-1 ALF:

(x,τ) are “polar coordinates” on ℝ4



Analytic questions about  
Instantons on Taub-NUT:

• Does L2 Yang-Mills solution have to be L∞?  
Does FA necessarily decay at infinity? 

• How fast does Instanton curvature decay?  
(e.g. on ℝ4 it decays as 1/r4, what is it for ALF?) 

• What is its asymptotic form? 

• What is the behavior of Harmonic Forms? 

• How many of them? Index theorem?



Analytic Results:
with Andres Larrain-Hubach and Mark Stern

Theorem (Decay): For (M,g) a complete Riemannian manifold of bounded geometry  
and a connection A on E ⟶ M

F 2 L2 dA ⇤ F = 0 lim
|x|!1

|F (x)| = 0.and ⟹

Theorem (Asymptotic):

An instanton on TNk with generic holonomy can be put (by a choice of trivialization) in the form 

with aj =
⇣
�j +

mj

r

⌘ d⌧ + !

V
+

mj

k
!.

Def: For a point        write eigenvalues of the holonomy of A around           as                  . 
   An instanton A has generic holonomy, if there is a direction      such that the limits  
exist with all       distinct.

rn̂ S1
rn̂ e4⇡iµj/l

n̂ lim
r!1

µj(rn̂) = �j
�j

Monopole charges 
=Chern number of  

holonomy eigenbundles

If F=*F and F∈L2 and M is the multi-Taub-NUT space, 
then there is C>0, such that |r^2 F|<C.

1)

2)



Bow

Instanton
Up Transform
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wn
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Theorem (Up):

The connection resulting from the Up Transform is an instanton on TNk, 
with the instanton asymp. holonomy and topological class  
determined by the bow representation.

Theorem (Bijection):

Up Transform is a bijection of Bow and Instanton moduli spaces.

Theorem (Isometry):

Up Transform is an isometry of the hyperkähler moduli space of a Bow representation and  
the corresponding moduli space of an Instanton on TNk.

4 dim

1 dim

Up∘Down=ITN Down∘Up=IBow



Index of the Dirac Operator

Theorem (Index):

Here

with aj =
⇣
�j +

mj

r

⌘ d⌧ + !

V
+

mj

k
!.-



Up Transform

TNk corresponds to  Ak-1 Bow  
(example for k=3):

Circle diagram:

Bow:

Representation R of the bow:

{�j}, R(s)

R(s) determines the rank  
of the Hermitian bundle E  
over each subinterval. 

constant on each subinterval

If R is continuous at λ, 
introduce Wλ=ℂ



• Affine space: Dat(R)=B⊕F⊕N is 
hyperkähler

Q� =

✓
J†
�
I�

◆
2 Hom(W�, S ⌦ E�)

B+
� =

✓
B†

�,�+1

B�+1,�

◆
2 Hom(Ep��, S ⌦ Ep�+)

D =

d

ds
+ T0 + ejTj 2 Con(S ⌦ E)

B:

F:

N:

Let e1, e2, and e3 denote quaternionic units representation and  
S be a 2-dim representation space.

• The group G of gauge transformations on E  
     act triholomorphically on Dat(R)!

B+
� 7! g(p��)B+

� g(p�+),

Q� 7! g(�)Q�,

T0(s) 7! g�1(s)T0g(s) + g�1(s)
d

ds
g(s),

Tj(s) 7! g�1(s)Tjg(s).

• Bow moduli space is the hyperkähler reduction MR=Dat(R)///G.
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IL IR

B10

B01

JL JR

WL WR

−l/2 l/2
−λ λ

Figure 3: Bow diagram for Instanton on Taub-NUT. {fig:Instanton}

where the index � takes the values L and R and we introduced ⇤L = �⇤ and
⇤R = ⇤.

Introducing the complex notation D = d
ds � iT0 � T3 and T = T1 + iT2,

the moment maps are written as

[D, T ]� ⇥(s+ l
2 )B01B10 + ⇥(s� l

2 )B10B01 +
�

�⇥{L,R}

⇥(s�⇥�)I�J� = 0

(25) {Eq:InstMom}

[D†, D] + [T †, T ] + ⇥(s+ l
2 )(B†

10B10 �B01B
†
01) + ⇥(s� l

2 )(B†
01B01 �B10B

†
10)+

+
�

�⇥{L,R}

⇥(s�⇥�)(J†
�J� � I�I†

�) = 0.

In this paper we limit our attention to the case of a single instanton, thus
E is a line bundle and all the data in the bow diagram is Abelian.

5 The Nahm Transform

5.1 Weyl Operator

A central role in the ADHM-Nahm transform [1, ?] is played by a certain
linear operator. In the case at hand it is a modification of the Weyl operator.

7

Moment Map Conditions

This is the Integrable System associated with a Bow Rep.

Nahm’s Eqs

For a bow representation its moment map conditions are:

Real form:
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Complex form:

Quaternionic form:

Moment map
||



the self-dual connection on TN is

Taub-NUT

I L
I R

B
1
0

B
0
1

J
L

J
R

W
L

W
R

−
l/

2
l/

2
−

λ
λ

T, B, Q

t, bt

b10

b01

−l/2l/2

M0

13

A = (�, (d + as)�)

A =

�
�,

�
�

��
+

s

2V

�
�

�
d� +

�
�,

�
�

�tj
+ �j

s

2V

�
�

�
dtj .

D†
t� = 0

w/ SC ‘11



1) Find solutions of the LARGE bow rep. and a small bow rep.

2) Form Dirac operators

and the twisted operator

3) Form the orthonormal basis of solutions

to the Bow Dirac equation

4) Find the Higgs field and the gauge field of the singular monopole 
from

14

IL IR

B10

B01

JL JR

WL WR

−l/2 l/2
−λ λ

t

b10

b01

−l/2 l/2

with opposite moment map values

� = (�(s), f�, �+, ��)

A = (�, (d + as)�)

D†
t� = 0



Down Transform

Since the Taub-NUT space is a moduli space of a small bow representation s

it comes not only equipped with a metric,

but also equipped with a series of instantons.  It is assembled of

a0 =
d⌧ + !

V
=

✓0p
V

      , which can be multiplied by ay real factor, and 

and, also for each NUT
a� =

1

|x� ⌫�|
d⌧ + !

V

� ⌘�

a(s) = sa0 +
X

�|p�<s

a�.

These assemble into the connection on the tautological bundle:



Dirac Operator

Clifford Algebra:  {cp,cq}=-2δpq, cp=Cl(θp), γ5=c0c1c2c3

Spin bundle splits into S=S+⊕S-,

TrivialNot trivial

S- carries a representation of quaternions Ij=c0cj !

The fiber of S-, after being trivialized, is identified with S on the bow of the Up Transform.



• TNk space can be viewed as a HK quotient,  
TNk=(Level Set)/G where G is the group of bow gauge transformations. 

• Let Hs⊂G be its subgroup of gauge transformations acting trivially on the fiber 
at s.  We have Hs→G→Gs, where Gs is the group acting on the fiber at s. 
Thus TNk space comes with a family of Gs tautological principal line bundles  
(Level Set)/Hs=Ls→ALF, 
moreover, since the Level Set inherits a metric, Ls comes with ASD connection 
as. 

• Associated family of Dirac operators: ds acting on S⊗Ls. 

• Given an instanton on ℰ→ALF, there is an associated Dirac operator D acting 
on S⊗ℰ. 

• Form a family of Twisted Dirac operators Ds:=D⊗1Ls+1ℰ⊗ds. 

• Due to anti-self-duality it satisfies DsDs=-#*# (covariant Laplace-Beltrami) on S-. 

• We obtain the index bundle (Ker Ds)=E→Bow. This is the bow representation.

17

t,b

t

b10

b01

−l/2 l/2

s

TN←Ls

→Gs

Es=Ker Ds, R(s)=Ind Ds, Wλ=KerBounded #*#



Ds� = 0
18

• Family of Dirac operators parameterized by the point s on the Bow:
L2 solutions span E→Bow

Tj(s) =

�

TN
�†tj�d4VolT0(s) =

�

TN
�†i

d

ds
�d4Vol

Bth(s) =

�

TN
�†

tbth�hd4Vol Bht(s) =

�

TN
�†

hbht�td
4Vol

Q� =

�

TN
�†

�D�f�d4Vol

• Small bow rep. data (t,b) induces similar data on the LARGE rep. E→Bow:

• Whenever s matches a holonomy eigenvalue λ there is a covariantly constant at infinity 
solution to the Laplace equation:

���f� = 0

• (T,B,Q) satisfy the moment map conditions on the Bow for the LARGE bow rep.

(T,B,Q) is a solution of the integrable system associated with the bow representation R.



Completeness

Question:  Are these the same as the initial bow data, i.e. is Down∘Up=1Bow?

To answer this question we express solutions Ψ of the Bow Dirac equation 
in terms of solutions ϒ of the TN Dirac equation.



20

���� =
c0

�
V

� ����+ = i
b†
+

2t

c0

�
V

�t ����� = i
b†
+

2t

c0

�
V

�h ���f� = 0

These form an orthonormal basis of solutions of the Bow Dirac equation!
(i�s + Ij(tj � T j))� + (�(s � t)b+ � �(s � h)B+)�+ + (�(s � t)B� � �(s � h)b�)�� � �(s � �)Q = 0

Moreover, just as ($,%+,%-,f&) satisfy the Poisson equation on ALF, 
' satisfy the Poisson equation on the bow:

(s($,%+,%-,f&)=0
in short

�
(i�s � T 0)2 + (tj � T j)2

�
� = 4

c0

�
V

�

• To relate Down and Up transforms express solution ($,%,f) of Bow Dirac  
through solutions ψ of TN Dirac:

[Ds, i�s] = (as) =
c0

�
V

[Ds, t
j ] = Ij (as) = Ij c0

�
V

Ij =
1 � �5

2
cjc0

Quaternionic units rep. on S-: Key technical relations:

Clifford(vierbein)

Consider a sphere S
2
R ⌅ R

3
of large radius |�x| = R then the restriction E|S2

of the bundle E splits into eigenbundles of W (�x, 4⇥), i.e. E = L�⇥L��. The
magnetic charge m of the configuration is the Chern class of L� ⇤ S

2
R⇥⇤.

Kronheimer [7] demonstrated equivalence of the ‘pure monopole’ case of
k0 = 0 to singular monopoles studied in [15, 14]. Explicit solutions for k0 = 0
and m = 1 will appear in [16]. In this paper we focus our attention on the
case of m = 0, and obtain the explicit solution with k0 = 1, i.e. a single
instanton on the Taub-NUT space.

2 Ingredients

There are two basic ingredients in our construction:

J

I

VW

(a) Linear maps (arrows and limbs). (b) Nahm Data (string).

Figure 1: Components of bow and quiver diagrams. {ingredients}

Figure 1a represents a pair of complex vector spaces V = C
v

and W = C
w

with maps J : V ⇤ W and I : W ⇤ V. The linear space of the pair of
maps (I, J) has a natural hyperkähler structure, which is respected by the
action of U(v) and U(w). The hyperkähler moment map of the U(v) action
gv : (I, J) ⇧⇤ (g�1

v I, Jgv) is

µC
V = µ

1
V + iµ

2
V = IJ, µR

V = µ
3
V =

1

2
(J†J � II†), (5)

while for the U(w) action gw : (I, J) ⇧⇤ (Igw, g�1
w J) the moment map is

µC
W = µ

1
W + iµ

2
W = �JI, µR

W = µ
3
W =

1

2
(I†I � JJ†). (6)

It is convenient to assemble the pair (I, J) into

QV =

�
J†

I

⇥
and

Q
W =

�
�I†

J

⇥
, (7)

then the moment maps are

\µV = µ
i
V ⇤i = Vec(QV Q

†
V ) and \µW = µ

i
W ⇤i = Vec(

Q
W

Q†
W ). (8)
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These Dirac and Poisson relations

together with the appropriate index theorem

prove that 

Up∘Down=1 and Down∘Up=1

Ds� = 0

���� =
c0

�
V

�

(s($,%+,%-,f&)=0

�
(i�s � T 0)2 + (tj � T j)2

�
� = 4

c0

�
V

�

21



Infinitesimal deformation A �� A + a of an instanton satisfies (dAa)+ = 0, d�
Aa = 0.

Leading to a change in Ker D
DA� = 0

D�� + Cl(a)� = 0

�� = �D(���)�1Cl(a)�

• Key observations: - Dirac operator on the Bow is
- and the commutator has a particularly simple form

[D, d] = (1,
b†
+

2t
,
b†
�
2t

, 0) =: R

• The resulting deformation of the Bow data is â := �(T, B) = (R�, (���)�1Cl(a)�)

< â, â� >=< (���)�1Cl(a)�, R�â� >=< Cl(a)�, R�â�(���)�1

� �� �
â��

= (Cl(a)�, â��)

• Identical calculation on the bow side (using analogous Up relations) gives
(a, a�) = (a ((�i�s � T 0)2 + (tj � T j)2)�1�� �� �

�

, â��).

• Thus and the Up and Down transforms are isometries.(a, a�) =< â, â� >

22

Cl(â�)�

(Cl(a)�, Cl(â�)�)

Isometry
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x
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x

λ2
λ1

λ4

λ3

λ5

p2p1

p3

Bow Integrable System
U(n) YM instanton on Ak ALF space => two Dynkin diagrams:

Ãk-1

Ãn-1

In a balanced bow representation, 
each λ interval carries the Nahm system:

with Lax pair:

and spectral curve

Ãk-1 and Ãn-1 

p2p1

p3
x

x
xx

x

λ2
λ1

λ4

λ3

λ5



Spectral Curve changes across a λ-point, but remains the 
same across a p-point:

moment map conditions at a p-point read
on the right:

on the left:

p2p1

p3
x

x
xx

x

λ2
λ1

λ4

λ3

λ5
Reciprocal bow (cutting at λ-points instead) is of An type 

i.e. it is determined by the gauge group.

What is the significance of p-points?
Each p-point has an assigned moment map level:  
each determines a section of TP1.

Uaff(n) Dynkin Diagram:



• Each vertex of the affine Dynkin diagram carries a spectral curve. 

• p-points assign P1 curves (moment P1) to some vertices. 

• All of these curves are in TP1. 

• Connected vertices => respective curve intersection divisor. 

• A curve at a vertex intersection with the moment P1’s of that vertex. 

• Ignore all other intersections. 

Alternatively, one can view this as a single multi-component curve



F = � 1

2�i

�

0

�2

�3
d� +

�

C

�

�2
d�

+
�

���

1

2�i

�

�e

(�i(�) � ��) log(�i(�) � ��)
d�

�2

F =
�

i�Intervals

li
1

2�i

�

0

�2
i

�3
d� +

�

e�Edges

1

2�i

�

�e

(�h(e) � �t(e)) log(�h(e) � �t(e))
d�

�2

ui =
�F

�vi
,

�F

�w�,i
= 0,

ai
�(�) = zi + vi� + w2,i�

2 + . . . + w2ri�2,i�
2ri�2 + (�1)ri�1v̄i�

2ri�1 + (�1)ri z̄i�
2ri

�ri
i + ai

1(�)�ri�1 + . . . + ai
ri�1(�)� + ai

ri�1(�) = 0

using GLT of 
Hitchin, Karlhede, Lindstrom, Rocek  ‘87

In terms of finite HK quotient ingredients  
the symplectic structure on each interval is

� = Tr (H�1dH � dL + LH�1dH � H�1dH)

Spectral curve on ith interval is

with polynomial coefficients

Form Legendre potential, which is a function of coefficients of these polynomials

more succinctly

performing Legendre transform

gives the Kähler potential:

w/ Roger Bielawski

weights

Exact Metric via  
the Generalized Legendre Transform

Constraints on the spectral curves.



Conclusion

• Yang-Mills instantons on multi-Taub-NUT (with generic 
asymptotic holonomy) have abelian instanton asymptotic. 

• Solutions of Bow integrable system are in 1-to-1 isometric 
correspondence with the instantons. 

• A bow combines two Dynkin diagrams:  
- one of the gauge group,  
- another of the underlying base space. 

• Kähler potential on the moduli space of U(n) instantons 
on TNk (and a conjecture for G instantons).




