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My starting points, my motivation

Griffiths in the 60ies: variations of (polarized) Hodge structures as
tools within complex algebraic geometry.

Cecotti-Vafa 1991 (and Dubrovin 1991): tt∗ equations,
– big generalization of variations of Hodge structures.

Simpson 1989: harmonic bundles: related, but weaker, less rigid.

Hertling 2002: frame for tt∗, variations of TERP structures
(Twistor Extension Real Pairing) [definition not in this talk].
—————————————————————–
Geometry of TERP structures in the semisimple rank 2 case
(first interesting case far from variations of Hodge structures)

l
real solutions (with/without singularities) on R>0 of the Painlevé
III equation of type (0, 0, 4,−4): PIII (0, 0, 4,−4)
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Related work on PIII (0, 0, 4,−4)

Work on real solutions on R>0 of the special Painlevé equation:

McCoy-Tracy-Wu 1977: other methods.

Its-Novokshenov 1986: with isomonodromic connections,
positive: rich, hard results, precise formulas,
critic: formulas not transparent, only matrices, no vector bundles,
only open charts of the moduli spaces.

Niles (PhD with Its) 2009: extending Its-Novokshenov.

Claus Hertling + Martin Guest: joint paper (also on multivalued
complex solutions on C∗ and their vector bundles). There and

Today: complete picture of real solutions on R>0 of
PIII (0, 0, 4,−4).

3 / 32



Painlevé III equations

For any 4 parameters (α, β, γ, δ) ∈ C4,

PIII (α, β, γ, δ) : f ′′ =
(f ′)2

f
− 1

x
f ′ +

1

x
(αf 2 + β) + γf 3 + δ

1

f

is a complex differential equation of 2nd order on C∗.

Basic fact: ∀ x0 ∈ C∗ ∀ (regular) initial value (f0, f̃0) ∈ C∗ × C,
locally a unique holomorphic solution f with f (x0) = f0, f

′(x0) = f̃0
exists.

Big old theorem (Painlevé property): This solution f extends to a
global multivalued meromorphic function f on C∗.
————————————————————————
PIII (0, 0, 4,−4): f solution ⇒ −f , f −1,−f −1 solutions.
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Poles and zeros on C∗ of solutions of PIII (0, 0, 4,−4)

Lemma: Let f be a solution near x0 ∈ C∗ of the PIII (0, 0, 4,−4)
equation with f (x0) = 0, f (x) =

∑
k≥1 fk · (x − x0)k . Then

f1 = ±2, f2 =
8

x0 · f1
, f3 is free,

fk for k ≥ 4 are determined by f1 and f3.

−→ Any solution f has on C∗ only simple zeros and simple poles,
with leading part f1 = ±2 resp. f−1 = ±1

2 , and it is determined by
the following data at a simple zero or simple pole x0 :

(f1, f3) ∈ {±2} × C resp. (f−1, f1) ∈ {±1

2
} × C.

−→ 4 1-par families of singular initial values for any x0 ∈ C∗.
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Spaces of initial values

For any x0 ∈ C∗ the local solutions f of the PIII (0, 0, 4,−4)
equation are determined
by a regular initial value (f (x0), f ′(x0)) ∈ C∗ × C
or by a singular initial value (f1, f3) resp. (f−1, f1).

−→ The space of initial values at x0 is Mini (x0),

as a set Mini (x0) ∼= C∗ × C
·
∪ (4 copies of C),

as a 2 dim complex algebraic manifold, it is given by 4 affine
charts, each ∼= C× C, each consists of C∗ × C and 1 copy of C.
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Okamoto 1979: first, different approach to Mini (x0):

Mini (x0) ∼= S − Y , S a projective surface,

Y an anticanonical divisor of type D̃6,

Painlevé property: A local solution near x0 ∈ C∗ extends to a
global multivalued solution on C∗.
−→ Mini (x0) represents all global multivalued solutions on C∗,
and any homotopy class of a path from x0 ∈ C∗ to x1 ∈ C∗ induces
an analytic isomorphism

Mini (x0)
anal∼= Mini (x1).
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Space of monodromy data

Big fact from the relation of PIII (0, 0, 4,−4) to isomonodromic
connections:

There is a canonical 2-dim algebraic manifold Mmon which
represents all global multivalued solutions on C∗ of PIII (0, 0, 4,−4).

And in a presentation of it by equations, the parameters are
meaningful and are related to the monodromy data of the
isomonodromic connections, and for any x0 ∈ C∗

Mini (x0)
anal∼= Mmon.

How Mmon arises: no time in this talk, black box.

Now, a main point of the talk: how well the parameters of Mmon

help to understand the real solutions on R>0 of PIII (0, 0, 4,−4).
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Monodromy data for real solutions on R>0 of
PIII (0, 0, 4,−4)

M real
mon = {(s, b1, b2) ∈ R3 | b21 + (

s2

4
− 1)b22 − 1 = 0}
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Initial data for real solutions on R>0 of PIII (0, 0, 4,−4)

M real
ini (x0) is given by 4 charts, each ∼= R× R, each consists of

R∗ × R ∼= {regular initial values} (2 components!!)

and R ∼= (1 stratum of singular initial values),

M real
mon

anal∼= M real
ini (x0) for any x0 ∈ R>0.

For all x0 ∈ R>0 together,

M real
ini :=

⋃
x0∈R>0

M real
ini (x0)

∼= (2 open components, each ∼= R2
>0 × R)

separated by (4 walls, each ∼= R>0 × R).

On 1 component f > 0, on the other component f < 0,
2 walls of simple zeros, 2 walls of simple poles.
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Real 3-dim space showing all solutions

The isomorphism

R>0 ×M real
mon

∼= M real
ini with

{x0} ×M real
mon

∼= M real
ini (x0)

is analytic & complicated & beautiful and tells (together with the
6 strata in M real

ini ) all about the zeros and poles of the solutions.

The 6 strata, 4 walls of zeros and poles, 2 open components:
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M real
mon with the 6 strata of one M real

ini (x0)

(Picture partially conjectural)
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The vertical lines give the solutions of PIII (0, 0, 4,−4)

x0 large:
small spirals around s = ±∞
large spirals around (b1, b2) = ±(±∞,∞)

x0 small:
large spirals around s = ±∞
small spirals around (b1, b2) = ±(±∞,∞)
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3 theorems on the real solutions on R>0 of PIII (0, 0, 4,−4)

On the next slides

Theorem 1: asymptotics near 0.
Only the parameter s is used.

Theorem 2: asymptotics near ∞.
Only the parameters (b1, b2) are used.

Theorem 3: global results on the sequences of zeros and poles.
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Theorem 1: asymptotics near 0.

Fix a real solution f on R>0 of PIII (0, 0, 4,−4) and its data
(s, b1, b2) ∈ M real

mon.

(a) Then f has no zeros or poles near 0 ⇐⇒ |s| ≤ 2.
∃ x1 > 0 s.t. for b1 ≥ 1 resp. b1 ≤ −1:

(b) If |s| > 2 then ∃ x1 > 0 s.t.

for s > 2: ...[0+][0−]...

and for s < −2: ...[∞+][∞−]...
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About the asymptotics near 0

McCoy-Tracy-Wu 1977 studied only the solutions which are
smooth near ∞ [Thm 2(a)]; for them, they knew the asymptotics
near 0 [Thm 1(a)+(b)]; they had the globally smooth solutions [an
implication of Thm 3].

Its-Novokshenov 1986 studied only the solutions which are smooth
near 0 and got for their asymptotics precise formulas [Thm 1(a)].

Niles 2009 obtained formulas for the asymptotics near 0 for all
complex multivalued solutions on C∗: Thm 1(a)+(b). He and
Its-Novokshenov used isomonodromic connections and Bessel
functions/Hankel functions.

A review and different derivation of his formulas is in
Guest-Hertling 2015.
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Theorem 2: asymptotics near ∞.

Fix a real solution f on R>0 of PIII (0, 0, 4,−4) and its data
(s, b1, b2) ∈ M real

mon.

(a) f has no zeros or poles near ∞ ⇐⇒ (b1, b2) = (±1, 0).
∃ x2 > 0 s.t. for b1 = 1 resp. b1 = −1:

(b) If (b1, b2) 6= (±1, 0) then ∃ x2 > 0 s.t.

for b2 > 0 : ...[0+][∞−]...

and for b2 > 0 : ...[0−][∞+]...
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About the asymptotics near ∞

McCoy-Tracy-Wu studied only the solutions smooth near ∞ [Thm
2(a)]. Their techniques: hard analysis, not attractive, some proofs
probably incomplete.

Its-Novokshenov obtained for solutions not smooth near ∞ [Thm
2(b)] rather precise formulas, derived with Mathieu functions and
the WKB method. But they did not cover all cases (only solutions
smooth near 0).

The theory of variations of TERP structures (limit theorems:
nilpotent orbits and mixed TERP structures) gives sufficient
control on the asymptotics near ∞ for all solutions: work of
Hertling, Mochizuki, Sabbah.

It applies also to the asymptotics near 0. But there Niles’ results
are complete.
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Theorems 1+2+3: asymptotics again + the global result

The theorems 1 [asymptotics near 0] and 2 [asymptotics near ∞]
in a table:

on ]0, x1] on [x2,∞[

|s| ≤ 2, b1 ≥ 1 f (x) > 0 (b1, b2) = (1, 0) f (x) > 0
|s| ≤ 2, b1 ≤ −1 f (x) < 0 (b1, b2) = (−1, 0) f (x) < 0

s > 2 ...[0+][0−]... b2 > 0 ...[0+][∞−]...
s < −2 ...[∞+][∞−]... b2 < 0 ...[0−][∞+]...

(1)

Theorem 3:

∃ x1, x2 s.t. x1 = x2. So no intermediate mixed zone exists.

It implies (known): f has at most finitely many zeros or poles ⇐⇒
f has nowhere zeros or poles ⇐⇒ |s| ≤ 2 and (b1, b2) = (±1, 0).
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About the global result
Theorem 3 is completely new: the asymptotics near 0 and ∞ glue
without intermediate mixed zones.

The strata in s for the asymptotics near 0 and the strata in
(b1, b2) for the asymptotics near ∞ intersect in 14 strata.

−→ 14 cases of sequences of zeros and poles exist.

Theorem 3 ⇐=

{
the following pictures of three sections for
R>0 ×M real

mon|s=si , i = 0, 1, 2

⇐=


from the theorems 1+2 on the asymptotics

and from the global geometry of the moduli
spaces: the isomorphism R>0 ×M real

mon
∼= M real

ini

and the 6 strata on M real
ini .
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Three sections R>0 ×Mmon
real |s=sk , k = 0, 1, 2
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The section for s = s0 > 2
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All three sections

R>0 ×M real
mon|s=s0 R>0 ×M real

mon|s=s1 R>0 ×M real
mon|s=s2

for s0 > 2 for − 2 < s1 < 2 for s2 = −s0 < 0
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Isomonodromic connections

The Painlevé I-VI equations are related to isomonodromic families
of 2nd order linear differential equations: this is old, Fuchs +
Garnier early 20th century, taken up again by Okamoto 1986.

Painlevé I-VI equations are related to isomonodromic families of
rank 2 vector bundles on P1 with meromorphic connections:
Flaschka-Newell 1980 for some cases including PIII (0, 0, 4,−4),
Jimbo-Miwa-Ueno 1981 for other cases.

Its-Novokshenov 1986 and Niles 2009 and Guest-Hertling 2015
take up the connections of Flaschka-Newell 1980.

Its-Novokshenov and Niles work with matrices with some
symmetries, Guest-Hertling with vector bundles with rich
additional structure: variations of TERP structures.
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Isomonodromic connections II

For (x0, f0, f̃0) ∈ (2 open components of M real
ini ),

one has a rank 2 complex trivial vector bundle on P1

with global basis v = (v1, v2)
and (flat) meromorphic connection ∇ with poles of order 2 at 0
and at ∞,

∇z∂z v(z) = v(z)·

[
x0
z

(
0 1
1 0

)
− x0

2

f̃0
f0

(
1 0
0 −1

)
− z · x0

(
0 f 20

f −20 0

)]
.

Vary x0 and write (x , f , f ′) instead of (x0, f0, f̃0). Then:

Flaschka-Newell 1980: One obtains an isomonodromic family
⇐⇒ f is a solution of PIII (0, 0, 4,−4).
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TERP structures

A TERP structure consists of the data (H → P1,∇,H ′R, τ,P).

H → P1 is a hol vector bundle of some rank n ∈ N.

∇ is a (flat) hol connection on H ′ := H|C∗ and has on H poles of
order ≤ 2 at 0 and at ∞.

H ′R ⊂ H ′ is a flat real subbundle with H ′z = H ′R,z ⊕ iH ′R,z ∀ z ∈ C∗.

τ : Hz → H1/z is ∀ z ∈ P1 a C-antilinear involution, flat on C∗,
holomorphic, the restriction to S1 is the complex conjugation from
H ′R (thus H ′R and τ determine one another.)

P : Hz × H−z → C ∀ z ∈ P1 is a C-bilinear nondegenerate hol flat
(on C∗) pairing and compatible with the real structure:

P(τa, τb) = P(a, b), P : H ′R,z × H ′R,−z → R.
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TERP structures II

A TERP structure is pure if H → P1 is trivial bundle.

Then P(., τ.) induces a nondegenerate hermitian pairing
h := P(., τ.) on Γ(P1,H)(∼= Cn).

A TERP structure is pure and polarized if it is pure and if h is
positive definite.

Flaschka-Newell’s bundles can be enriched to TERP structures:

τ(v(z)) = v(1/z) ·
(

0 f0
f −10

)
, P(v(z), v(−z)) =

(
0 2
2 0

)
.

It is pure. It is polarized ⇐⇒ f0 > 0, anti-polarized if f0 < 0.
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Special 1-par families of TERP structures

Basic fact: Any TERP structure TERPx0 induces a special 1-par
isomonodromic family (TERPx)x>0 on R>0.

In the case of the Flaschka-Newell TERP structures, the real
solutions f on R>0 of PIII (0, 0, 4,−4) (with or without
singularities) correspond to the 1-par families of TERP structures
which extend the Flaschka-Newell TERP structures.

For x0 in the 4 walls of M real
ini , the TERP structure is non-pure, with

O(H) ∼= OP1(1)⊕OP1(−1).

Thus a solution f is smooth [and positive] on U ⊂ R>0 ⇐⇒
the TERP structures (TERPx)x∈U are all pure [and polarized].
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Limit theorems for TERP structures

Theorem: Start with 1 TERP structure TERPx0 and its 1-par
family (TERPx)x>0.

(i) (T. Mochizuki 2008, conjecture of Hertling 2003)
All members TERPx for x � 1 are pure and polarized
⇐⇒ TERPx0 is a mixed TERP structure.

(ii) (Hertling-Sevenheck 2006)
All members TERPx for 0 < x � 1 are pure and polarized
⇐⇒ some candidate is a polarized mixed Hodge structure.

For the Flaschka-Newell TERP structures,
mixed TERP means (b1, b2) = (1, 0),
and the candidate is a PMHS ⇐⇒ |s| ≤ 2, b1 > 0.

Thus (i) reproves Thm 2(a), and (ii) reproves Thm 1(a).
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M real
mon: the parameter s

I left := {z ∈ C∗ | =(z) < 0}, I right := {z ∈ C∗ | =(z) > 0},
I+0 = I−∞ := C∗ − (−i) · R>0, I−0 = I+∞ := C∗ − i · R>0.

v |I±0 = e±0 ·
(
e−x/z 0

0 ex/z

)
· A±0 (z) with A±0 (0) =

(
1 1
−i i

)
,

v |I±∞ = e±∞ ·
(
e−xz 0

0 exz

)
· A±∞(z) with A±∞(0) =

(
1 1
−i i

)
,

e−0 |I left = e+0 |I left ·
(

1 s
0 1

)
, e−0 |I right = e+0 |I right ·

(
1 0
s 1

)
,

e−∞|I left = e+∞|I left ·
(

1 −s
0 1

)
, e−∞|I right = e+∞|I right ·

(
1 0
−s 1

)
.
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M real
mon: the parameters (b1, b2)

e−∞ = e+0 · B, B = connection matrix,

BS = S(Bt)−1, B = B
−1 ⇒ B =

(
b1 + 1

2 isb2 −ib2
ib2 b1 − 1

2 isb2

)

M real
mon = {(s, b1, b2) ∈ R3 | b21 + (

s2

4
− 1)b22 (= detB) = 1}

τ(e±0 (z)) = e∓∞(
1

z
), τ(e±∞(z)) = e∓0 (

1

z
)

Mixed TERP structure ⇒ real and Stokes structure are compatible
⇐⇒ the Stokes structures at 0 and ∞ are compatible
⇐⇒ (b1, b2) = (±1, 0).

Some positivity in a mixed TERP structure ⇒ (b1, b2) = (1, 0).
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Main results of the paper with Martin Guest

• All possible sequences of zeros and poles of real solutions on
R>0 of PIII (0, 0, 4,−4): 14 types.

• Vector bundles with rich additional structure for all
meromorphic multivalued solutions on C∗ of PIII (0, 0, 4,−4):
P3D6-TEJPA bundles.

• Normal forms for the families of vector bundles which
correspond to zeros and poles. They are families of bundles of
type OP1(1)⊕OP1(−1).

• Complete classification of semisimple rank 2 TERP structures
and their isomonodromic families.

32 / 32


