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Contents

Problem: For a discrete system whose evolution is given by (bi)-rational transformations,
can we characterise its behaviour, and in particular test its integrability (at this point I avoid
giving a definition of integrability) .
NB: the restriction to birational evolutions is not too limitative.
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An elementary illustration of the difference integrable / not integrable

Consider the following plane (bi)-rational maps ϕ5 and ϕ7:

ϕ5 : (u, v) −→
(
u′ =

−1− u− v + u2 + v2 + uv

u2 − v2 + u− uv
, v′ =

−1− u− v + u2 + v2 + uv

v2 − u2 + v − uv

)

ϕ7 : (u, v) −→
(
u′ =

1 + 2u + 2 v − u2 − v2 − 3uv

2 v2 − u− u2
, v′ =

1 + 2u + 2 v − u2 − v2 − 3uv

2u2 − v − v2

)
Both maps are birational maps of infinite order.

The simplest thing is to draw a few generic orbits of respectively ϕ5 and ϕ7.
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Elementary illustration

Although the two maps are constructed in a very similar way (inversions of cyclic matrices)
and come from comparable algebraic structures of bialgebras, the behaviour of the iterates
is completely different.
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Elementary illustration

Although the two maps are constructed in a very similar way (inversions of cyclic matrices)
and come from comparable algebraic structures of bialgebras, the behaviour of the iterates
is completely different.

”z5”
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We need an instrument to characterise the different behaviours.

5



Basics: Birational transformations, singularities

We use complex projective spaces as spaces of initial conditions I, with homogeneous
coordinates.

Suppose for simplicity that I is of dimension N , with N + 1 homogeneous coordinates and
call ϕ is the forward map, and ψ the backward map. Then

ϕ : [x0, x1, . . . , xN ]→ [x′0, x
′
1, . . . , x

′
N ]

ψ : [y0, y1, . . . , yN ]→ [y′0, y
′
1, . . . , y

′
N ]

The evolution step will always be given by a birational map, so that both ϕ and ψ are
polynomial maps, of degree dϕ and dψ respectively (usually dϕ = dψ > 1).
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Basics: Birational transformations, singularities

We use complex projective spaces as spaces of initial conditions I, with homogeneous
coordinates.

Suppose for simplicity that I is of dimension N , with N + 1 homogeneous coordinates and
call ϕ is the forward map, and ψ the backward map. Then

ϕ : [x0, x1, . . . , xN ]→ [x′0, x
′
1, . . . , x

′
N ]

ψ : [y0, y1, . . . , yN ]→ [y′0, y
′
1, . . . , y

′
N ]

The evolution step will always be given by a birational map, so that both ϕ and ψ are
polynomial maps, of degree dϕ and dψ respectively (usually dϕ = dψ > 1).

Since [0, 0, . . . , 0] is forbidden, there are singular points of the transformations: the ones for
which x′j = 0, j = 0 . . . n, (resp. y′j = 0, j = 0 . . . n). We know that the sets of singular
points are algebraic varieties of dimension ≤ N − 2.
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A simple definition
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A simple definition

The idea is to measure the complexity of the evolution by the rate of growth of the sequence
of degrees {dn} of the successive iterates (A. Veselov, G. Falqui – CMV).

Define the algebraic entropy (M. Bellon – CMV), characterising its asymptotic behaviour:

ε = lim
n→∞

1

n
Log(dn)
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1
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Log(dn)

Since dn+m ≤ dn · dm, this limit always exists, and it is canonically associated to the map
(invariant by changes of coordinates).

The above inequality is straightforward: composing ϕn and ψm leads to polynomial expres-
sions of degree dn · dm at first. If there is any common factor, they ought to be removed,
there is a drop of the overall degree, and we get a strict inequality. One basic question is
to evaluate precisely what is the possible drop.
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The idea is to measure the complexity of the evolution by the rate of growth of the sequence
of degrees {dn} of the successive iterates (A. Veselov, G. Falqui – CMV).

Define the algebraic entropy (M. Bellon – CMV), characterising its asymptotic behaviour:

ε = lim
n→∞

1

n
Log(dn)

Since dn+m ≤ dn · dm, this limit always exists, and it is canonically associated to the map
(invariant by changes of coordinates).

The above inequality is straightforward: composing ϕn and ψm leads to polynomial expres-
sions of degree dn · dm at first. If there is any common factor, they ought to be removed,
there is a drop of the overall degree, and we get a strict inequality. One basic question is
to evaluate precisely what is the possible drop.

This is where contact is made with the singularity structure: singularities are causing this
drop, as we will see.

NB: The exponential of ε is called dynamical degree. ←↩
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Two important objects: the multipliers κϕ and κψ.

Since ‘ψ is the inverse of ϕ’ means that the composition ϕ · ψ appears as a multiplication
of all coordinates by a common factor, we have the two basic relations

ψ · ϕ ' κϕ · id, ϕ · ψ ' κψ · id

The two polynomials κϕ and κψ, both of degree dϕ dψ − 1, may be decomposable.

κϕ =

p∏
j=1

K+
j , κψ =

q∏
j=1

K−j

Each factor K±j defines an algebraic variety of codimension 1 playing a rôle in the sequel.
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Two important objects: the multipliers κϕ and κψ.

Since ‘ψ is the inverse of ϕ’ means that the composition ϕ · ψ appears as a multiplication
of all coordinates by a common factor, we have the two basic relations

ψ · ϕ ' κϕ · id, ϕ · ψ ' κψ · id

The two polynomials κϕ and κψ, both of degree dϕ dψ − 1, may be decomposable.

κϕ =

p∏
j=1

K+
j , κψ =

q∏
j=1

K−j

Each factor K±j defines an algebraic variety of codimension 1 playing a rôle in the sequel.

There is a simple relation between the varieties κϕ and κψ and the singular locus: the
varieties of equation K+

j = 0 are blown down by ϕ and their image is entirely made of
singular points of ψ. This reflects the fact that one cannot take one step forward and then
a step backward when starting from a point on κϕ = 0. The same applies to ψ mutatis
mutandis.
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ψ · ϕ ' κϕ · id, ϕ · ψ ' κψ · id

Let Σ be the surface of equation κϕ = 0 (or some factor of κϕ if it is not indecomposable).
As soon as the evolution is non-linear, the degree of κ is positive, and there is a non empty
variety Σ. In the case of the following pattern

Σ’

Σ

∆

Π Π

’∆

’

it is easy to see that the equation of Σ factors from the fourth iterate of the map: there
will be a drop of degree.

←↩
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More about the multipliers κ

Suppose Σ is an indecomposable variety of codimension 1 of equation EΣ = 0. The pullback
by ϕ of the equation of Σ gives the equation EΣ′ of the image Σ′ of Σ by ψ. The important
point is that this pullback may contain additional factors, which are part of the total
transform, and are not part of the proper transform.

ϕ∗(EΣ) = EΣ′ (K
+
1 )n1 (K+

2 )n2 . . . (K+
p )np

The exponents nj remaining to be determined: they depend on which singular varieties are
embedded in the variety Σ.

We will use this later.

←↩
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Three ways to calculate the entropy exactly
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Three ways to calculate the entropy exactly

1– The first method is heuristic. Evaluate as many terms as possible of the sequence of de-
grees and analyse the piece of the sequence one obtains. One could of course try to calculate
the iterates explicitly, but this is unrealistic. Relying on the simple geometric interpretation
of the degree of the iterates, we can make the calculations simpler by evaluating the images
of a line (go from multivariate to univariate calculations). This is a particular case of a
notion of complexity of maps introduced by Arnold for diffeomorphisms.
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2– The second method is very useful in two dimension (order two recurrences) and has been
at the source of the “classification” of discrete Painlevé equations, inspired by the older
work of Okamoto, and leading to affine Lie algebra structures. It consists in augmenting the
space of initial conditions by a sufficient number of blow-ups, and using the paraphernalia
available from the theory of intersection of curves to obtain the entropy as an eigenvalue of
the map induced on the Picard group of the variety constructed by this process.
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grees and analyse the piece of the sequence one obtains. One could of course try to calculate
the iterates explicitly, but this is unrealistic. Relying on the simple geometric interpretation
of the degree of the iterates, we can make the calculations simpler by evaluating the images
of a line (go from multivariate to univariate calculations). This is a particular case of a
notion of complexity of maps introduced by Arnold for diffeomorphisms.

2– The second method is very useful in two dimension (order two recurrences) and has been
at the source of the “classification” of discrete Painlevé equations, inspired by the older
work of Okamoto, and leading to affine Lie algebra structures. It consists in augmenting the
space of initial conditions by a sufficient number of blow-ups, and using the paraphernalia
available from the theory of intersection of curves to obtain the entropy as an eigenvalue of
the map induced on the Picard group of the variety constructed by this process.

3– The third method is based on the observation of the factorisation properties of the
successive iterates. This leads to define a “derived map” acting on new variables which are
the indecomposable blocks appearing in the iterates. The method has the advantage of being
applicable to all dimensions, including infinite number of dimensions (e.g. delay-Painlevé,
lattice maps). ←↩
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Method 1: Calculate as many as possible of the degrees

Calculating the iterates directly, but this a rapidly growing process, and your favourite
formal calculation software will not suffice.

In practice calculate the images of a generic line and look at their degree: we thus go from
multivariate to univariate polynomials.
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Method 1: Calculate as many as possible of the degrees

Calculating the iterates directly, but this a rapidly growing process, and your favourite
formal calculation software will not suffice.

In practice calculate the images of a generic line and look at their degree: we thus go from
multivariate to univariate polynomials.

The calculation can be made lighter by working over a finite field Zp for large enough p1.

1(p = 541, 1999, 3571, 815837627809793)
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Method 1: Calculate as many as possible of the degrees

Calculating the iterates directly, but this a rapidly growing process, and your favourite
formal calculation software will not suffice.

In practice calculate the images of a generic line and look at their degree: we thus go from
multivariate to univariate polynomials.

The calculation can be made lighter by working over a finite field Zp for large enough p1.

The problem is to extract an information on the asymptotic behaviour of the sequence of
degrees from a finite number of terms. As we will see, this is possible.

Going back to the two maps pictured earlier:

• z5: iterates of ϕ5 (the integrable one)
1, 2, 4, 7, 12, 18, 25, 34, 44, 55, 68, 82, 97, 114, ...

• z7: iterates of ϕ7 (the chaotic one)
1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376, 609, 986, 1596, 2583 ...

The most efficient way is to write down the generating function of the sequence

g(s) =

∞∑
k=0

dk s
k
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and try to fit it with a Padé approximant.

For these examples:

g5 =
1 + s2 + 2 s4

(s2 + s + 1) (1− s)3 , g7 =
1

(1− s) (1− s− s2)
,

The remarkable result is that this method works in many cases and the generating function
we find is a rational fraction with integer coefficients.

The existence of a rational generating function implies the existence of a finite recurrence
relation with integer coefficients, given by the denominator of g(s), for the sequence of
degrees.
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and try to fit it with a Padé approximant.

For these examples:

g5 =
1 + s2 + 2 s4

(s2 + s + 1) (1− s)3 , g7 =
1

(1− s) (1− s− s2)
,

The remarkable result is that this method works in many cases and the generating function
we find is a rational fraction with integer coefficients.

The existence of a rational generating function implies the existence of a finite recurrence
relation with integer coefficients, given by the denominator of g(s), for the sequence of
degrees.

One should nevertheless keep in mind that the sequence of degrees is not canonical: it is
not invariant by (birational) changes of coordinates. The same applies to the generating
function g(s).

The modulus of the smallest modulus of the poles of g(s) is canonical. Moreover, all the
poles lie on the unit circle (vanishing entropy), the order of s = 1 is also canonical: it gives
the polynomial rate of growth of the degrees. The main experimental observation is that the
coefficients δm are integer and δq = 1. As a consequence entropy is the log of an algebraic
integer.

For most maps, the generating function is rational. It is unfortunately not always true.
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Suppose we take the monomial map (J. Propp):

[x, y, z, t] −→ [yt, zt, x2, xt]

we get the list:

1, 2, 3, 4, 6, 9, 12, 17, 25, 33, 45, 65, 85, 112, 159, 215, 262, 365, 524, 627, 833, 1198,
1404, 1760, 2537, 3415, 3937, 5507, 8481, 11455, 16881, 25281, 33681, 47426, 69571,
91716, 124470, 179369, 234268, 307249, 435129, 593006,...

gPropp = ?
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91716, 124470, 179369, 234268, 307249, 435129, 593006,...

gPropp = ?

It is not possible to fit the sequence with a rational fraction. It is however possible to
show that the entropy the log of an eigenvalue of the matrix of exponents defining the
map (and thus of an algebraic integer). It is the log of the largest modulus of the roots of
s3 + s+ s2− 1. One peculiarity is that the entropy of the forward map is different from the
one of the backward map.

We still have the conjecture, with no counterexample yet:

14



Suppose we take the monomial map (J. Propp):

[x, y, z, t] −→ [yt, zt, x2, xt]

we get the list:

1, 2, 3, 4, 6, 9, 12, 17, 25, 33, 45, 65, 85, 112, 159, 215, 262, 365, 524, 627, 833, 1198,
1404, 1760, 2537, 3415, 3937, 5507, 8481, 11455, 16881, 25281, 33681, 47426, 69571,
91716, 124470, 179369, 234268, 307249, 435129, 593006,...

gPropp = ?

It is not possible to fit the sequence with a rational fraction. It is however possible to
show that the entropy the log of an eigenvalue of the matrix of exponents defining the
map (and thus of an algebraic integer). It is the log of the largest modulus of the roots of
s3 + s+ s2− 1. One peculiarity is that the entropy of the forward map is different from the
one of the backward map.

We still have the conjecture, with no counterexample yet:

Conjecture (M. Bellon – CMV):
The entropy of a rational map of projective space is the log of an algebraic integer.

14



Suppose we take the monomial map (J. Propp):

[x, y, z, t] −→ [yt, zt, x2, xt]

we get the list:

1, 2, 3, 4, 6, 9, 12, 17, 25, 33, 45, 65, 85, 112, 159, 215, 262, 365, 524, 627, 833, 1198,
1404, 1760, 2537, 3415, 3937, 5507, 8481, 11455, 16881, 25281, 33681, 47426, 69571,
91716, 124470, 179369, 234268, 307249, 435129, 593006,...

gPropp = ?

It is not possible to fit the sequence with a rational fraction. It is however possible to
show that the entropy the log of an eigenvalue of the matrix of exponents defining the
map (and thus of an algebraic integer). It is the log of the largest modulus of the roots of
s3 + s+ s2− 1. One peculiarity is that the entropy of the forward map is different from the
one of the backward map.

We still have the conjecture, with no counterexample yet:

Conjecture (M. Bellon – CMV):
The entropy of a rational map of projective space is the log of an algebraic integer.
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A case study: an illustration of method 1

Consider the recurrence

xn+1 · xn−1 = xn +
1

xn
+ a

This may be written , with homogeneous coordinates [x, y, z] as a map ϕ : P2 → P2:

x −→ x2z + z3 + a xz2, y −→ yx2, z −→ xyz

ϕ is the product of two involutions. It is reversible and preserves the measure

ω =
du ∧ dv
uv

, u =
x

z
, v =

y

z
Calculating the first degrees of the iterates, one finds

1, 3, 5, 12, 25, 53, 112, 233, 487, 1013, 2111, 4393, 9144, 19029, 39601,

82412, 171501, 356899, 742713, 1545603, 3216429, 6693452, 13929201 . . .

The sequence clearly has an exponential growth

To show the experimental side of the analysis with Padé approximants: starting from the
sequence, one tries to fit the generating function with rational fractions M/N , M and N
being polynomials of degree m and n respectively, with m + n = length of the sequence -
1.
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The hit or miss appears in a striking way, when the Padé approximant happens to be exact!

HIT
CHECK

16



We find (or rather guess) that the generating function for the sequence of degrees is

g(s) =
1 + s− 2 s2 + s3 + 2 s4 − s5 + s6 + 2 s7 − s8 − s9 + 3 s10

(s4 − s3 − 2 s2 − s + 1) (s6 + s3 + 1) (1− s)

meaning that the entropy would be ' log(2.0810), definitely non vanishing.

We need a proof that this is the correct value.
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Method 2 – Augment the space of initial conditions (blow-ups)

In the two dimensional case, if the map verifies ‘singularity confinement’, it is possible to
construct, by the action of a finite number of blow-ups of points, a rational variety where
the map is a diffeomorphism. Moreover we can use the theory of intersection of curves (and
the non degenerate scalar product on the Picard group (intersection number)).
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Method 2 – Augment the space of initial conditions (blow-ups)

Σ Σ ’

Show a blow-up
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Σ Σ ’

E

Show a blow-up
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Method 2 – Augment the space of initial conditions (blow-ups)

Σ Σ ’

E F

Show a blow-up
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Method 2 – Augment the space of initial conditions (blow-ups)

The linear map induced on the Picard group gives the algebraic entropy as the log of the
largest eigenvalue of its characteristic polynomial.

This, in passing demonstrate for maps in two dimensions the fundamental conjecture that
the entropy is the log of an algebraic integer!

Moreover the fact that the induced map is an isometry for the metric given by the intersection
numbers imposes additional constraints on the roots of the characteristic polynomial.

This approach has lead to a characterisation of integrable maps in two dimensions, via the
link to affine Lie algebras, in the autonomous (QRT) as well as the non-autonomous case
(Sakai).
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Back to the case study

In order to prove that the value of the entropy found for the case study is correct, one may
use the singularity structure of the map ϕ since it verifies “singularity confinement”.

In that case one needs to blow up 18 points, some coinciding, getting a rational variety V
where the map is completely desingularised.

The characteristic polynomial of the map induced by ϕ on the Picard group of V is:

(1 + s)
(
1− s + s2

) (
s4 − s3 − 2 s2 − s + 1

) (
s6 + s3 + 1

)
(1− s)2 (1 + s + s2

)2
.

This confirms the rational fit for the generating function of the sequence of degrees, found
earlier:

g(s) =
1 + s− 2 s2 + s3 + 2 s4 − s5 + s6 + 2 s7 − s8 − s9 + 3 s10

(s4 − s3 − 2 s2 − s + 1) (s6 + s3 + 1) (1− s)

Recall that the latter was found from the calculated 22 first terms of the sequence of degrees!
Having calculated 23 terms was already giving a check, but not a proof.
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The characteristic polynomial of the map induced by ϕ on the Picard group of V is:
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) (
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) (
s6 + s3 + 1

)
(1− s)2 (1 + s + s2

)2
.

This confirms the rational fit for the generating function of the sequence of degrees, found
earlier:

g(s) =
1 + s− 2 s2 + s3 + 2 s4 − s5 + s6 + 2 s7 − s8 − s9 + 3 s10

(s4 − s3 − 2 s2 − s + 1) (s6 + s3 + 1) (1− s)

Recall that the latter was found from the calculated 22 first terms of the sequence of degrees!
Having calculated 23 terms was already giving a check, but not a proof.

The growth λ of the degree is given by the largest root (actually also the inverse of the
smallest root) of s4 − s3 − 2 s2 − s + 1 that is to say λ ' 2.0810. This indicates2 non-
integrability.

2Actually it proves the non-existence of an algebraic invariant
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Method 3 - Stabilisation of the iterates, derived map, derived recurrence

We have observed a stabilisation of the form of the iterates of birational maps. The idea is
to look at the factorisation properties of these iterates, defining indecomposable “blocks”,
which can be taken as new variables.
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erties. The latter are an extension of the Laurent property and they provide us with inter-
esting results on the algebraic entropy. We may call them derived maps (or recurrences).
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Method 3 - Stabilisation of the iterates, derived map, derived recurrence

We have observed a stabilisation of the form of the iterates of birational maps. The idea is
to look at the factorisation properties of these iterates, defining indecomposable “blocks”,
which can be taken as new variables.

Using these variables yields recurrences which have remarkable polynomial factorisation prop-
erties. The latter are an extension of the Laurent property and they provide us with inter-
esting results on the algebraic entropy. We may call them derived maps (or recurrences).

Consider the recurrence, a prototype of confining chaotic map (J. Hietarinta –CMV)

un+1 + un−1 = un + α/u2
n

Here

ϕ : [x, y, z] −→ [x3 + αz3 − x2y, x3, x2z]

ψ : [x, y, z] −→ [y3,−xy2 + y3 + αz3, y2z]

κϕ = x3, κψ = y3

This map has been shown to have positive entropy originally by method 1, then by the
construction of a rational surface over P2 where the singularities are resolved (method 2, cf.
Takenawa).
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The successive iterates have the following form

p0 = [x, y, z]

p1 = [A1, x
3, x2z]

p2 = [A2, A
3
1, x

2zA2
1]

p3 = [x3A3, A
3
2, x

2zA2
1A

2
2]

p4 = [A3
1A4, xA

3
3, zA

2
1A

2
2A

2
3]

p5 = [A3
2A5, A1A

3
4, zA

2
2A

2
3A

2
4]

...

The form of the iterates stabilises from k = 4 to:

pk = [A3
k−3Ak, Ak−4A

3
k−1, z A

2
k−3A

2
k−2A

2
k−1]

and the recurrence relation between the blocks A becomes

A3
kA

3
k−3 + α z3A6

k−1A
6
k−2 − A3

k−1Ak−4A
2
k = A2

k−3A
3
k−2 Ak+1

extending over a string of length 6: its order (5) is not the same as the initial one (2). This
is the same equation as the one A. Hone obtained from the singularity structure of the map.
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pk = [A3
k−3Ak, Ak−4A

3
k−1, z A

2
k−3A

2
k−2A

2
k−1]

and the recurrence relation between the blocks A becomes

A3
kA

3
k−3 + α z3A6

k−1A
6
k−2 − A3

k−1Ak−4A
2
k = A2

k−3A
3
k−2 Ak+1

extending over a string of length 6: its order (5) is not the same as the initial one (2). This
is the same equation as the one A. Hone obtained from the singularity structure of the map.

We are talking of a change of description, not the (birational) change of coordinates we are
used to in this game.
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Proving the validity of the derived recurrence is done by recursion.

The key ingredient is that the pull-back of Ak by ϕ is necessarily of the form

ϕ∗(Ak) = xν(k)Ak+1

It is then easy to determine the sequence ν(k), and the stability of the form of the iterates
will basically come from the fact that the factors xν(k) all get removed after the fourth
iterate.

Another way of stating this is to say each Ak+1 is the proper transform of Ak.
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iterate.

Another way of stating this is to say each Ak+1 is the proper transform of Ak.

The derived recurrence verifies two properties:

– It has the Laurent property: the iterates are Laurent polynomials in the initial variables.

– If the initial conditions are some explicit blocks obtained from the original recurrences
(i.e. specific polynomials in x, y, z), then the further iterates are polynomials in the same
variables.

Remark: The derived recurrence allows to calculate exactly the algebraic entropy as the log
of an algebraic integer
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ϕ∗(Ak) = xν(k)Ak+1

It is then easy to determine the sequence ν(k), and the stability of the form of the iterates
will basically come from the fact that the factors xν(k) all get removed after the fourth
iterate.

Another way of stating this is to say each Ak+1 is the proper transform of Ak.

The derived recurrence verifies two properties:

– It has the Laurent property: the iterates are Laurent polynomials in the initial variables.

– If the initial conditions are some explicit blocks obtained from the original recurrences
(i.e. specific polynomials in x, y, z), then the further iterates are polynomials in the same
variables.

Remark: The derived recurrence allows to calculate exactly the algebraic entropy as the log
of an algebraic integer

←↩
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Going to infinite dimension: an integrable differential-difference equation

Consider the following equation:

a u(t)− b ∂tu(t) = u(t) (u(t + 1)− u(t− 1))

where ∂tu means time derivative. One may rather consider the differential difference equa-
tion, or recurrence of order two defined on functional space:

a un(t)− b ∂tun(t) = un(t) (un+1(t)− un−1(t))

This equation for a = 0, aka Volterra chain, appears in the works of Manakov, Kaup-Paine
(Born-Green-Yvon). It was obtained by reduction of the Kac-van Moerbeke/discrete KdV
in Quispel-Capel-Sahadevan. This type of equations appears in Joshi, Joshi-Spicer, and
Grammaticos-Ramani-Moreira, see also Halburd-Korhonen for a “Nevanlinna approach”.
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Consider the following equation:

a u(t)− b ∂tu(t) = u(t) (u(t + 1)− u(t− 1))

where ∂tu means time derivative. One may rather consider the differential difference equa-
tion, or recurrence of order two defined on functional space:

a un(t)− b ∂tun(t) = un(t) (un+1(t)− un−1(t))

This equation for a = 0, aka Volterra chain, appears in the works of Manakov, Kaup-Paine
(Born-Green-Yvon). It was obtained by reduction of the Kac-van Moerbeke/discrete KdV
in Quispel-Capel-Sahadevan. This type of equations appears in Joshi, Joshi-Spicer, and
Grammaticos-Ramani-Moreira, see also Halburd-Korhonen for a “Nevanlinna approach”.

The (vanishing entropy) maps ϕ and ψ associated to the equation are:

ϕ : [x, y, z] −→ [a xz − b (x′z − xz′) + xy, x2, xz]

ψ : [x, y, z] −→ [y2, −a yz + b (y′z − yz′) + xy, yz]

were prime (′) means derivative.

For this map κϕ([x, y, z]) = x3 and κψ([x, y, z]) = y3,

so that the only factors which could appear when pulling back by ϕ (resp. ψ) any differential
polynomial in {x, y, z} are powers of x (resp. y).
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We are working with an infinite dimensional space of initial conditions. The three homo-
geneous coordinates [x(t), y(t), z(t)] of the points in this space should be understood as
infinite sequences, say

x(t) =


·
X3

X2

X1

X0

 , y(t) =


·
Y3

Y2

Y1

Y0

 , z(t) =


·
Z3

Z2

Z1

X0

 ,

with

Xn = ∂nt (x(t)), Yn = ∂nt (y(t)), Zn = ∂nt (z(t)),

so that for example

ϕ : [x, y, z] → [aX0Z0 + (X0Z1 −X1Z0) c + X0Y0, X0
2, Z0X0]

ϕ2 : [x, y, z] → [a2Z0
2X0

2 + a cZ0X0 (Z1X0 − Z0X1) + cX0
2 (Z1X0 − Z0X1 + Y0Z1 − Z0Y1)

+aZ0X0
2 (Y0 + X0) + c2

(
Z1

2X0
2 − Z0X0

2Z2 + Z0
2XX2 − Z0

2X1
2
)

+ Y0X0
3,

a2Z2
0X0

2 + 2 a cZ0X0 (Z1X0 − Z0X1) + 2 a Y0Z0X0
2 + c2 (−Z1X0 + Z0X1)2

+2 cX0Y0 (Z1X0 − Z0X1) + X0
2Y0

2,

a Z2X0
2 + c (Z1X0 − Z0X1)Z0X0 + Y0Z0X0

2]

. . .
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The surface {X = 0} is blown down to a variety U of smaller dimension (codimension ≥ 3)

ϕ : {X0 = 0} → U = {Y0 = 0, Y1 = 0, Z0 = 0 , . . . }

but there are singular varieties of ψ of codimension 2:

V = {Y0 = 0, Z0 = 0} and W = {Y0 = 0, Y1 = 0}.

For instance the family of surfaces

Σ = α y(t)2 + β(∂t y(t))2 + γ z(t)2 ' αY 2
0 + βY 2

1 + γ Z2
0 = 0

contains the image U of {X0 = 0} by ϕ, but not V or W , and

ϕ∗(Σ) = x(t)2 Σ′

Σ′ = α x(t)2 + 4 β (∂t x(t))2 + γ z(t)2

One can show that the surface {X0 = 0} is sent after four steps into the surface {Y0 = 0}.
We will not try to analyse the singularity structure further, but rather look at the factorisation
properties of the iterates, starting from a generic point p0.
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p0 = [A0, B0, C0]

p1 = [ A1, A
2
0, A0C0 ]

p2 = [ A2, A
2
1, A0A1C0 ]

p3 = [ A2
0A3, A

2
2, A0A1A2C0 ]

p4 = [ A2
1A4, A0A

2
3, A1A2A3C0 ]

. . .

pk = [ A2
k−3 Ak, Ak−4 A

2
k−1, Ak−3 Ak−2Ak−1 C0 ]
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pk = [ A2
k−3 Ak, Ak−4 A

2
k−1, Ak−3 Ak−2Ak−1 C0 ]

The coordinates of the iterates split into indecomposable blocks Ak.

One may calculate Ak in terms of the previous ones: the blocks verify a “derived” recurrence.

aC0AkAk+1Ak+2Ak+3 + Ak−1Ak+3A
2
k+2 + cA2

kA
2
k+3 ∂t

(
C0Ak+1Ak+2

AkAk+3

)
= AkA

2
k+1 Ak+4
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pk = [ A2
k−3 Ak, Ak−4 A

2
k−1, Ak−3 Ak−2Ak−1 C0 ]

The coordinates of the iterates split into indecomposable blocks Ak.

One may calculate Ak in terms of the previous ones: the blocks verify a “derived” recurrence.

aC0AkAk+1Ak+2Ak+3 + Ak−1Ak+3A
2
k+2 + cA2

kA
2
k+3 ∂t

(
C0Ak+1Ak+2

AkAk+3

)
= AkA

2
k+1 Ak+4

Remark 1: This relation extends over a string of length 6. This means that we completely
changed the description of the map. This is not a mere change of coordinates.
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pk = [ A2
k−3 Ak, Ak−4 A

2
k−1, Ak−3 Ak−2Ak−1 C0 ]

The coordinates of the iterates split into indecomposable blocks Ak.

One may calculate Ak in terms of the previous ones: the blocks verify a “derived” recurrence.

aC0AkAk+1Ak+2Ak+3 + Ak−1Ak+3A
2
k+2 + cA2

kA
2
k+3 ∂t

(
C0Ak+1Ak+2

AkAk+3

)
= AkA

2
k+1 Ak+4

Remark 1: This relation extends over a string of length 6. This means that we completely
changed the description of the map. This is not a mere change of coordinates.

Remark 2: Although expressible as a ratio of differential polynomials in the 5 previous Ak’s,
Ak+4 is a differential polynomial in the initial conditions. There is however no formula giving
Ak+4 as a differential polynomial in the 5 previous Ak’s.

How to prove the previous relation?
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Sketch of the proof: pull-back and watch for the effect of singularities

We know from the value of κϕ that

ϕ∗(Ak) = A
ν(k)
0 Ak+1.

The first values of the exponent ν are obtained by an explicit calculation, as well as the
degrees δ(k) of Ak.

k 0 1 2 3 4 5
ν 0 0 2 3 6 8
δ 1 2 4 6 9 12

One key point of the proof is that

ϕ∗
(
C0Ak+1Ak+2

AkAk+3

)
=
C0Ak+2Ak+3

Ak+1Ak+4
,

so that the pullback of the derivative term appearing in the above recurrence does not
contain A0 factors. Another important fact is that the surface X0 = 0 never comes back to
itself after the fourth iterate.

The recurrence relation is verified for k=1. Operating by pull-back yields the next level of
the recurrence, since all A0 factors disappear, as well as the next values of ν and δ.
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We have the following relations on δ(k) and ν(k).

1 + δ(k) + δ(k + 1) + δ(k + 2) + δ(k + 3) = δ(k − 1) + 2 δ(k + 2) + δ(k + 3)

= δ(k) + 2 δ(k + 1) + δ(k + 4).

The two sequences δ and ν have different initial conditions and are calculable:

ν(k) = 3/8
(
(−1)k − 1

)
+ k/2 + k2/4

δ(k) = 1/8
(
(−1)k + 7

)
+ k + k2/4

One then easily gets the the sequence of degrees of pn

δ(pn) = δ(n) + 2 δ(n− 3) = 2 δ(n− 1) + δ(n− 4)

= 1 + δ(n− 3) + δ(n− 2) + δ(n− 1)

=
1

8

(
6 n2 + 9− (−1)n

)
,

ensuring the vanishing of the entropy.
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The two sequences δ and ν have different initial conditions and are calculable:

ν(k) = 3/8
(
(−1)k − 1

)
+ k/2 + k2/4

δ(k) = 1/8
(
(−1)k + 7

)
+ k + k2/4

One then easily gets the the sequence of degrees of pn

δ(pn) = δ(n) + 2 δ(n− 3) = 2 δ(n− 1) + δ(n− 4)

= 1 + δ(n− 3) + δ(n− 2) + δ(n− 1)

=
1

8

(
6 n2 + 9− (−1)n

)
,

ensuring the vanishing of the entropy.

Remark: One could always question the notion of integrability for differential-difference
equations, and even more for delay-difference equations, but the vanishing of the algebraic
entropy is a very strong structural constraint on the equation.
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1 + δ(k) + δ(k + 1) + δ(k + 2) + δ(k + 3) = δ(k − 1) + 2 δ(k + 2) + δ(k + 3)

= δ(k) + 2 δ(k + 1) + δ(k + 4).

The two sequences δ and ν have different initial conditions and are calculable:

ν(k) = 3/8
(
(−1)k − 1

)
+ k/2 + k2/4

δ(k) = 1/8
(
(−1)k + 7

)
+ k + k2/4

One then easily gets the the sequence of degrees of pn

δ(pn) = δ(n) + 2 δ(n− 3) = 2 δ(n− 1) + δ(n− 4)

= 1 + δ(n− 3) + δ(n− 2) + δ(n− 1)

=
1

8

(
6 n2 + 9− (−1)n

)
,

ensuring the vanishing of the entropy.

Remark: One could always question the notion of integrability for differential-difference
equations, and even more for delay-difference equations, but the vanishing of the algebraic
entropy is a very strong structural constraint on the equation.

What more have we got?
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Going back to the non-homogeneous form of the stable form of the iterates

pk = [ A2
k−3 Ak, Ak−4 A

2
k−1, Ak−3 Ak−2Ak−1 C0 ]

gives a very particular form for the unknown u(t) of the original delay-differential equation:
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Going back to the non-homogeneous form of the stable form of the iterates

pk = [ A2
k−3 Ak, Ak−4 A

2
k−1, Ak−3 Ak−2Ak−1 C0 ]

gives a very particular form for the unknown u(t) of the original delay-differential equation:

C0 u(t) =
τ (t− 3) τ (t)

τ (t− 2) τ (t− 1)

Known solutions of the equation (for a = 0) are indeed of this form, with τ an entire
function !

τ (t) = t + α, C0 = −2

c
a rational limit of the soliton solution

τ (t) = cosh(
κ t + δ

2
), C0 = −2 sinh(κ)

c κ
.

We guess that the above form persists when a 6= 0.

This leads to the idea that the Ak are the τ functions of the model, taking us back to original
idea of Painlevé, with a link between Hirota form and the notion of proper transforms.

←↩ Concl. ↪→
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Which values can the entropy assume?

Values Concl. ↪→
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Our conjecture (about algebraic integers, already proved for maps on blow ups of P2, and
a number of other cases) means that the entropy cannot take arbitrary values.
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Which values can the entropy assume?

Our conjecture (about algebraic integers, already proved for maps on blow ups of P2, and
a number of other cases) means that the entropy cannot take arbitrary values.

It is natural to ask: what values can the entropy assume ?

We can choose the degree d of the maps. If d = 1 then ε = 0. We should take d ≥ 2 to
have non vanishing ε. The higher the degree, the higher the entropy at least for polynomial
maps.

We can play with what makes the degree drop: the singularity structure.

We can also play with the dimension of the space (order of the relation for recurrences) (see
later).

←↩
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Exercise in two dimension (d’après McMullen)

Consider the basic following plane (bi)-rational map:

ϕ := [x, y, z]→ [(az + y)x, (bx + y) z, zx]

For generic values of a and b, the sequence of degrees is

1, 2, 3, 4, 5, 6, 8, 10, 13, 17, 22, 29, 38, 50, 66, 87, 115, 152, . . .

which is fitted by the generating function

s3 + s4 + s5

(s− 1) (s3 + s2 − 1)

so that the entropy if the log of the largest root of 1 + s− s3 that is to say sP ' 1.32473.

But we can force singularity confinement by properly choosing the values of a and b. This
goes as follows:

3This is known as the smallest Pisot number, that is to say the smallest algebraic integer bigger than 1 and whose conjugates are smaller than one in absolute value
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Confinement at will

The projective inverse of the map is

ψ : [x, y, z] −→ [− (x− az) z, (x− az) (−y + zb) , (−y + zb) z]

so that ψϕ is the multiplication by xyz.The map ϕ sends the three lines {x = 0}, {y = 0},
{z = 0} to points:

{x = 0} → [0, 1, 0]

{y = 0} → [a, b, 1]

{z = 0} → [1, 0, 0]

The points [0, 1, 0] and [1, 0, 0] are singular under ϕ. If a and b are generic, the point [a, b, 1]
has an infinite sequence of images. Imposing singularity confinement is to force, by a proper
choice of a and b, this point to coincide with the third singular point of ϕ, i.e. [0, 0, 1].
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Confinement at will

The projective inverse of the map is

ψ : [x, y, z] −→ [− (x− az) z, (x− az) (−y + zb) , (−y + zb) z]

so that ψϕ is the multiplication by xyz.The map ϕ sends the three lines {x = 0}, {y = 0},
{z = 0} to points:

{x = 0} → [0, 1, 0]

{y = 0} → [a, b, 1]

{z = 0} → [1, 0, 0]

The points [0, 1, 0] and [1, 0, 0] are singular under ϕ. If a and b are generic, the point [a, b, 1]
has an infinite sequence of images. Imposing singularity confinement is to force, by a proper
choice of a and b, this point to coincide with the third singular point of ϕ, i.e. [0, 0, 1].

We may choose the iterate of ϕ for which this happens, and get different maps, all having
a different entropy: if ϕν({y = 0}) = [0, 0, 1], the entropy is the log of the largest root of
the polynomial

Pν(s) =
tν(t3 − t− 1) + (t3 + t2 − 1)

t− 1

If 1 ≤ ν ≤ 6, the map is periodic (of period 6, 5, 8, 12, 18, 30) and the entropy vanishes.
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If ν = 7, (i.e. the map may be desingularised with 9 blow-ups) It is of infinite order, but
the entropy still vanishes. This is where the integrability of infinite order maps appears.

If ν = 8 (10 blow-ups to regularise the map), the entropy jumps to a positive value εLehmer,

εLehmer = Log(sLehmer)

where sLehmer verifies4

s10 + s9 − s7 − s6 − s5 − s4 − s3 + s + 1 = 0

Then for ν > 8, ε increases towards ε∞ = εP .

The sequence of values of s = log ε we get is:

1, 1, 1, 1, 1, 1

1,

1.176280818

1.230391434

1.261230961

1.280638156

. . .

1.324717957

←↩
4A Salem number is an algebraic integer whose conjugates have a norm which is smaller than or equal to one (one at least having norm 1). Lehmer’s number is

supposed to be the smallest Salem number. Pisot if all conjugates are smaller than 1.
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We would like to complete this picture. ←↩ ↪→
41



A few values

42



A minimum?
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A minimum ?

Let

µ(n) = min(exp(ε))

be the minimum of exp(ε) over birational maps of Pn.

• This minimum exists since ε ≥ 0

• µ(n) ≥ 1

• µ(n + 1) ≤ µ(n)

• µ(2) ≤ sLehmer

In dimension 2, there is almost a proof that the minimum is actually sLehmer.

What about higher dimensions?

←↩
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Large dimensions

Consider the monomial maps of Pn

ϕ : [x0, x1, . . . , xn] −→ [x1x0, x2, xn, x3xn, . . . , x0xn, x
2
n]

Notice that the map is almost

σ : [x0, x1, . . . , xn] −→ [x1xn, x2xn, x3xn, . . . , x0xn, x
2
n]

which would just be the permutation

x0 → x1 → x2 → . . . xn−1 → x0

We have mixed this permutation with a quadratic map acting on a few coordinates. The
entropy may be calculated from the characteristic polynomial of the matrix associated to ϕ.
It is the maximal root of the polynomial

Qn = sn − sn−1 − 1

We find a sequence of entropies

εn '
log(n)

n
This shows that

lim
n→∞

µ(n) = 0

←↩
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More values

←↩
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Conclusion and perspectives

Conclusion:

The entropy is to maps what the genus is to curves.

Its definition extends way beyond the case of maps in finite dimensional spaces.

For birational evolutions, it is the best integrability detector to date.
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Conclusion:

The entropy is to maps what the genus is to curves.

Its definition extends way beyond the case of maps in finite dimensional spaces.

For birational evolutions, it is the best integrability detector to date.

Tracks to follow:

0 – Explore the various polynomial identities provided by the derived recurrences5, their
reductions to integers (growth of height) and finite fields, their ultradiscrete limits.

5Somos sequences are essentially fixed points of the derivation process

47



Conclusion and perspectives

Conclusion:

The entropy is to maps what the genus is to curves.

Its definition extends way beyond the case of maps in finite dimensional spaces.

For birational evolutions, it is the best integrability detector to date.

Tracks to follow:

0 – Explore the various polynomial identities provided by the derived recurrences5, their
reductions to integers (growth of height) and finite fields, their ultradiscrete limits.

1 – Prove the conjecture about the nature of the entropy (log of an algebraic integer), for
maps over finite dimensional spaces and beyond.

47



Conclusion and perspectives

Conclusion:

The entropy is to maps what the genus is to curves.

Its definition extends way beyond the case of maps in finite dimensional spaces.

For birational evolutions, it is the best integrability detector to date.

Tracks to follow:

0 – Explore the various polynomial identities provided by the derived recurrences5, their
reductions to integers (growth of height) and finite fields, their ultradiscrete limits.

1 – Prove the conjecture about the nature of the entropy (log of an algebraic integer), for
maps over finite dimensional spaces and beyond.

2 – Decide about the existence of an entropy gap.

47



Conclusion and perspectives

Conclusion:

The entropy is to maps what the genus is to curves.

Its definition extends way beyond the case of maps in finite dimensional spaces.

For birational evolutions, it is the best integrability detector to date.

Tracks to follow:

0 – Explore the various polynomial identities provided by the derived recurrences5, their
reductions to integers (growth of height) and finite fields, their ultradiscrete limits.

1 – Prove the conjecture about the nature of the entropy (log of an algebraic integer), for
maps over finite dimensional spaces and beyond.

2 – Decide about the existence of an entropy gap.

3 – Explain why the singularities of the map point to something like the Hirota form of the
equations: what do singularities of the evolution map have to do with singularities of the
solution? Phrased differently, what do proper transforms have to do with τ -functions?
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Conclusion:

The entropy is to maps what the genus is to curves.

Its definition extends way beyond the case of maps in finite dimensional spaces.

For birational evolutions, it is the best integrability detector to date.

Tracks to follow:

0 – Explore the various polynomial identities provided by the derived recurrences5, their
reductions to integers (growth of height) and finite fields, their ultradiscrete limits.

1 – Prove the conjecture about the nature of the entropy (log of an algebraic integer), for
maps over finite dimensional spaces and beyond.

2 – Decide about the existence of an entropy gap.

3 – Explain why the singularities of the map point to something like the Hirota form of the
equations: what do singularities of the evolution map have to do with singularities of the
solution? Phrased differently, what do proper transforms have to do with τ -functions?

4 – Reconsider all other characteristic features of integrablity ( Lax pairs, symmetries, con-
served quantities, ... ) in terms of the new variables we introduced.

←−
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THANK YOU
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←↩

S3=[0,−1,i]

S2=[0,1,0]

S1=[1,0,0]

S5=[1,0,−i]

S6=[1,0,i]

S4=[0,−1,−i]

S111

S121 S122

S21

S211

S212

Blow up structure  (18 successive)

S222

S221

S22
S112

S11

S12
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