
Integrability in Grassmann and other Geometries

Boris Kruglikov

University of Tromsø, Norway

Based on joint work with Boris Doubrov, Eugene Ferapontov, Vladimir Novikov

Geometric and Algebraic Aspects of Integrability

LMS-EPSRC Durham Symposium 2016

1



General construction

Let Gr(d, n) be the Grassmannian of d-dimensional linear subspaces of an

n-dimensional vector space V n. A submanifold X ⊂ Gr(d, n) gives rise to a

differential system Σ(X) governing d-dimensional submanifolds of V n with Gauss

image in X . Since d-dimensional submanifolds of V n are parametrised by n− d
functions of d variables, we will assume that the codimension of X in Gr(d, n)

also equals n− d: in this case Σ(X) will be a determined system of n− d
first-order PDEs for n− d unknown functions of d independent variables.

Main question: When is Σ(X) integrable?

Based on:

B. Doubrov, E.V. Ferapontov, B. Kruglikov, V.S. Novikov, On the integrability in Grassmann

geometries: integrable systems associated with fourfolds in Gr(3, 5), arXiv:1503.02274.
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Systems associated with fourfolds X ⊂ Gr(3, 5)

Introducing in V 5 coordinates x1, x2, x3, u, v one can parametrise

three-dimensional submanifolds of V 5 in the form u = u(x1, x2, x3),

v = v(x1, x2, x3). The corresponding system Σ(X) reduces to a pair of

first-order PDEs for u and v (with ui = ∂u/∂xi, vi = ∂v/∂xi)

F (u1, u2, u3, v1, v2, v3) = 0, G(u1, u2, u3, v1, v2, v3) = 0. (1)

Here the Grassmannian Gr(3, 5) is identified with the space of 2× 3 matrices,

U =

 u1 u2 u3

v1 v2 v3

 ,

and equations (1) specify a fourfold X ⊂ Gr(3, 5).
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Non-degeneracy: horizontal conformal structure

We will assume that the characteristic variety of (1) is non-degenerate. This conic

curve is given by the following dispersion relation

det

 3∑
i=1

λi

Fui
Fvi

Gui
Gvi

 = 0

on the projective parameter [λ] = [λ1 : λ2 : λ3] ∈ P2. Equivalently, this is written

λ g]λt = 0, where g] is a symmetric 3× 3 matrix with the entries

gij = 1
2 (Fui

Gvj + Fuj
Gvi − FviGuj

− FvjGui
).

Non-degeneracy is equivalent to det[g]] 6= 0, and then the inverse matrix gij
yields the canonical conformal structure g = gijdx

idxj on any solution.

The hyperbolicity condition adapted below is that this metric has Lorentzian

signature (or one should use complexification).
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Examples: Bäcklund transformations

The following 2-component system in 3D

{vy −
1

2
v2x − ux = 0, vt −

1

3
v3x − vxux − uy = 0}

defines a Bäcklund transformation between the dKP and mdKP equations:

uxt − uxuxx − uyy = 0 ! vxt − (vy −
1

2
v2x)vxx − vyy = 0.

· · · · ·

Let a1 + a2 + a3 = 0 and ã1 + ã2 + ã3 = 0 be constants. The system

{a1ã2uxvy − a2ã1uyvx = 0, a1ã3uxvt − a3ã1utvx = 0}

defines a Bäcklund transformation between the Veronese web equations

a1uxuyt+a2uyuxt+a3utuxy = 0 ! ã1vxvyt+ã2vyvxt+ã3vtvxy = 0.
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Equivalence group SL(5)

The linear action of SL(5) on the variables x1, x2, x3, u, v naturally extends to

Gr(3, 5), identified with 2× 3 matrices U of partial derivatives ui, vi:

U → (AU +B)(CU +D)−1;

note that the extended action is no longer linear. These transformations preserve

the class of equations (1), indeed, first-order derivatives transform through

first-order derivatives only. Moreover, they preserve the integrability. Two

SL(5)-related equations should be regarded as ‘the same’.

In fact, this equivalence group is maximal possible, because it can be considered

as the group of transformations preserving the charactericstics consisting of Segre

cones rank(dU) = 1, which is internal for the problem.
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The method of hydrodynamic reductions
Applies to quasilinear equations

A(u)ux +B(u)uy + C(u)ut = 0.

Consists of seeking N-phase solutions

u = u(R1, ..., RN ).

The phases Ri(x, y, t) are required to satisfy a pair of commuting equations

Riy = µi(R)Rix, Rit = λi(R)Rix,

(called hydrodynamic reductions). Copatability conditions: ∂jµ
i

µj−µi =
∂jλ

i

λj−λi .

Definition. A 2+1 quasilinear system is said to be integrable if, for any N, it

possesses infinitely many N-component reductions parametrized by N arbitrary

functions of one variable.
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Hydrodynamic reductions: 2× 2 systems
First we represent system (1) in evolutionary form,

ut = f(ux, uy, vx, vy), vt = g(ux, uy, vx, vy). (2)

Next, we bring it into quasilinear form by choosing first-order derivatives of u and v

as the new dependent variables, and writing out all possible consistency conditions

among them. Applying the method of hydrodynamic reductions, one can write down

the integrability conditions in symbolic form,

d3f = R(df, dg, d2f, d2g), d3g = S(df, dg, d2f, d2g),

40 equations altogether (in involution!).

Theorem 1. The parameter space of non-degenerate integrable systems (1) is

30-dimensional.

8



Moduli of integrable 2× 2 systems
Consider the action of the equivalence group SL(5) on the parameter space of

integrable equations (2). The group acts transitively on the Grassmanian, and the

stabilizer of a point o ∈ Gr(3, 5) is the parabolic subgroup

Po = S(GL(3)×GL(2)) n (R3 ⊗R2) acting on ToGr(3, 5) = R3 ⊗R2. It

induces the action on the codimension 2 submanifolds of the latter space.

These are 2× 2 systems: R4(a, b, c, d)→ R2(f, g), where a = ux, b = uy ,

c = vx, d = vy , f = ut, g = vt. The algebra sl(5) acts transitively on

J0(R4,R2) = R4 × R2 = R6, and it prolongs to the higher order jet spaces.

There is an open orbit on J1(R4,R2) (nondegenerate 4-planes), and the action on

J2(R4,R2) has no stabilizer at a generic point, so the orbits are 24-dimensional.

The action of SL(5) on the parameter spaceM30 ⊂ J2(R4,R2) is algebraic.

Theorem 1+. The moduli space of non-degenerate integrable systems (1) is a

6-dimensional rational varietyM30/SL(5) = M̄6.

9



Integrability: Dispersionless Lax pairs
System

vy −
1

2
v2x − ux = 0, vt −

1

3
v3x − vxux − uy = 0,

possesses the Lax pair

Sy = S2
x + vxSx, St =

4

3
S3
x + 2vxS

2
x + (ux + v2x)Sx,

i.e. the compatibility condition is satisfied modulo the equation.

Theorem 2. Every non-degenerate integrable system (1) possesses a

dispersionless Lax pair of the type

Sy = P (Sx, ui, vi), St = Q(Sx, ui, vi).

In the general case parametrization of solutions is given by via generalized

hypergeometric functions: Odesskii-Sokolov construction.
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Geometry ‘on solutions’: Einstein-Weyl geometry
Given conformal structure gij , introduce the covector ω,

ωk = 2gkjDxs(gjs) +Dxk(ln det gij), (3)

and the symmetric Weyl connection D such that Dkgij = ωkgij .

Theorem 3. System (1) is integrable if and only if on every solution the triple

D, g, ω satisfies the Einstein-Weyl equations,

Dkgij = ωkgij , Ric(ij) = Λgij .

Here Ric(ij) is the symmetrised Ricci tensor of D, and Λ is some function.

Einstein-Weyl geometry is integrable (Cartan, Hitchin). Thus, solutions to integrable

equations carry integrable geometry.
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Deviation: Scalar second order PDE
Consider a PDE of Hirotha type

F (u11, u12, u13, u22, u23, u33) = 0. (4)

with associated conformal symmetric bivector g], gij = ∂F
∂uij

. The symbol of PDE

is non-degenerate if the characteristic varity is a nondegenerate conic curve in P2,

i.e. det g] 6= 0. Then (gij) = (gij)−1 defines a conformal structure on any

solution g = gijdx
idxj . Formula (3) defines the covector ω and so Weyl structure.

The following was proved in E.Ferapontov & BK, Dispersionless integrable systems

in 3D and Einstein-Weyl geometry, Journal of Differential Geometry 97, (2014):

Theorem 3∗. PDE (4) is integrable iff (D, g, ω) satisfies the EW equations,

Dg = ω ⊗ g, Ricsym
D = Λ · g.

This is also true for general 2nd order PDE (D.Calderbank & BK: work in progress).
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Geometry ‘on equation’: GL(2) geometry
The tangent bundle to the Grassmannian Gr(3, 5) carries canonical generalised

conformal structure defined by the family of Segre cones duidvj − dujdvi = 0.

Given a fourfold X ⊂ Gr(3, 5), the intersection of its tangent space TX with the

Segre cone is a two-dimensional rational cone of degree three; its projectivisation is

a rational normal curve of degree three (twisted cubic). This is known as a GL(2)

structure on X . It was demonstrated by Bryant that every four-dimensional GL(2)

structure defines on X a canonical affine connection (with torsion).

Theorem 4. System (1) is integrable if and only if X possesses infinitely many

holonomic 3-folds. This is equivalent to the condition that the curvature R and the

covariant derivative∇T of the torsion T of the Bryant connection are certain

invariant quadratic expressions in T ,

R = f(T 2), ∇T = g(T 2).
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sl(2) decomposition into irreps for GL(2)-structures:

τ ⊗ τ∗ ⊗ Λ2τ∗ = 2V0 ⊕ 4V2 ⊕ 5V4 ⊕ 4V6 ⊕ 2V8 ⊕ V10.

R = R(0) +R(2) +R(4) +R(6), ∇T = ∇T(4) +∇T(6) +∇T(8) +∇T(10),

(T 2)klij = T klaT
a
ij , (T 2

α)klij = T klaΩabT cb[iΩcj], (T 2
β )klij = T k[jaΩabT cblΩci],

(T 2
γ )klij = T k[iaΩabT cbj]Ωcl, (T 2

δ )klij = ΩkaT balΩbcT
c
ij ;

R(0) = 0, R(4) = 0, ∇T(4) = 0, ∇T(8) = 0, ∇T(10) = −28T 2
α(10),

R(2) = 44
3 T

2
α(2) + 2T 2

β (2) − 40
3 T

2
γ (2) − 2T 2

δ (2),

R(6) = −24T 2
α(6) − 30T 2

β (6) − 60T 2
γ (6) − 24T 2

δ (6),

∇T(6) = −8T 2
α(6) − 8T 2

β (6) − 16T 2
γ (6) − 4T 2

δ (6).
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Linearisable systems
Systems of Monge-Ampère type are linear combinations of minors of the 2× 3

matrix U :

aij(uivj − ujvi) + biui + civi +m = 0,

αij(uivj − ujvi) + βiui + γivi + µ = 0.

Proposition. For non-deg system (1), the following conditions are equivalent:

(a) System is linearisable by a transformation from the equivalence group SL(5).

(b) System belongs to the Monge-Ampère class.

(c) System is invariant under an 8-dimensional subgroup of SL(5).

(d) The principal symbol conformal structure is flat on every solution.
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Linearly degenerate systems: definition
The definition is inductive. Start with a 2D system,

F (ux, ut, vx, vt) = 0, G(ux, ut, vx, vt) = 0.

Writing it in evolutionary form, ut = f(ux, vx), vt = g(ux, vx), differentiating by

x and setting ux = a, vx = b, we obtain a 2-component system of hydrodynamic

type, at = f(a, b)x, bt = g(a, b)y. The system is said to be linearly degenerate

if the corresponding characteristic speeds λi are constant in the direction of the

associated eigenvectors ξi: Lξiλ
i = 0.

In 3D, system (1) is said to be linearly degenerate if every its travelling wave

reduction to 2D is linearly degenerate in the above sense.

The parameter space of 3D linear degenerate systemsM30 is 30-dimensional.
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Linearly degenerate integrable systems: moduli
The integrability constraint gives a 22-dimensional sub-varietyM22 ⊂M30. The

equivalence group SL(5) acts on it with 4D stabilizer at generic point. Thus the

generic orbits have dimension 24− 4 = 20 and the quotientM22/SL(5) = M̄2

is 2-dimensional. The general stratum of this moduli space is given by the equation:

uxvy = αuyvx, uxvt = βutvx.

Proposition. (a) System (1) is linearly degenerate iff there exists a unique

symmetric connection on X in which the associated GL(2) structure is parallel.

(b) System (1) is linearly degenerate and integrable iff there exists a unique flat

symmetric connection on X in which the associated GL(2) structure is parallel.

(c) Such fourfolds X with integrable Σ(X) come from the Chasles construction

P4 99K Gr(3, 5), [ξ] 7→ 〈ξ, Aξ〉⊥, A ∈ SL(5).
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Integrability in 4D: Moduli
Consider 4D systems,

F (ui, vi) = 0, G(ui, vi) = 0. (5)

Theorem 5. The parameter space of non-degenerate integrable systems in 4D is

36-dimensional. Any such system is necessarily linearly degenerate. Furthermore,

the following conditions are equivalent:

(a) System is integrable by the method of hydrodynamic reductions.

(b) The principal symbol conformal structure g is anti-self-dual on every solution.

No explicit description yet. Similarly to the 3D case we obtain

Theorem 5+. The moduli space of 4D non-degenerate integrable systems (1) is a

1-dimensional rational varietyM36/SL(6) = M̄1.

Particular integrable examples are provided by systems of Monge-Ampère type.
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Monge-Ampère systems in higher dimensions
Any such system is specified by a pair of differential d-forms in a

(d+ 2)-dimensional vector space V with coordinates x1, . . . , xd, u, v. Utilising

the isomorphism between Λd and Λ2, we can reduce the theory of normal forms of

Monge-Ampère systems to the classification of pencils of skew-symmetric 2-forms.

Proposition. In four dimensions, any non-degenerate system of Monge-Ampère

type is SL(6)-equivalent to one of the following normal forms:

1. u2 − v1 = 0, u3 + v4 = 0,

2. u2 − v1 = 0, u3 + v4 + u1v2 − u2v1 = 0,

3. u2 − v1 = 0, u3v4 − u4v3 − 1 = 0,

4. u2 − v1 = 0, u1 + v2 + u3v4 − u4v3 = 0.

All these systems are integrable by the method of hydrodynamic reductions.

All of them are equivalent to various heavenly-type equations.
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GL(2)-geometry (= paraconformal geometry)
GL(2)-structure on a manifold Mn is defined by a field of rational normal curves

Kerω(λ) ⊂ PT ∗M, ω(λ) = ω0 + λω1 + · · ·+ λn−1ωn−1, (6)

where ωi is a coframe on M . The parameter λ is projective. Dually to (6) a

GL(2)-structure is defined via osculating hyperplanes by the field of rational

normal curves Πω(λ) = Ker(ω, ωλ, . . . , ωλ...λ) ⊂ PTM .

A codimension one submanifold of M is an α-manifold if all its tangent spaces are

α-hyperplanes Πω(λ) ⊂ TM . A GL(2)-structure on M is α-integrable [Krynski]

if every α-hyperplane is tangential to some α-manifold.

Such structures arise on the solution spaces of scalar ODEs with vanishing

Wünschmann invariants. Conversely, as shown by W.Krynski, every α-integrable

GL(2)-structure can be obtained from an ODE of this type. In 4D such structures

were studied by R.Bryant in the context of exotic holonomy. In other aspects they

were also studied by M.Dunajski, P.Tod, B.Doubrov, P.Nurowski, M.Godlinski.
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Integrable system for α-integrable GL(2)-structures
The general α-integrable GL(2)-structure can be brought to the normal form

ω(λ) =
n∑
i=1

ui
λ− ui

vi

dxi,

where the functions u and v satisfy the system of PDEs with ai = ui

vi
, bi = vi

ui
:

S
(jkl)

(ai − aj)(ak − al)
(

2uij − (ai + aj)vij
uiuj

+
2ukl − (ak + al)vkl

ukul

)
= 0,

S
(jkl)

(bi − bj)(bk − bl)
(

2vij − (bi + bj)uij
vivj

+
2vkl − (bk + bl)ukl

vkvl

)
= 0.

Solutions of this involutive system depend on 2(n− 2) functions of 3 variables.

Theorem 6. This system possesses a dispersionless Lax representation, and can

be viewed as a dispersionless integrable hierarchy. Consequently, the system of

vanishing Wünschmann’s conditions is an integrable dispersionless system of PDE.
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Some open problems

• For d = 3, the moduli space of non-degenerate integrable systems Σ(X)

associated with submanifolds of codimension n− 3 ≥ 2 in Gr(3, n) is

finite-dimensional. Submanifolds X corresponding to ‘generic’ integrable

systems are not algebraic.

• It would be challenging to classify integrable systems that correspond to

algebraic fourfolds X ⊂ Gr(3, 5). The homology class of any such X can be

represented as aσ + bη where a, b are nonnegative integers, and σ, η are the

standard four-dimensional Schubert cycles. Which values of a and b are

compatible with the requirement of integrability?

• In higher dimensions d ≥ 4, any non-degenerate integrable system Σ(X)

associated with a submanifold of codimension n− d ≥ 2 in Gr(d, n) is

necessarily linearly degenerate. Submanifolds X corresponding to linearly

degenerate integrable systems are rational (generally, singular).
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