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A classical problem
Bjorling’s problem for minimal surfaces:

Prescribed normal field on curve —

Unique minimal surface
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A classical problem

Bjorling’s problem for minimal surfaces:

Prescribed normal field on curve —

Schwarz formula:

Unique minimal surface

z
() = #{a(2) - i/ N(w) x o (w)dw |
X0
a(z) and N(z) are the holomorphic extensions.



Curve +... generates surface of type X
e.g. space curve given by:
k(s)=1-s*  7(s)=0.

Find the (unique?) surface of (e.g.) constant Gauss curvature K = 1
containing this curve as:

1. a geodesic

2. a cuspidal edge singularity

3. or with some arbitrary prescribed surface normal



Curve +... generates surface of type X
e.g. space curve given by:
k(s)=1-s*  7(s)=0.

Find the (unique?) surface of (e.g.) constant Gauss curvature K = 1
containing this curve as:

1. a geodesic

2. a cuspidal edge singularity

3. or with some arbitrary prescribed surface normal

These are called geometric Cauchy problems



Curve +... generates surface of type X
e.g. space curve given by:

r(s)=1-sg*

7(s) =0.

As a geodesic curve (the CGC K = 1 solution)



Curve +... generates surface of type X
e.g. space curve given by:

r(s)=1-sg*

7(s) =0.

As a cuspidal edge singular curve



Curve +... generates surface of type X

e.g. Find the unique CGC K = 1 surface containing the curve with
surface geometry given by:

kg(8) =1, kn(s) =1, Ty(s)=sin(s)
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Curve +... generates surface of type X

e.g. Find the unique CGC K = 1 surface containing the curve with
surface geometry given by:

K’Q(s) = 1,

kn(S) =1,

74(8) = sin(s)




Special surfaces and harmonic maps
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Special surfaces and harmonic maps

Many important classical surfaces correspond to harmonic maps from
either R? or R""" into G/K.

Examples:
» Constant mean curvature (CMC) surfaces in space forms
» Constant Gauss curvature (CGC) surfaces in space forms
» Willmore surfaces
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Example: Constant Gauss Curvature Surfaces

1. N:C — S? is harmonic iff
N x N;z =0,

iff
f, = iN x N,
is integrablei.e. (f;)z = (fz).
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Example: Constant Gauss Curvature Surfaces

1. N:C — S? is harmonic iff
N x N;z =0,

iff
f, = iN x N,
is integrablei.e. (f;)z = (fz).

Moreover:  f: C — R® (with induced metric) is CGC, with K = 1.

2. N:R"" — $?is (Lorentzian)-harmonic iff
N x Ny = 0,
iff
fo=Nx Ny, f=-NxN,
is integrable.

Moreover: f:R"' — R®is CGC with K = —1.
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Loop group lift of a harmonic map into G/K

G=GS, K=G,

Loop group AG® := {v: S' — G®} . Twisted subgroup is the fixed
point subgroup

AGS, for 6x(\) = a(x(=\)).



Loop group lift of a harmonic map into G/K

G= fo, K =G,
Loop group AG® := {v: S' — G®} . Twisted subgroup is the fixed
point subgroup
AGS, for 6x(\) = a(x(=\)).
Real forms determined by the involutions:
pix(A) = p(x(1/X)),  pax(N) := p(x(N))-

Note:
AG = AG,.
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Loop group lift of a harmonic map into G/K

Riemannian case: Harmonic maps C > U — G/K,



Loop group lift of a harmonic map into G/K
Riemannian case: Harmonic maps C > U — G/K,
Characterized by F : U — AGS . = AG;

po

F'dF = A\ 'dz + ap + A_1)\dZ,
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Loop group lift of a harmonic map into G/K

Riemannian case: Harmonic maps C > U — G/K,
Characterized by F : U — AGS . = AG;

P16
F'dF = A\ 'dz + ap + A_1)\dZ,
For any \g € S' the map
Fl

/\O:U—>G

projects to a harmonic map f: U — G/K.
Call such F an admissible frame.
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Loop group lift of a harmonic map into G/K

Riemannian case: Harmonic maps C > U — G/K,
Characterized by F : U — AGS . = AG;

po
F'dF = A\ 'dz + ap + A_1)\dZ,
For any \g € S' the map
Fl

/\O:U—>G

projects to a harmonic map f: U — G/K.
Call such F an admissible frame.

Lorentzian case: R"' > V — G/K,
Characterized by F : V — AGS

P26

F~'dF = AjMdx + ag + A_1A"'dy, (x,y) null coord.s.
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Link with Soliton equations

Map into loop group

Flat loopalgebra-valued
connection

/

Maurer-Cartan form

/

Adapted frame

/

Special coordinates
Special submanifold

Solution of soliton

equation
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Important loop group decompositions
Set AEGE = {y e AGE | v =X 12 anA "}

We need:

1. The Birkhoff decomposition

1.1
AGE - ATGE

is open an dense in the identity component of AG®.

1.2 For compact G:

AG5, =N G;, G,

b2 P2 P2

Analogue: A = LU matrix factorization.

16
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Important loop group decompositions
Set AEGE = {y e AGE | v =X 12 anA "}

We need:

1. The Birkhoff decomposition

1.1
AGE - ATGE

is open an dense in the identity component of AG®.

1.2 For compact G:

AG5, =N G;, G,

b2 P2 P2

Analogue: A = LU matrix factorization.

2. The lwasawa decomposition (for compact G):
AG® = AG-NTG*

Analogue: A = QR matrix factorization.

16

42



Riemannian-harmonic maps
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Riemannian case (Dorfmeister/Pedit/Wu)
=
Given admissible frame F : U — AGS . = AGs

Pé
F'dF = A_4\"'dz + ag + A_1\dZ,
Birkhoff decompose: F(z) = F_(z)F,(z) (with normalization), then

F'dF_ =B_4\"'dz,  B_; holo., B_{(2) € ¢°.
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Riemannian case (Dorfmeister/Pedit/Wu)
=
Given admissible frame F : U — AGS . = AGs

P10
F~'dF = A_4A7'dz + ap + A_1AdZ,
Birkhoff decompose: F(z) = F_(z)F,(z) (with normalization), then
F-'dF. =B_4\"'dz,  B_y holo., B_4(2) € ¢".

=
Conversely: given a holomorphic 1-form with values in Lie(AG®4),

n= Z Bﬂ(z))\ndza

n=-—1

1. solve ®~'d® = 5, with ®(z) =/,
2. lwasawa
®(z) = F(2)G.(2)

Then F is an admissible frame.
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Applications: e.g. CGC K = 1 (spherical) surfaces

F : U — AG admissible frame for the harmonic Gauss map.

The CGC surface can be obtained from F by the Sym formula:

. 8F _1
= iA—= =: F).
f I)\(,»\F s S(F)
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Numerical Implementation

e.g. DPW for spherical surfaces:

"holomorphic potential: n=>"* |, ANdz
integrate: &~ 'do = 1.

Iwasawa: & = FH,.

Sym: f=S(F).

n

Implementation: Can represent >, A\ as a matrix:

A ... A O 0
Ay A ... A O 0
o ... A, ... A ... A ... O
O e 0 Afn AO

Loop group decompositions <+  matrix decompositions

20/42



Examples

Simplest potentials:

0

n= (b(oz) a(z)) A 'dz.

a=1+z
b=05+05z—22



Summary of DPW for spherical surfaces:
"holomorphic potential”: n =3 , A\dz
integrate: &~ 'd®d =1,

Iwasawa: ¢ = FH,.
Sym: f=S(F).
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Summary of DPW for spherical surfaces:
"holomorphic potential”: n =3 , A\dz
integrate: &~ 'dd = 1.

Iwasawa: ¢ = FH,.
Sym: f=S(F).

All spherical surfaces can be constructed this way.

Limitation: Geometric information lost in the Iwasawa splitting,
can not read off geometric infomation from 7.

To exploit: many choices of potential for a given surface.
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Summary of DPW for spherical surfaces:
"holomorphic potential”: n =3 , A\dz
integrate: &~ 'dd = 1.

Iwasawa: ¢ = FH,.
Sym: f=S(F).

All spherical surfaces can be constructed this way.

Limitation: Geometric information lost in the Iwasawa splitting,
can not read off geometric infomation from 7.

To exploit: many choices of potential for a given surface.

Somewhat analogous method and statements hold for surfaces
associated to Lorentzian harmonic maps (such as CGC K = —1).
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Using DPW for Geometry

Problem: Find the potential n that produces the solution with some
desired geometric properties.
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Using DPW for Geometry

Problem: Find the potential n that produces the solution with some
desired geometric properties.

One approach Use known potentials (e.g. rotational) to define more
complicated solutions, e.g. potentials on n-punctured sphere with
prescribed end behaviour.
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Using DPW for Geometry

Problem: Find the potential n that produces the solution with some
desired geometric properties.

One approach Use known potentials (e.g. rotational) to define more
complicated solutions, e.g. potentials on n-punctured sphere with
prescribed end behaviour.

Drawback: there are not that many known potentials.
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Another idea: prescribed geometry along a curve

The geometric Cauchy problem:

» Specify sufficient geometric data along a curve for a unique
solution

» Find formulas for DPW-type potentials in terms of this data.

24/42



Solving the GCP for harmonic maps

Recall:
Riemannian harmonic:

F+® via &=FH, Iwasawa
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Recall:
Riemannian harmonic:
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Many choices of potentials, hence of ¢.
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Solving the GCP for harmonic maps

Recall:
Riemannian harmonic:

F+® via &=FH, Iwasawa

Many choices of potentials, hence of ¢.

Essential idea: Find potentials such that the lwasawa/Birkhoff
decomposition is trivial along the curve, i.e. such that

FI. =]
v vy

Main point: F contains the geometric information, while  are the
“Weierstrass data’.



Solving the GCP

Outline:
» Choose coordinates z = x + iy so that the curve is y = 0.

>

Prescribe sufficient information to construct the loop group
frame Fy(x) along y = 0, from v and N.

» Write a = F~'dF = (A_1A7" + ap + A A) dx.



Solving the GCP

Outline:
» Choose coordinates z = x + iy so that the curve is y = 0.

Prescribe sufficient information to construct the loop group
frame Fy(x) along y = 0, from v and N.

» Write a = F~'dF = (A_1A7" + ap + A A) dx.

>

» Let n be the holomorphic extension of «.

» Apply DPW to n: solve ®~'d® = 7, Iwasawa split ® = FH, , then
F is an admissible frame.
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Solving the GCP

Outline:

|

>

v

v

v

v

Choose coordinates z = x + iy so that the curve is y = 0.

Prescribe sufficient information to construct the loop group
frame Fy(x) along y = 0, from v and N.

Write o = F~'dF = (A2~ + ap + A_1A) dx.

Let n be the holomorphic extension of a.

Apply DPW to 7: solve ®~'d® = 5, Iwasawa split ® = FH, , then
F is an admissible frame.

Along y = 0 we have F(x,0) = ®(x,0) = Fo(x) by construction.



Solution of GCP for spherical surfaces

Theorem
Give real analytic functions
K"g(s)v K”(s)a Tg(S),

The unique spherical surface containing a curve along {y = 0} with the
prescribed geodesic and normal curvature and geodesic torsion is obtained

from the DPW potential
T9(2) — i kn(Z 1 T9(2) + i kn(Z
n= H: 9(2) ey — né )ez X +/£g(2)63 + g(2) ey — né )62:| )\:| dz.

(All functions extended holomorphically, Here e; are an o.n. basis for g.)



Singular geometric Cauchy problem

Similarly, given real analytic

with x # 0, holomorphically extend and then:

T(Z)+i

N (T(2) =i
77—(72 A e+ k(2)es+ 5

/\61) dZ7

generates the singular curve solution.
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Lorentzian-harmonic maps
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"DPW"™ for Lorentzian harmonic maps (Krichever, M. Toda)

=: Given F: V = AGj,;,

F'dF = AjXdx + ap + A_1 A~ 'dy,

Birkhoff: F(x,y) = X.(x,¥)G-(x,y) = Y_(x,y)G+(x, y) (with
normalizations), then

X7 'dX; = By(x)Adx,
Y=ldY. = C_i(y)A'dy.
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"DPW"™ for Lorentzian harmonic maps (Krichever, M. Toda)
=: Given F: V — AGS

h26>
F'dF = AjXdx + ap + A_1 A~ 'dy,

Birkhoff: F(x,y) = X.(x,¥)G-(x,y) = Y_(x,y)G+(x, y) (with
normalizations), then

X7 'dX; = By(x)Adx,
Y=ldY. = C_i(y)A'dy.

=
Conversely: given 1-forms (x, %)) on R with values in Lie(AG®5p2),

1 oo
X= Y Ba(x)A'dx, ¥ = > Ca(y)\'dy,

n=—o0 n=—1

1. Solve X~ 'dX = x, and Y~'dY = ¢,
2. Birkhoff decompose
X ()Y (y) = H-(x, y)H:(x, y)
Then F := XH_ is an admissible frame.
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The GCP for Lorentz-harmonic maps

"DPW" construction:

F=XH_+« (X,Y) via X 'Y=H_H, Birkhoff
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The GCP for Lorentz-harmonic maps

"DPW" construction:
F=XH_+«+ (X,Y) via X 'Y=H_H, Birkhoff

Many choices of potentials, hence of (X, Y).
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The GCP for Lorentz-harmonic maps

"DPW" construction:
F=XH_+«+ (X,Y) via X 'Y=H_H, Birkhoff

Many choices of potentials, hence of (X, Y).

Analogous to Riemannian case: Find potentials such that the
Birkhoff decomposition is trivial along the curve, i.e. such that

Fl=X|. =Y.
v vy v
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Solving the GCP (non-characteristic curve)

Required admissible frame:
F~'dF = AjAdx + oo + A_1 A" 'dy,
Potential pairs of form:

,
x=X"dX= > By(x)\"dx,

n=—o0

P =YdY = > Ca(y)\'dy,

n=—1

Related by F := XH_, where
X ()Y(y) = H-(x, y)H+(x, y)
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Solving the GCP (non-characteristic curve)

Required admissible frame:
F~'dF = AjAdx + oo + A_1 A" 'dy,
Potential pairs of form:

.
x=X"dX= > By(x)\"dx,

n=—o0

P =YdY = > Ca(y)\'dy,

n=—1

Related by F := XH_, where
X ()Y(y) = H-(x, y)H+(x, y)

v

Choose null coordinates s.t. initial curve given by y = x.
Setu=(x+y)/2,v=(x—y)/2, theninitial curve is v =0, and
dy = dx = du along the curve.

Construct Fy(u) = F(u,0), so

ap = Fy 'dFy = AjAdu + ag + A1\~ 'du.

v

v

» Set x =¥ = ap.
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Pseudospherical surfaces (Lorentzian harmonic)

» Analogous results to spherical surfaces
» Main difference: solution not unique for characteristic curves

Convenient way to generate examples:

Given curvature functions x and 7 there is a unique CGC K = —1 sur-
face containing this curve as a cuspidal edge

(degenerate where kK = 0 or 7 = +1).
k(s)=1-5s* 7(s)=0
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H(S):z_sz
T:O




Examples that are not weakly regular

|

VA

Viviani figure 8 space curve v(t) = 0.3 (1 + cost,sint,2sin })
» 7 = +£1 twice each on the curve.

» Solution to SG-equation not defined at these points
» The Lorentzian harmonic map is defined
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Examples that are not weakly regular

o F = ] £ 9Dae
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Willmore surfaces
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Willmore Surfaces

Elliptic PDE

» Gauss map Riemannian-harmonic (like spherical surfaces)
» Uniqueness: need more than just the surface normal.

DAy
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Willmore Surfaces

It is sufficient to prescribe the dual surface Y in addition to Y and the
conformal Gauss map along the curve.

DA
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Equivariant Willmore Surfaces

My
<

8c

K




Summary

v

We discussed surface classes with harmonic Gauss maps

v

All solutions can be constructed from holomorphic Weierstrass-type data
(Riemannian) or d’Alembert-type data (Lorentzian) called potentials.

v

The challenge is to explicitly write down the potential for a given
geometric problem

» We can solve this given geometric Cauchy data along a curve.
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