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Painlevé transcendents - paradigmatic integrable systems

@ Reductions of soliton equations (KdV, KP, NLS);
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Painlevé transcendents - paradigmatic integrable systems

@ Reductions of soliton equations (KdV, KP, NLS);

@ They admit a Hamiltonian formulation;

@ They can be expressed as the isomonodromic deformation of
some linear differential equation with rational coefficients;

@ Recently: Pj; - has a genuine fully NC analogue (V.
Retakh-V.R.)

@ More recently: P, - has a (non genuine) fully NC analogue
(M. Cafasso-M. Iglesias)
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Confluences of the Painlevé equations-1
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Confluences of the Painlevé equations-2

Take w(z) = ew(Z2) + Eis, z=¢2%— 6%, o= ;% then PII

d2
divzv = 2w + zw + «
Z
becomes )
2
d—;’ = 6W2 + 7 + (201 + W),

that fore — 0 is PI.
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All Painlevé equations are isomonodromic deformation
equations (Jimbo-Miwa1980)

dB dA

— - —=JAB

d\  dz (4. B]
A=A\ z,w,w;), B=B(\ z,w,w;) € sl,.
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All Painlevé equations are isomonodromic deformation
equations (Jimbo-Miwa1980)

dB dA

& _iaB

dA dz (A, B]
A=A\ z,w,w;), B=B(\ z,w,w;) € sl,.

This means that the monodromy data of the linear system

Y
((11—)\ = A\ z,w,w,)Y

are locally constant along solutions of the Painlevé equation.
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All Painlevé equations are isomonodromic deformation
equations (Jimbo-Miwa1980)
dB dA
——-—=1[AB
d\  dz 14, B]
A=A\ z,w,w;), B=B(\ z,w,w;) € sl,.
This means that the monodromy data of the linear system

dY

T AN z,w,w,)Y

are locally constant along solutions of the Painlevé equation.
The monodromy data play the role of initial conditions.
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All Painlevé equations are isomonodromic deformation
equations (Jimbo-Miwa1980)

dB  dA
— _C_-[AB
4z A8

A=A\ z,w,w;), B=B(\ z,w,w;) € sl,.
This means that the monodromy data of the linear system

dY

T AN z,w,w,)Y

are locally constant along solutions of the Painlevé equation.
The monodromy data play the role of initial conditions.

The monodromy data are encoded in an affine cubic surfaces called
monodromy varieties.
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PainIeVé monOdromy manIfOIdS Saito and van der Put

M(p = SpeC(C[XlaXQaX3]/ <p= 0 >)

PVl xixax3 + X2 + X3 + X3 + wix1 + waxa + w3xg = wa

PV X1X2X3 + X12 + X22 + w1Xx1 + woaxs + w3x3 = wy
PIV X1XoX3 + x12 + wix1 + woxo + woxz + 1 = ws
Pl x1X0X3 + X2 + X3 + wix1 + waxo = wy — 1
PIl X1X0X3 + X1 + Xo + X3 = Wy
Pl x1x0x3+x1+x+1=0
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PVI as isomonodromic deformation

Painlevé sixth equation

@ The Painlevé VI equation describes the isomonodromic
deformations of the rank 2 meromorphic connections on P!
with simple poles.

% B (Aliz) . /:2£z3 N ;‘3_(21)> Y, AeC\{0,t,1} (1)

where A;, A2, Az € 5l(C), A1 + Az + A3 = — A, diagonal.
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PVI as isomonodromic deformation

Painlevé sixth equation

@ The Painlevé VI equation describes the isomonodromic
deformations of the rank 2 meromorphic connections on P!
with simple poles.

dyY Al(Z) AQ(Z) A3(Z)

- = Y 1} (1
O ( o T v ree{on1) (1)
where A;, A2, Az € 5l(C), A1 + Az + A3 = — A, diagonal.

o Fundamental matrix: Yoo(A) = (1 + O(1))A\*=.
@ Monodromy matrices vj(Ye) = Yoo M
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PVI as isomonodromic deformation

Painlevé sixth equation

@ The Painlevé VI equation describes the isomonodromic
deformations of the rank 2 meromorphic connections on P!
with simple poles.

% B (Aliz) . /:2£z3 N ;‘3_(21)> Y, AeC\{0,t,1} (1)

where A;, A2, Az € 5l(C), A1 + Az + A3 = — A, diagonal.
o Fundamental matrix: Yoo(A) = (1 + O(1))A\*=.
@ Monodromy matrices vj(Ye) = Yoo M

@ Describes by generators of the fundamental group under the
anti-isomorphism

p: w1 (PN\{0,t,1,00}, A1) — SLo(C).
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PVI as isomonodromic deformation

e eigen(M;) = eigen(exp(2miA;)

@ We fix the base point A1 at infinity and the generators of the
fundamental group to be 71, 72,73 such that v; encircles only
the pole i once and are oriented in such a way that

MyMoMsMog =T, Mag = exp(2iAss). (2)

o Eigenvalues of A; are (6;,—0;), j=0,t,1, 0.

o= (Aso — 1/2)%; B = —93;
= 0% §:=(1/4 —6,)°.
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PVI as isomonodromic deformation

Let:
GJ' = TI"(MJ') = 2COS(7T(9J'), j=0,t,1, 00,

The Riemann-Hilbert correspondence
'7:(00791.“’ 017900)/g — M(Gl7 G27 G3a GOO)/SL2((C)7

where G is the gauge group, is defined by associating to each
Fuchsian system its monodromy representation class. The
representation space M(Gi, Gz, G3, Go) is realised as an affine
cubic surface (Jimbo)

x1x0x3 + X 4+ x5 + x§ + wix1 + waxo + w3xz + wg = 0, (3)

where:
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PVI as isomonodromic deformation

x1 =Tr(MaMs), xp=Tr(MiMs), x3="Tr(MiM,).

and
—Wj = Gij + Gch>ovl7é k7j7

Woo = G2+ G5+ G + G2, 4 G1G2G3Go, — 4.

Iwasaki proved that the triple (xi, x2, x3) satisfying the cubic
relation (3) provides a set of coordinates on a large open subset

Sc M(Gla G27 G3a GOO)

In what follows, we restrict to such open set.
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General Affine Cubic

The main object studied in this talk is the affine irreducible cubic
surface M, := Cl[x1, x2, 3]/ (,=0) Where

(d) (d) (d)

= x1x2X3+e§d)X12—|— (d)x2+ g )x3 +w; "X1twy T xo+tws X3—|—w(d) =0,

(4)
According to Saito and Van der Put, all monodromy manifolds
M9 have the form of M, for o form the list above.
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Here d is an index running on the list of the extended Dynkin
diagrams Dy, Ds, D, D7, D, Es, E;, E;*, Eg. The coefficients w(@)
are defined by:

A - 66— P
wgd) G(d)G( ) (d)Gl(d)G:gd),
wgd) _ (d)G( ) ( )G(d)G(d) (5)
d d d)\? d) (d d)\ 2
= 62 (G( )) +61 eg ) (G2( )) +6(1 )eg ) (G3( )> +

(Ggg>) + Gl( 16N G) — 4D
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Affine Cubic as it is -1:

@ In singularity theory - the universal unfolding of the D,
singularity.
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@ Oblomkov: the quantisation of the D, affine cubic surface
M, coincides with spherical subalgebra of the generalised rank
1 double affine Hecke algebra H (or Cherednick algebra of
type G CY)
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Affine Cubic as it is -1:

@ In singularity theory - the universal unfolding of the D,
singularity.

@ Oblomkov: the quantisation of the D, affine cubic surface
M, coincides with spherical subalgebra of the generalised rank
1 double affine Hecke algebra H (or Cherednick algebra of
type G (Y)

@ In algebraic geometry - projective completion:

Mg = {(u,v,w,t) € PP |x{t + x5t + X3t — xixox3+

Fwaxit? + waxot? + waxgt? + wat> = 0}

is a del Pezzo surface of degree three and differs from it by
three smooth lines at infinity forming a triangle [Oblomkov]
t=0, x1xox3 = 0.
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This family of cubics is a variety
M, = {(x,@) € C3 x Q) : p(X,&) = 0} where
X = (x1,x2,x3), @ = (w1,w2,ws3,ws) and the " x—forgetful”
projection 7 : M, — Q : 7(X, &) = @. This projection defines a
family of affine cubics with generically non—singular fibres 7=1(@)
The cubic surface M, has a volume form 95 given by the Poincaré
residue formulae:

dxy A dxo dxp N dxz dxz N dxq

U5 = Bon) ()~ (Opa)(0x)  Oea)fom) O
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The volume form is a holomorphic 2-form on the non-singular part
of M, and it has singularities along the singular locus. This form
defines the Poisson brackets on the surface in the usual way as

_ dpg
{X1,X2}a; = TX::, (7)

The other brackets are defined by circular transposition of
x1, X2, x3. For (i,j, k) = (1,2,3):

Po

0
b o = Gy = 260 (8)

and the volume form (6) reads as

9 — dx; Ndx; dx; A\ dx;
Y (0ps/0xk) (xixj + 2ef-’xk +w,f’)'
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Observe that for any ¢ € C[x1, x2, x3] the following formulae define
a Poisson bracket on C[xy, x2, x3]:

e
Oxiy2’

{xi,xiv1} = Xi+3 = Xi, (10)
and ¢ itself is a central element for this bracket, so that the
quotient space

MSO = (C[Xl7 X2, X3]/<(p:0>

inherits the Poisson algebra structure [Nambu ~ 70].
Today we are going to re-parametrize and quantize it.
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Affine Cubic as it is -2:

@ In the Painlevé context the family of surfaces were considered
by S. Cantat et F. Loray and by M. Inaba, K. Iwasaki and
M.Saito.
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Affine Cubic as it is -2:

@ In the Painlevé context the family of surfaces were considered
by S. Cantat et F. Loray and by M. Inaba, K. Iwasaki and
M.Saito.

o PVI (D,) cubic with only ws # 0 admits the log-canonical
symplectic structure ¥ = % under isomorphism
C* x C* /v — M, by

B 1 B 1 B 1

(u,v) = (xa=—(u+ ;),xz =—(v+ ;),X3 = —(uv + E)

and 1 : C* — C* is the involution o(u) = 1, 4(v) = 1.

uo
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Affine Cubic as it is -2:

@ In the Painlevé context the family of surfaces were considered
by S. Cantat et F. Loray and by M. Inaba, K. Iwasaki and
M.Saito.

o PVI (D,) cubic with only ws # 0 admits the log-canonical
symplectic structure ¥ = % under isomorphism
C* x C* /v — M, by

(u,v) = (x1=—(u+ %),XQ =—(v+ %),x3 = —(uv + %)

and 1 : C* — C* is the involution o(u) = 1, o(v) = 1.
@ The family (3) can be "uniformize” by some analogues of
theta-functions related to toric mirror data on log-Calabi-Yau
surfaces (M. Gross, P. Hacking and S.Keel (see Example
5.12 of ”Mirror symmetry for log-Calabi-Yau varieties I,

arXiv:1106.4977).
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The other Painlevé equations

@ The PVI monodromy manifold is the SLy(C)—character variety
of a four holed Riemann sphere.
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@ What is the underlying Riemann surface for the other Painlevé
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The other Painlevé equations

@ The PVI monodromy manifold is the SLy(C)—character variety
of a four holed Riemann sphere.

@ What is the underlying Riemann surface for the other Painlevé
equations?

@ Is there a cluster algebra structure?
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The other Painlevé equations

@ The PVI monodromy manifold is the SLy(C)—character variety
of a four holed Riemann sphere.

@ What is the underlying Riemann surface for the other Painlevé
equations?

@ Is there a cluster algebra structure?

Use the confluence scheme of the Painlevé equations.

PRy — PR — Pl
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Basic ideas

@ The character variety of a Riemann sphere with 4 holes
Hom(71 (P! \ {0,t,1,00}); SL2(C))/SL2(C) is the
monodromy cubic of the Painlevé VI (Goldman-Toledo).
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@ The confluent Painlevé monodromy manifolds are " decorated
character varieties” (Chekhov-Mazzocco -R.2015).

@ The real slice of the SLy(C) character variety is the
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@ The shear coordinates on the Teichmiiller space can be
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variety.
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Basic ideas

@ The character variety of a Riemann sphere with 4 holes
Hom(71 (P! \ {0,t,1,00}); SL2(C))/SL2(C) is the
monodromy cubic of the Painlevé VI (Goldman-Toledo).

@ The confluent Painlevé monodromy manifolds are " decorated
character varieties” (Chekhov-Mazzocco -R.2015).

@ The real slice of the SLy(C) character variety is the
Teichmdiller space.

@ The shear coordinates on the Teichmiiller space can be
complexified) = coordinate description for the character
variety.

@ To visualize the confluence and the "decoration” we shall
introduce two moves correspond to certain asymptotics in the
(complexified) shear coordinates.
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Two mouves

@ Hooking holes:
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Teichmuller space

For Riemann surfaces with holes:

Hom (71(X), PSLa(R)) / GLa(R).
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Teichmuller space

For Riemann surfaces with holes:
Hom (m1(X),PSL2(R)) /GLy(RR).

Idea:

@ Teichmiiller theory for a Riemann surfaces with holes is well
understood.
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Teichmuller space

For Riemann surfaces with holes:
Hom (m1(X),PSL2(R)) /GLy(RR).

Idea:

@ Teichmiiller theory for a Riemann surfaces with holes is well
understood.
@ Take confluences of holes to obtain cusps.
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Teichmuller space

For Riemann surfaces with holes:
Hom (m1(X),PSL2(R)) /GLy(RR).
Idea:
@ Teichmiiller theory for a Riemann surfaces with holes is well

understood.
@ Take confluences of holes to obtain cusps.

@ Develop bordered cusped Teichmiiller theory asymptotically.
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Teichmuller space

For Riemann surfaces with holes:
Hom (m1(X),PSL2(R)) /GLy(RR).

Idea:

@ Teichmiiller theory for a Riemann surfaces with holes is well
understood.
@ Take confluences of holes to obtain cusps.

@ Develop bordered cusped Teichmiiller theory asymptotically.
This will provide a tcrcluster algebra of geometric type
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Poincaré uniformsation

T = H/A,
where A is a Fuchsian group, i.e. a discrete sub-group of PSL>(R).
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Poincaré uniformsation

T = H/A,
where A is a Fuchsian group, i.e. a discrete sub-group of PSL>(R).

Examples
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Poincaré uniformsation

T = H/A,
where A is a Fuchsian group, i.e. a discrete sub-group of PSL>(R).

Examples

A\

Theorem

Elements in w1(Xzs) are in 1-1 correspondence with conjugacy
classes of closed geodesics.
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Coordinates: geodesic lengths

The geodesic length functions form an algebra with multiplication:

G,y Gﬁ, = qu + G’Y’"Yfl‘

lya Roubtsov, ITEP Moscow and LAREMA, UMR 60¢



Coordinates: geodesic lengths

The geodesic length functions form an algebra with multiplication:

G,y Gﬁ, = qu + G’Y’"Yfl‘




Coordinates: geodesic lengths

The geodesic length functions form an algebra with multiplication:

G,y Gﬁ, = qu + G’Y’"Yfl‘




Coordinates: geodesic lengths

The geodesic length functions form an algebra with multiplication:

G,y Gﬁ, = qu + G’Y’"Yfl‘
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Poisson structure

{Gy, G5} = 565 2GW—1

—
——
I
N[—=
|
N|—=

AN
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@) - @)
/()/\\ skein /O ; @\ + the rest
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/8\ n /8
skein 71O
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o _ o o
,/p/\\ skein O /9\ + the rest

7y 4 \
[« \ ? {0\
v /N\_v N_JN_Y
Ve v Ve b Vd
1N 2N
N |A|
Vil V 7
A ~
III\‘ Ya ,5 \\\

\N ~
fWE A NN GGy = 65,6Ga + Gy, Gy
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Ptolemy Relation

aa' + bb' = cc’
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Ptolemy Relation
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Ptolemy Relation

X4




Ptolemy Relation
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Ptolemy Relation

X1X{ = XogX7 + XgX2
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Ptolemy Relation

/
(X13X27X37X4)X57X67X75 X8, Xg) — (X17X2)X37X47X5a X6, X7aX87X9)

X1X{ = XogX7 + XgX2

X4
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Ptolemy Relation

/
(X13X27X37X4)X57X67X75 X8, Xg) — (X17X2)X37X47X5a X6, X7aX87X9)




Ptolemy Relation

/
(X13X27X37X4)X57X67X75 X8, Xg) — (X17X2)X37X47X5a X6, X7aX87X9)

/ / /
(le X2, X3, X4, X5, X6, X7, X8, X9) — (X17X27X3)X47X5a X6, X7, X87X9)




Cluster algebra

e We call a set of n numbers (xi,...,x,) a cluster of rank n.
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Cluster algebra

e We call a set of n numbers (xi,...,x,) a cluster of rank n.

@ A seed consists of a cluster and an exchange matrix B, i.e. a
skew—symmetrisable matrix with integer entries.
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Cluster algebra

e We call a set of n numbers (xi,...,x,) a cluster of rank n.

@ A seed consists of a cluster and an exchange matrix B, i.e. a
skew—symmetrisable matrix with integer entries.

@ A mutation is a transformation

. / / / . /!
Wit (X1, x2, ..., Xn) = (X1, X5, .., Xh), pi » B — B’ where
) /_ bU _bU /_ i . .
g = [T 5"+ 11 57 =% #i
j:b,'j>0 j:b,'j<0
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Cluster algebra

e We call a set of n numbers (x1,...,x,) a cluster of rank n.

@ A seed consists of a cluster and an exchange matrix B, i.e. a
skew—symmetrisable matrix with integer entries.

@ A mutation is a transformation

. / / / . /!
Wit (X1, x2, ..., Xn) = (X1, X5, .., Xh), pi » B — B’ where
) /_ bU _bU /_ i . .
g = [T 5"+ 11 57 =% #i
j:b,'j>0 j:b,'j<0

Definition

A cluster algebra of rank n is a set of all seeds (xi, ..., x,, B)
related to one another by sequences of mutations p1, ..., k. The
cluster variables x1, ..., xx are called exchangeable, while

Xk41, - - -, Xn are called frozen. [Fomin-Zelevnsky 2002].
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Example

Cluster algebra of rank 9 with 3 exchangeable variables xi, x2, x3
and 6 frozen ones xa, ..., Xo.
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Outline

Are all cluster algebras of geometric origin?
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Outline

Are all cluster algebras of geometric origin?

@ Introduce bordered cusps

7, ITEP Moscow and LAREMA, UMR 60¢



Outline

Are all cluster algebras of geometric origin?

@ Introduce bordered cusps

@ Geodesics length functions on a Riemann surface with
bordered cusps form a cluster algebra.
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Outline

Are all cluster algebras of geometric origin?

@ Introduce bordered cusps

@ Geodesics length functions on a Riemann surface with
bordered cusps form a cluster algebra.

All Berenstein-Zelevinsky cluster algebras are geometric

ya Roubtsov, ITEP Moscow and LAREMA, UMR 60¢



Poisson bracket

@ Introduce cusped laminations

@ Compute Poisson brackets between arcs in the cusped
lamination.
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Poisson bracket

@ Introduce cusped laminations

@ Compute Poisson brackets between arcs in the cusped
lamination.
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Poisson structure

The Poisson algebra of the \-lengths of a complete cusped
lamination is a Poisson cluster algebra [chexhov-Mazzocco. ArXiv:1509.07044].

{gsivtj7 anq/} = gSiytngnq/ISivfjvpr,Cn
€i—r0s ptej_rOt pte€i_j0s q€j— 10t q
)

IShtanq/ -
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Decorated character variety-1

What is the character variety of a Riemann surface with cusps on
its boundary?

lya Roubtsov, ITEP Moscow and LAREMA, UMR 60¢



Decorated character variety-1

What is the character variety of a Riemann surface with cusps on
its boundary?
For Riemann surfaces with holes:

Hom (m1(X), PSLy(C)) / GL(C).
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Decorated character variety-1

What is the character variety of a Riemann surface with cusps on
its boundary?

For Riemann surfaces with holes:
Hom (m1(X),PSL,(C)) /GLy(C).

For Riemann surfaces with bordered cusps:
Decorated character variety [Chekhov-Mazzocco-V.R. arXiv:1511.03851]
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Decorated character variety-1

What is the character variety of a Riemann surface with cusps on
its boundary?

For Riemann surfaces with holes:
Hom (m1(X),PSL,(C)) /GLy(C).

For Riemann surfaces with bordered cusps:
Decorated character variety [Chekhov-Mazzocco-V.R. arXiv:1511.03851]

@ Replace 71(X) with the groupoid G of all paths 7;; from cusp
i to cusp j modulo homotopy.
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Decorated character variety-1

What is the character variety of a Riemann surface with cusps on
its boundary?

For Riemann surfaces with holes:
Hom (m1(X),PSL,(C)) /GLy(C).

For Riemann surfaces with bordered cusps:
Decorated character variety [Chekhov-Mazzocco-V.R. arXiv:1511.03851]

@ Replace 71(X) with the groupoid G of all paths 7;; from cusp
i to cusp j modulo homotopy.

@ Replace tr by two characters: tr and trgk.
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Cusped fat graphs

Cusped fat graph (a graph with the prescribed cyclic ordering of

edges entering each vertex) Gg.s,n a spine of the Riemann surface

Y gs,n With g handles, s holes and n > 0 decorated bordered cusps

if

(a) this graph can be embedded without self-intersections in
zg,s,n;

(b) all vertices of Gz s are three-valent except exactly n
one-valent vertices (endpoints of the open edges), which are
placed at the corresponding bordered cusps;

(c) upon cutting along all non-open edges of G s », the Riemann
surface X4 s , splits into s polygons each containing exactly

one hole and being simply connected upon contracting this
hole.
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Geometric laminations

We call geometric cusped geodesic lamination (CGL) on a

bordered cusped Riemann surface a set of nondirected curves up to

a homotopy equivalence such that

(a) these curves are either closed curves () or arcs (a) that start
and terminate at bordered cusps (which can be the same
cusp);

(b) these curves have no (self)intersections inside the Riemann
surface (but can be incident to the same bordered cusp);

(c) these curves are not empty loops or empty loops starting and
terminating at the same cusp.
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Decorated character variety-2

We introduce the fundamental groupoid of arcs G as the set of all
directed paths ; : [0,1] — ¥, s, such that ;(0) = m; and
7ii(1) = m; modulo homotopy. The groupoid structure is dictated
by the usual path—composition rules.

For each mj, j =1,..., n, the isotopy group

M = {775 : [0, 1] = Zg.s.n, 7(0) = mj, 7;(1) = m;}/{homotopy}

is isomorphic to the usual fundamental group and I1; = fyij_-ll'l,-’y,-j
for any arc v;; € G.

The decoration assigns to each arc y;; a matrix Mj; € SL>(R), for
example Mj; = X(kj)LX(zn)R - - - LX(z1) RX(k;).
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Decorated character variety-3

To associate a matrix in SLy(C) - complexify the coordinates. The
decorated character variety is:

Hom (G, SL>(C)) /Hle B

where B; is the (unipotent) Borel subgroup in SL»(C) (one Borel
subgroup for each cusp) with the characters:

Trx @ SLy(C) = C

M — Tr(MK), where K = < _01 8 )
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FIGURE
r1; the solid geodesics are z; and 3.

The fat graph of the 4 holed Riemann sphere. The dashed geodesic is

ITEP Moscow



Shear coordinates in the Teichmuller space

Fatgraph:

Decompose each hyperbolic element in Right,
Left and Edge matrices rock, Thurston

1 1 0 1
re(Lo) t=( 5 4)
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The three geodesic lengths: x; = Tr(vjx)

—5o— _ P2 _P2 P3 _P3y _
X1 =e2tBpe 2 Lot (e7 e 2 )e%+(e2 fe 2 )e 2
—sa— _ P3 _P3 P1 _hy _
Xy =BT 4 e H Lo BN L (o7 472 )et (62 +e 2 )e
P1 _h P2 _P2y _
x3=eMt2 pe "2 oIt 4 (g2 4o 2 )eR+(e2 +e 2 )e ™
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The three geodesic lengths: x; = Tr(vjx)

P2 P2 P3 P3

x| =e2tB L e B e 2NN (e 4o 2)eNf(e2 +e 2)e
P3 P3 P1 P1

Xy =BT 4 e H Lo BN L (o7 472 )et (62 +e 2 )e
P1 P1 P2 P2

x3=eMt2 pe "2 oIt 4 (g2 4o 2 )eR+(e2 +e 2 )e ™

{x1, %} =x1x0+2x3 + w3, {x,x3}=
xox3 +2x1 + w1,  {x3,x1} = x3x1 + 2x2 + wo.
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The confluence from the cubic associated to PVI to the one
associated to PV is realized by

p3 — p3 — 2logle],

in the limit ¢ — 0. We obtain the following shear coordinate
description for the PV cubic:

P2 P3 P2
x| = _eRtstT T G3652+ 3,
P3 ., P1 P3_P1 _h P3
Xo = _e3tatT g _ o 51+ — Gze~ S1—% Gle$3+ 2,
PLy P2 PL_P2 P2 P2
X3 = _eStteto T _ gmamn—5 -5 e$1—$2+*—* Gie 272 — (
where

Pi _Pi . P3 P1, P2 P3
—e2+4e 2 i=1,2, Gy3=¢e2, Gm:e51+52+53+2+2+2
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These coordinates satisfy the following cubic relation:

X1XoX3 + X12 + X22 — (GlGoo + G2G3)X1 — (G2GOO + G1G3)X2 —
—G3Goox3 + Ggo + G32 + G1GyG3G,, = 0. (12)
Note that the parameter ps3 is now redundant, we can eliminate it

by rescaling. To obtain the correct PV- cubic, we need to pick
p3 = —p1 — p2 — 251 — 2sp — 2s3 so that G, = 1.
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These coordinates satisfy the following cubic relation:

X1X2X3 + X12 + X22 — (GlGOO + G2G3)X1 — (G2Goo + G1G3)X2 —
—G3Goox3 + Ggo + G32 + G1GyG3G,, = 0. (12)

Note that the parameter ps3 is now redundant, we can eliminate it
by rescaling. To obtain the correct PV- cubic, we need to pick

p3 = —p1 — p2 — 251 — 2sp — 2s3 so that G, = 1.

{X]_,Xz} = X1X2 — G3Goo, {XQ,X3} = X2X3 + 2X1 — (GlGoo +
G2G3), {X3,X1} :X3X1+2X2—(G2Goo+ 61G3).

Volodya Roubtsov, ITEP Moscow and LAREMA, UMR 60¢



Geometrically speaking, sending the perimeter p3 to infinity means
that we are performing a chewing-gum move:

two holes, one of perimeter p3 and the other of perimeter

s1+ s+ s34+ % + % + B become infinite, but the area between
them remains finite.

This is leading to a Riemann sphere with three holes and two cusps
on one of them. In terms of the fat-graph, this is represented by
Figure 2.

The geodesic x3 corresponds to the closed loop obtained going
around p; and py (green and red loops), while x; and x> are
"asymptotic geodesics” starting at one cusp, going around p; and
po respectively, and coming back to the other cusp.
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| |
| \ | \
[ [
1 1
[ [

Figure: The process of confluence of two holes on the Riemann sphere
with four holes. Chewing-gum move: hook two holes together and
stretch to infinity by keeping the area between them finite (see Fig.). As
a result we obtain a Riemann sphere with one less hole, but with two new
cusps on the boundary of this hole. The red geodesic line which was
initially closed becomes infinite, therefore two horocycles (the green
dashed circles) must be introduced in order to measure its length.
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FIGURE 5. The fat graph corresponding to PV. The geodesic 3 remains closed.
while ; (the dashed line) and 23 become arcs.




X(kl)RX(53)RX(52)RX(pz)RX?ZQTLX(Sy,)LX(kl)- BUT its length

is b= trk(yp) = tr(bK), K = < _01 8 )
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{gshfjv anCI/}
{b’ d} =

_ 6i—r(ss,p‘i‘fj—rét,p"l‘fi—/fss,q"!‘fj—I(St,q
- gsi)tjgphq/ 4

{g137147 g21718}

€3-1012 + €4-1012 + €3-801,1 + €4—801,1

813,1,82;,15 4

1
—bd=
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The character variety of a Riemann sphere with three holes and
two cusps on one boundary is 7-dimensional (rather than
2-dimensional like in PVI case). The fat-graph admits a complete
cusped lamination as displayed in the figure below. A full set of
coordinates on the character variety is given by the five elements in
the lamination and the two parameters G; and G, which determine
the perimeter of the two non-cusped holes.

FIGURE 6. The system of arcs for PV.
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Notice that there are two shear coordinates associated to the two
cusps, they are denoted by k; and ko, their sum corresponds to
what we call p3 above.

These shear coordinates do not commute with the other ones, they
satisfy the following relations:

{53, kl} = {kl, kg} = {k2,53} =1.

As a consequence in the character variety, the elements G3 and G
are not Casimirs.

In terms of shear coordinates, the elements in the lamination are
expressed as follows:

_ okitsit2stsi+ 24 _ oktstst 2 . e
g = ef1tal 2321327 b—€1232, e=e2"2,
A d— et 2+sitotst2+% (13)
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They satisfy the following Poisson relations:

a {ab}=ab, {a,c}=0, {ad}= —%ad, {a,e} = %éé,)
{b,c} =0, {b,d}= —%bd, {b,e} = %be, (15)
{e.dy=—5cd, {ce)=rce, {de}=0 (16)

so that the element G3G,, = de is a Casimir.

Volodya Roubtsov, ITEP Moscow and LAREMA, UMR 60¢



The symplectic leaves are determined by the values of the three
Casimirs Gi, Gy and G3G,.

On each symplectic leaf, the PV monodromy manifold (12) is the
subspace defined by those functions of a, b, ¢ (and of the Casimir
values Gi, Gz, G3Gy ) which commute with G3 = e. To see this,
we can use relations (13) to determine the exponentiated shear
coordinates in terms of a, b, ¢, d, e and then deduce he expressions
of x1, X2, x3 in terms of the lamination. We obtain the following
expressions:

b b b b?
X1 :—ei—d—, X2:—ef—G1d——d——d£,(17)
c c c a ac a
c c b & a
= — —_ — _—_——— — — — 1
X3 G2b Gla a ab b’ (18)

which automatically satisfy (12).
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Due to the Poisson relations (14) the functions that commute with
e are exactly the functions of 7, %, <. Such functions may depend
on the Casimir values G, Gy and G3G4, and e itself, so that

d = G, becomes a parameter now. With this in mind, it is easy to
prove that xi, xo, x3 are algebraically independent functions of

2 g,g so that x1, xo, x3 form a basis in the space of functions
which commute with e.
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Due to the Poisson relations (1 ) the functions that commute with
e are exactly the functions of 7, 27 <. Such functions may depend
on the Casimir values G, Gy and G3G4, and e itself, so that

d = G, becomes a parameter now. With this in mind, it is easy to
prove that xi, xo, x3 are algebraically independent functions of

2 g, £ so that x1, xo, x3 form a basis in the space of functions
which commute with e. It is worth reminding that the exponentials
of the shear coordinates satisfy the log-canonical Poisson bracket.
The "reduced” 2D decorated character variety is the affine cubic

family:
T SpeC(C[Gl, Ga, Gs, G , X1, X9, X3]/X1X2X3 + Xl + X2

—(G1 + G2G3)X1 — (G2 + GlG3)X2 — G3xz3+ 1+ G3 + G1G2G3) —
+ Spec(C[G1, Ga, G3,G3]). (19)
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The decorated character variety associated with P//?™ has 6 cusps
on the boundary is 9-dimensional. The fat-graph admits a
complete cusped lamination as displayed in the figure below.




" Confluented " Poisson algebras

- _Dg - D7 Ds
Poiss;; ~<——Poiss;/ ~<——Poiss;

e

Poiss\;— Poissy <—>Poiss€eg Poiss,J,’\:7 Poiss;
FN

Poissjy <———Poiss,
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Katz invariants and Stokes rays

Painlevé egs || no. of cusps || Katz invariants || no. Stokes rays || pole—orders for ¢
PVI (0,0,0,0) (0,0,0,0) (0,0,0,0) (2,2,2,2)
PV (0,0,2) (0,0,1) (0,0,2) (2,2,4)

PVieg (0,0,1) (0,0,1/2) (0,0,1) (2,2,3)
PIV (0,4) (0,2) (0,4) (2,6)
PI1IIPe (0,2,2) (0,1,1) (0,2,2) (2,4,4)
PIIIP" (0,1,2) (0,1/2,1) (0,1,2) (2,3,4)
PP (0,1,1) (0,1/2,1/2) (0,1,1) (2,3,3)
PIITN (0,3) (0,3/2) (0,3) (2,5)

PIIM 6 3 6 8
Pl 5 5/2 5 7

Table: For each Painlevé isomonodromic problem, this table displays the
number of cusps on each hole for the corresponding Riemann surface, the
Katz invariants associated to the corresponding flat connection, the
number of Stokes rays in the linear system defined by the flat connection
and the number of poles of the quadratic differential ¢ defined by the
linear system.

/olodya Roubtsov, ITEP Moscow and LAREMA, UMR 60¢



Notation: the fundamental matrix at an irregular singular point Ay
has the form

Qk(A) 0
— A (€
YO G Y
A(N) Casimirs extended exponents || dim(C)
PV % + % + As || eigen(Ag).eigen(A1) Aoo Qoo = A 7
PIV 2 4+ A+ As) eigen(Ao). Ao Qoo = A2+ 1) 8
P || 294+ 4+ A Ao, Mo o = 5A,Q =51 8
PIM T Ao + ALX + Ao )2 Ao Qoo = X3+ L) 9

Table: Here Qx(A) is polynomial in (A — Ax) of order n — 1 with n being
the order of A\x and Ay is the formal monodromy (diagonal). Expand
A(\) near A, to calculate Qx(A) and Ay, then diagonalize it using the
gauge transformation Gg(\)..
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Quantisation

For standard geodesic lengths G, — G, [Chekhov Fock '99]:

h
e\ & @ @

(6], GH] = q Gy + a2 Gls

NM—‘
l\)h—l
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Quantisation

For standard geodesic lengths G, — Gﬁ [Chekhov-Fock '09]:

+q
Gf? v Gv‘“? Gﬂ

= qi
1 1
(6}, 651 = 47265 + 2G5

NI
N

ho
For arcs g5, ; = &4 1,

Is-,t-,p ,q h h _ _h h Zp ,q1,S;,t;
q T lgsivfngnCII _gPr7€I/gSi7qu e
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Quantisation

For standard geodesic lengths G, — Gﬁ [Chekhov-Fock '09]:

_1 1
= q 2 _I_ q§
h Gﬁ G Gh
Gy v 71 vy

_1 1
(6], Gl = 2G a5+ a2 G5

ho
For arcs g5, ; = &4 1,

Is-,t-,p ,q h h _ _h h Zp ,q1,S;,t;
q T lgsivfngnCII _gPr7€I/gSi7qu e

This identifies the geometric basis of the quantum cluster
algebras introduced by Berenstein - Zelevinsky.
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Quantization-2

To produce the quantum Painlevé cubics, we introduce the
Hermitian operators S1, S», 53 subject to the commutation
inherited from the Poisson bracket of ;:

[Si, Siv1] = iTh{5, &1} = imh, i=1,2,3, i+3=1I.

Observe that thanks to this fact, the commutators [S;, S;] are
always numbers and therefore we have

exp (aS;) exp (bS;) = exp <aS,- + bS; + %b[s,-, SJ-]) ,

for any two constants a, b. Therefore we have the Weyl ordering:

eSits q%e& e — q_%652651’ q= e~ imh
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Quantization-2

Theorem

(L. Chekhov-M. Mazzocco-V.R)

Denote by X1, X>, X3 the quantum Hermitian operators
corresponding to xi, xo, x3 as above. The quantum commutation
relations are:

1
G XX 11— X X = (q . q) DX~ (a7t —ghf® (20)

Ed) and w,(d) are the same as in the classical case. The

quantum operators satisfy the following quantum cubic relations:

where €

1 d 1 (d d
gz X3 X1 X — qeg )X32 —q 16(1 )X12 — qeg )X22—i—

q%egd)w3X3 + q*%wgd)Xl + q%wgd)Xz = wz(‘d) =0.
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Quantization-2

The Hermitian operators Xi, X2, X3 corresponding to xi, xo, x3 are
introduced as follows: consider the classical expressions for

X1, X2, x3 in terms of s1, sp, 53 and p1, po, p3. Write each product of
exponential terms as the exponential of the sum of the exponents
and replace those exponents by their quantum version. For
example (the case Ds): the classical x; is

x3 = —e2ts e (8+8) _ Gre® — Gze 2,
and its quantum version is defined as

X; = e _ (eP2/2 + e*P2/2)eS3 _ e _ oS3t

_e% (P22 4 e P2)eS _ 1252685 _ g1/265253.
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Quantization-2

@ Our theorem and close results of Marta Mazzocco show that
we can interpret the Cherednik algebra and their close
"relatives” as a quantisation of the (group algebra of the)
monodromy group of the Painlevé equations. Here g := e
and ¢" # 1.

—imh
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Quantization-2

@ Our theorem and close results of Marta Mazzocco show that
we can interpret the Cherednik algebra and their close
"relatives” as a quantisation of the (group algebra of the)
monodromy group of the Painlevé equations. Here g := e
and ¢" # 1.

@ The Askey-Wilson AW(3) (or Zhedanov algebra) can be
obtained from (20) for a special constant choice after a proper
"rescaling” .

—imh
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"Physical Motivations”

e Standard ModelSU(3) x SU(2) x U(1) Gauge Theory
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"Physical Motivations”

e Standard ModelSU(3) x SU(2) x U(1) Gauge Theory
@ SUSY desired phenomena are inherited from String Theory
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"Physical Motivations”

e Standard ModelSU(3) x SU(2) x U(1) Gauge Theory
@ SUSY desired phenomena are inherited from String Theory

o Superstring Theory: R1910D = 1+ 3 + 6 Dirichlet p— branes:
p + 1—subvarieties in R on which open strings can end;
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"Physical Motivations”

e Standard ModelSU(3) x SU(2) x U(1) Gauge Theory

@ SUSY desired phenomena are inherited from String Theory

o Superstring Theory: R1910D = 1+ 3 + 6 Dirichlet p— branes:
p + 1—subvarieties in R on which open strings can end;

@ D—brane world: live on D3—brane 1 6D—affine variety M.
1 + 3D—world-volume with SUSY YM and product gauge
group.
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D—brane algebras and superpotentials. Basic principles:

@ One can associate an algebra to the category of D—branes at
a singular point p. In every known example, the collection of
possible D—branes at p can be described as a collection of
QFT with the same Lagrangian for each of the theories.
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D—brane algebras and superpotentials. Basic principles:

@ One can associate an algebra to the category of D—branes at
a singular point p. In every known example, the collection of
possible D—branes at p can be described as a collection of
QFT with the same Lagrangian for each of the theories.

@ More precisely, one does specify the "matter representation”
(as a collection of adjoint and bifundamental fields for the
gauge groups G;) and one specifies a superpotential W— the
trace of a polynomial in the matter fields.
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D—brane algebras and superpotentials. Basic principles:

@ One can associate an algebra to the category of D—branes at
a singular point p. In every known example, the collection of
possible D—branes at p can be described as a collection of
QFT with the same Lagrangian for each of the theories.

@ More precisely, one does specify the "matter representation”
(as a collection of adjoint and bifundamental fields for the
gauge groups G;) and one specifies a superpotential W— the
trace of a polynomial in the matter fields.

@ To such data one can assign a quiver whose vertices label the
groups G; and whose directed edges specify the bifundamental
and adjoint fields in the matter representation.
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Quiver Theory

@ Action
/ d*x] / d*owieVw+( ;2 / d?0TrW W+ / d?0W () + h.c.)]

= superpotential;
b 2
V(son ¢ =i | G P+ (Ciar] wi P)
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Quiver Theory

@ Action
/ d*x] / d*owieVw+( ;2 / d?0TrW W+ / d?0W () + h.c.)]

= superpotential;
V(sou%) =3 B P (Y i | i 22
@ Encode in a Quiver:
k nodes <= V" .. V% — HJI'(:;L U(nj) gauge group;
Each arrow i — j <= bifundamental fields Xj; of
U(n,-) X U(nj);
Each loop i — i <= adjoint fields ¢; of U(n;);
Superpotential W <= linear combination of cycles: > . ¢;
gauge invariant operators;
Relations <= jacobian of W(yj, Xj).
Vacuum:~ V(pi; ¢i) = 0= % =0;>;qi | ¢i >=0.
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Superpotential algebra

@ From the quiver, we directly get the path algebra, which is the
algebra of all paths on the quiver (i.e., all ordered monomials
in matter fields).
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Superpotential algebra

@ From the quiver, we directly get the path algebra, which is the
algebra of all paths on the quiver (i.e., all ordered monomials
in matter fields).

@ A universal feature of this family of theories is the relations in
the path algebra determined by what are called " F—term

constraints” in physics: g—:;v, =0
1
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Superpotential algebra

@ From the quiver, we directly get the path algebra, which is the
algebra of all paths on the quiver (i.e., all ordered monomials
in matter fields).

@ A universal feature of this family of theories is the relations in
the path algebra determined by what are called " F—term
constraints” in physics: %V =0

@ These are the algebra relations dictated by 8)‘@/ So, given a

field theory description of the family of D- branes in the form
above, the D-brane algebra is

ow
A = path algebra of quwer/(ax )-
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Superpotential algebra

@ From the quiver, we directly get the path algebra, which is the
algebra of all paths on the quiver (i.e., all ordered monomials
in matter fields).

@ A universal feature of this family of theories is the relations in
the path algebra determined by what are called " F—term
constraints” in physics: %V =0

@ These are the algebra relations dictated by 8)‘@/ So, given a

field theory description of the family of D- branes in the form
above, the D-brane algebra is

ow
A = path algebra of quwer/(ax )-

@ This is called a superpotential algebra, which is a Calabi - Yau
algebra.
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Elementary example

@ First example, we consider the case in which P is a smooth
point. In physics language, the conformal fields theory is the
N = 4 SUSY Yang-Mills theory, written in N =1 language.
The N = 4 gauge multiplet decomposes as an N = 1 gauge
multiplet plus three complex scalar fields X, Y, Z each
transforming in the adjoint representation of the group.
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Elementary example

@ First example, we consider the case in which P is a smooth
point. In physics language, the conformal fields theory is the
N = 4 SUSY Yang-Mills theory, written in N =1 language.
The N = 4 gauge multiplet decomposes as an N = 1 gauge
multiplet plus three complex scalar fields X, Y, Z each
transforming in the adjoint representation of the group.

@ The superpotential is

W = tr(X(YZ — ZY)).
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Elementary example

@ First example, we consider the case in which P is a smooth
point. In physics language, the conformal fields theory is the
N = 4 SUSY Yang-Mills theory, written in N =1 language.
The N = 4 gauge multiplet decomposes as an N = 1 gauge
multiplet plus three complex scalar fields X, Y, Z each
transforming in the adjoint representation of the group.

@ The superpotential is

W = tr(X(YZ — ZY)).
@ The F— term constraint in this case tells us

YZ=YZ, XZ=ZX and XY =YX.
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Elementary example

First example, we consider the case in which P is a smooth
point. In physics language, the conformal fields theory is the
N = 4 SUSY Yang-Mills theory, written in N =1 language.
The N = 4 gauge multiplet decomposes as an N = 1 gauge
multiplet plus three complex scalar fields X, Y, Z each
transforming in the adjoint representation of the group.

The superpotential is

W = tr(X(YZ — ZY)).
The F— term constraint in this case tells us
YZ=YZ, XZ=Z7ZX and XY = YX.

Thus, we find
'/4 = (C[X’ Y7 Z]’

the (commutative) polynomial algebra in three variables.
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Example 2. Sklyanin algebra-1

@ The most famous example of 3-Calabi-Yau algebra is the
following graded associative algebra associated with an elliptic
curve & (possibly degenerated).
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Example 2. Sklyanin algebra-1

@ The most famous example of 3-Calabi-Yau algebra is the
following graded associative algebra associated with an elliptic
curve & (possibly degenerated).

e This algebra denotes by @Q3(&, a, b, c) where (a, b, c) € C3
such that Q3(€,a,b,c) =C < X,Y,Z > /Jyw with

Jw =< aYZ+bZY +cX?,aZX+bXZ+cY?, aXY+bYX+cZ? >
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Example 2. Sklyanin algebra-1

@ The most famous example of 3-Calabi-Yau algebra is the
following graded associative algebra associated with an elliptic
curve & (possibly degenerated).

e This algebra denotes by @Q3(&, a, b, c) where (a, b, c) € C3
such that Q3(€,a,b,c) =C < X,Y,Z > /Jyw with

Jw =< aYZ+bZY +cX?,aZX+bXZ+cY?, aXY+bYX+cZ? >

@ The ideal Jyy can be written as a non-commutative jacobian
ideal Jyy =< 0x,0y,07z > C< X, Y, Z > for
superpotential

W = aXYZ + bYXZ + c(X3 + Y3 + Z3)

Volodya Roubtsov, ITEP Moscow and LAREMA, UMR 60¢



Example 2. Sklyanin algebra-2

@ Here we consider W as a cyclic word of three variables
X,Y,Z, ie. like an element of the quotient
Ay =C<X,Y,Z>/[C<X,Y,Z>C<X,Y,Z >] with
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Example 2. Sklyanin algebra-2

@ Here we consider W as a cyclic word of three variables
X,Y,Z, ie. like an element of the quotient
Ay =C<X,Y,Z>/[C<X,Y,Z>C<X,Y,Z >] with

@ cyclic derivatives dx, 0y, 0z where
0 A=~ C <X, Y, Z>j=X,Y,Z
defines for any cyclic word ¢ € A; by

0jp = > Xir1Xiyt2- Xy Xy Xip Xj 1 €C <X, Y, Z >
klik=j
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Example 2. Sklyanin algebra-3

Etingof-Ginzburg:

@ One can identify the Sklyanin algebra Q3(&,1, —q, §) with
the flat deformation of the Poisson algebra
(Clx,y,z],{—,—},) as above with
¢ =3(x3+y*+2%) + 7xyz and
W =XYZ — qYXZ + §(X3 + Y3 + Z3).
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Example 2. Sklyanin algebra-3

Etingof-Ginzburg;:

@ One can identify the Sklyanin algebra Q3(&,1, —q, §) with
the flat deformation of the Poisson algebra
(Clx,y,z],{—,—},) as above with
Y= %(x3 +y3+2%) + 7xyz and
W =XYZ — qYXZ + §(X3 + Y3 + Z3).

@ The coordinate ring B, = C[x, y, z] /¢Clx, y, z] of the affine
surface ¢ = 0 inherits a Poisson algebra structure.
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Example 2. Sklyanin algebra-3

Etingof-Ginzburg;:

@ One can identify the Sklyanin algebra Q3(&,1, —q, §) with
the flat deformation of the Poisson algebra
(Clx,y,z],{—,—},) as above with
o= %(x3 +y3+ 23) + 7xyz and
W =XYZ — qYXZ + §(X3 + Y3 + Z3).

@ The coordinate ring B, = C[x, y, z] /¢Clx, y, z] of the affine
surface ¢ = 0 inherits a Poisson algebra structure.

@ There is a degree 3 central element ® € Z(@3(€,1,—q, 5))
and the quotient of the Sklyanin 3-Calabi-Yau algebra by
two-sided ideal < ® > is a flat deformation of the Poisson
algebra B,.
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Superpotentials of marginal and relevant deformations-1

@ There is a "physical interpretation” of the Sklyanin
superpotential (Berenstein-Leigh) as a marginal
deformation of the superpotential from the Example 1:

W + Wmarg =

— gtr(X[Y, Z]) + tr(aXYZ + bYXZ + %(X?’ +Y3+7%) € A,
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Superpotentials of marginal and relevant deformations-1

@ There is a "physical interpretation” of the Sklyanin
superpotential (Berenstein-Leigh) as a marginal
deformation of the superpotential from the Example 1:

W+ Wmarg =
— gtr(X[Y, Z]) + tr(aXYZ + bYXZ + %(X3 +Y3+7%) € A,

@ The structure of the vacua of D-brane gauge theories relates
to the Non-Commutative Geometry also via another
superpotentials (relevant deformations) having the form

m m
Wiel = tr(%XQ + 72(Y2 + Z2) +e1X+eY + e3Z)
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Superpotentials of marginal and relevant deformations-2

@ The "vacua” of the theory with Wit = W + Winarg + W
superpotential corresponds to solutions of

OiWior =0,i = X, Y, Z.
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Superpotentials of marginal and relevant deformations-2

@ The "vacua” of the theory with Wit = W + Winarg + W
superpotential corresponds to solutions of

OiWior =0,i = X, Y, Z.

@ The defining equations (for a=1,b = —q):

X1X2 — qX2X1 = —C)<32 — m2X3 — €3
X2X3 — qX3X2 = —CX12 — m1X1 — €1 (2].)

X3X1 — X1 X3 = —CX22 —mX; — e

This relations contain our (20) (again, after a special constant

choice and a "rescaling”).
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Etingof-Ginzburg ideology-1:

o Let M = C3 considering as the simplest Calabi-Yau manifold
and ¢ € A = C[x1, x2, x3] defines the Poisson bracket of
jacobian type as above.
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Etingof-Ginzburg ideology-1:

o Let M = C3 considering as the simplest Calabi-Yau manifold
and ¢ € A = C[x1, x2, x3] defines the Poisson bracket of
jacobian type as above.

® M, : ¢(x1,x2,x3) = 0 is an affine surface in M and the
coordinate ring B, := C[M,] = A/(y) is a commutative
Poisson algebra with the structure induced by ¢
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Etingof-Ginzburg ideology-1:

o Let M = C3 considering as the simplest Calabi-Yau manifold
and ¢ € A = C[x1, x2, x3] defines the Poisson bracket of
jacobian type as above.

® M, : ¢(x1,x2,x3) = 0 is an affine surface in M and the
coordinate ring B, := C[M,] = A/(y) is a commutative
Poisson algebra with the structure induced by ¢

o Let
¢ = Txixex3 + 564 +33 +x3) + P(x1) + Q(x2) + R(x3) = 0
be the family of affine surfaces containing the Eg del Pezzo.
Here degP, degQ and degQ < 3.
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Etingof-Ginzburg ideology-2:

o Let A=C < X1, X5, X3 > and A, be defined as above and
(Dq’ QR ™= = X1 Xo X3 — gXo X1 X3 + I/(Xl + X2 + X3) + P(Xl)
Q(X2) + R(X3) € A,
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Etingof-Ginzburg ideology-2:

o Let A=C < X1, X5, X3 > and A, be defined as above and
(Dq’ QR ™= = X1 X0 X3 — qX2X1X3 + I/(Xl + X2 + X3) + P(Xl)
Q(X2) + R(X3) € A

o L(®F’, ) is a filtered algebra defined by three
inhomogeneous " jacobian” relations:

dP(Q, R)

XiX; = aXiXi = vX + —

(14, k) = (1,2,3) (22)
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Etingof-Ginzburg ideology-2:

o Let A=C < X1, X5, X3 > and A, be defined as above and
(Dq’ QR ™= = X1 X0 X3 — qX2X1X3 + I/(Xl + X2 + X3) + P(Xl)
Q(X2) + R(X3) € A

o L(®F’, ) is a filtered algebra defined by three
inhomogeneous " jacobian” relations:

dP(Q, R)

XiX; = aXiXi = vX + —

(14, k) = (1,2,3) (22)

@ The superpotential CDP QR= eI + dp g r Where
O = X1 Xo X3 — X0 X1 X3 + v(X] + X3 + X3) € ALY and

®por € Aégz) is a 3-CY-superpotential (for generic
parameters)

Volodya Roubtsov, ITEP Moscow and LAREMA, UMR 60¢



Etingof-Ginzburg ideology-3:

fl. def. v
Ay S 1(9F R)

| |

p = B(OFG r V) = W(PFG £)/ (V).
In our case ®FY, » = X1 Xo X3 — X2 X1 X3

WI = X Xo X3 — P Xo Xy Xs + DT G Lx2 1 d92(q - 1)x3+

(23)
D22 — —w{(g - 1)X —wi¥q(q - 1)X — wi”(g? — 1)X
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Conclusion

@ New notion of decorated character variety
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Conclusion

@ New notion of decorated character variety

@ In the case of the Painlevé differential equations, each
decorated character variety is a Poisson manifold of dimension
3s 4+ 2n — 6, where s is the number of holes and n > 1 is the
number of cusps.
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Conclusion
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@ In the case of the Painlevé differential equations, each
decorated character variety is a Poisson manifold of dimension
3s 4+ 2n — 6, where s is the number of holes and n > 1 is the
number of cusps.

@ In each case the decorated character variety admits a special

Poisson submanifold defined by the set of functions which
Poisson commute with the frozen cluster variables.
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3s 4+ 2n — 6, where s is the number of holes and n > 1 is the
number of cusps.

@ In each case the decorated character variety admits a special
Poisson submanifold defined by the set of functions which
Poisson commute with the frozen cluster variables.

@ This submanifold is defined as a cubic surface
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Conclusion

@ New notion of decorated character variety

@ In the case of the Painlevé differential equations, each
decorated character variety is a Poisson manifold of dimension
3s 4+ 2n — 6, where s is the number of holes and n > 1 is the
number of cusps.

@ In each case the decorated character variety admits a special
Poisson submanifold defined by the set of functions which
Poisson commute with the frozen cluster variables.

@ This submanifold is defined as a cubic surface

@ By quantisation: quantum cluster algebra of geometric type.
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Conclusion

@ New notion of decorated character variety

@ In the case of the Painlevé differential equations, each
decorated character variety is a Poisson manifold of dimension
3s 4+ 2n — 6, where s is the number of holes and n > 1 is the
number of cusps.

@ In each case the decorated character variety admits a special
Poisson submanifold defined by the set of functions which
Poisson commute with the frozen cluster variables.

@ This submanifold is defined as a cubic surface

@ By quantisation: quantum cluster algebra of geometric type.

Many thanks for your attention!!!
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