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1. Gaussian Processes
A Gaussian process X on (parametrised by) I : X = {Xt , t ∈ I}, on
(Ω,F ,P), say, taking values Xt ∈ R (or a metric space M). No
structure is needed on the index set I . All that is needed is a mean
function µ on I (µ = 0 below unless otherwise stated), and a
covariance function c on I × I ,

c(s, t) := cov(Xs ,Xt),

which is positive definite (pd) (‘non-negative definite’):

n∑
i ,j=1

c(ti , tj)uiuj ≥ 0

(n ∈ N, ti ∈ I , ui ∈ R). (PD)

NB. We distinguish this from a Gaussian process in (taking values
in) a space M (‘m for metric’, or ‘m for manifold’). Here we need
structure on M in order to define the covariance operator.
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2. Brownian Motion

BM(R): here I = R+,

c(s, t) =
1

2
(|s|+ |t| − |s − t|) = min(s, t).

BM(R2): planar BM: I = R+, M = R2: time non-negative, values
in the plane. Similarly for BM(Rd): BM taking values in d-space.

Spatial processes
With I = R+, or R, we have a random (stochastic) process
unfolding with time (totally ordered).
From Einstein and Relativity, we know that we may/should think
of time and space together.
With I the plane R2, space R3 or d-space Rd , we have a spatial
process.
With I = Rd × R+, we have a spatio-temporal process.
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3. Lévy’s BM

In his book Processus stochastiques et mouvement brownien
(PSMB) (1948/1965), Lévy introduced such spatial BM (or BM
with multidimensional time) with I = Rd as the real-valued
centred Gaussian process B = (Bt : t ∈ Rd) with B0 = 0 and
incremental variance (also called the variogram)

i(s, t) := E [(Bt − Bs)2] = ‖Bt − Bs‖2 = |t − s|,

regarding B : t 7→ Bt as a map from Ω to the Hilbert space
H := L2(Ω,F ,P). Then

i(s, t) = c(s, s) + c(t, t)− 2c(s, t), (i 7→ c)

c(s, t) =
1

2
(i(s, 0) + i(t, 0)− i(s, t)). (c 7→ i)

So c , i are equivalent; c is more common; i is more convenient
here.
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4. Negative Type
A kernel k : M ×M → R+ is of negative type (nt) if∑n

i ,j=1
k(xi , xj)uiuj ≤ 0

for all n = 2, 3, · · · , all points xi ∈ M and all real ui with∑
ui = 0, and of positive type (or positive definite, pd) if∑n

i ,j=1
k(xi , xj)uiuj ≥ 0

for all n = 2, 3, · · · and all points xi ∈ M; similarly for strictly
positive type.
Covariances c are of positive type. So, incremental variances i are
of negative type: the first two terms on the right of (i 7→ c)
contribute 0 to the relevant summation, as

∑
ui = 0, so the sum

is ≤ 0 as c is of positive type.

For negative type on locally compact groups, see e.g. the book by
Berg and Forst (1975).
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5. Lévy’s BM on the Sphere

Lévy also showed that one can take I = Sd (the d-sphere: a
d-dimensional manifold embedded in Rd+1), with the North Pole
O playing the role of the origin above and geodesic distance d on
the sphere in place of Euclidean distance:

i(s, t) = ‖Bt − Bs‖2 = d(s, t) :

√
d(s, t) = ‖Bs − Bt‖. (∗)

So the map B (BM) gives
√

d as a Hilbert distance. The question
of existence of BM on I is thus a geometric one, involving
embedding in Hilbert space.
White noise
White-noise integrals for Lévy’s BM were used by Chentsov (1957,
TPA 2), and Lévy himself (Neyman Festschrift, 1966). McKean
(1963, TPA 8) treated BM with I = Sd and Rd+1 together in this
way.
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6. Spaces of Constant Curvature

Riemannian manifolds of constant curvature κ come (of course!)
in three kinds:
(i) κ > 0: Spheres Sd (we take the radius as 1);
(ii) κ = 0: Euclidean space Rd ;
(iii) κ < 0: hyperbolic space Hd . See e.g.
[Wol1] Joseph A. Wolf, Spaces of constant curvature, AMS, 1967
(6th ed. 2011).
One can extend Lévy’s results on BM on Rd and Sd to Hd : J.
Faraut and K. Harzallah, 1974, AIF – or, by white noise, Takenaka,
Kubo and Urakawa, 1981, Nagoya Math. J.
We summarise this by saying that Sd ,Rd ,Hd are Brownian
manifolds: they can be index spaces for Brownian motion.
These three families are the main examples of Riemannian
symmetric spaces (below) of rank one. By contrast, the other
examples are not Brownian; see below.
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7. Symmetric spaces

A symmetric space (Helgason [Hel1,2,3,4], Wolf [Wol1,2]) is a
Riemannian manifold M whose curvature tensor is invariant under
parallel translation. These are the spaces where at each point x
the geodesic symmetry exists: this fixes x and reverses the
(direction of) geodesics through x and O, an involutive
automorphism [Wol2, Ch. 11]. Then M is a Riemannian
homogeneous space M = G/K , with G a closed subgroup of the
isometry group of M containing the transvections, and K the
isotropy subgroup of G fixing the base-point O; (G ,K ) is called a
Riemannian symmetric pair. The Banach algebra L1(K\G/K ) of
(Haar) integrable functions on G bi-invariant under K is
commutative. Such pairs are called Gelfand pairs, and such
Banach algebras commutative spaces [Wol2]. We restrict attention
to the isotropic case, of pd functions of x := cos d(x, y) ∈ [−1, 1].
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8. Spherical functions
For harmonic analysis here, one needs (cf. the Fourier transform in
Euclidean space and the Gelfand transform for Banach algebras)
spherical measures, spherical functions and the spherical transform
[Wol2, Ch. 8, 9]. For (G ,K ) a Gelfand pair, a spherical measure m
is a K -bi-invariant multiplicative linear functional on Cc(K\G/K );
a spherical function is a continuous function ω : G → C with the
measure mω(f ) :=

∫
G f (x)ω(x−1)dµG (x) spherical. The spherical

transform for (G ,K ) is the map

f 7→ f̂ (ω) := mω(f ) =

∫
G

f (x)ω(x−1)dµG (x).

The positive definite spherical functions φ on (G ,K ) are in
bijection with the irreducible unitary representations π of G with a
K -fixed unit vector u via

φ(g) = 〈u, π(g)u〉 (GNS)

(the Gelfand-Naimark-Segal construction). These form the
spherical dual, Λ.
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9. Compact Lie groups
With G compact, all spherical functions are pd (from (GNS)); this
simplifies dealing with the spherical dual Λ.
Weights
When G is compact, the π here are in bijection with the dominant
weights, in the sense of the Cartan-Weyl theory of weights; see e.g.
Applebaum [App1, Ch. 2], or Wolf [Wol2, 6.3]. In the rank-one
case, the dominant weights are a subset Λ ⊂ R; here Λ is specified
by the Cartan-Helgason theorem ([Wol2, 11.4B], [Hel3, V.1.1,
534-538, 550]).
Spheres Sd
Here we need the Gegenbauer (or ultraspherical) polynomials, of
index λ,

Pn(x), x = cos d(x, y), x, y ∈ Sd , λ =
1

2
(d − 1).

For the 2-sphere in 3-space (i.e. the Earth), these reduce (λ = 1
2 )

to the familiar Legendre polynomials, Pn(x), and for the circle
(1-sphere) in the plane to the Tchebycheff polynomials.
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10. The Kazhdan property

The geometrical property of being Brownian has an algebraic
interpretation in the case M = G/K of a symmetric space.
Kazhdan (1967) defined a locally compact group to have Property
(T ), now called the Kazhdan property, if the unit representation is
isolated in the space of unitary representations. Such Kazhdan
groups have been much studied; see the book by Bekka, de la
Harpe and Valette (2008). In the rank-one case, the spherical dual
can be identified with a set Λ ⊂ R, where if M is compact Λ is a
discrete set tending to infinity, while if M is Euclidean, or is real or
complex hyperbolic space, Λ = [0,∞), so M is Brownian but not
Kazhdan (0 corresponding to the unit representation). But if M is
quaternionic hyperbolic space, or the octonion (Cayley) projective
plane, Λ = {0} ∪ [λ0,∞), where λ0 > 0 (Kostant, BAMS 1969;
Faraut & Harzallah 1974). So here M is Kazhdan but not
Brownian. So we have examples of Brownian and of non-Brownian
manifolds.
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11. The Bochner-Godement theorem

In its modern formulation, this very useful result is as follows:

Bochner-Godement theorem.
The general isotropic positive definite function ψ on a symmetric
space is given (to within scale) by a mixture of positive definite
spherical functions φλ over the spherical dual Λ by a probability
measure µ:

ψ(x) = c

∫
Λ
φλ(x)µ(dλ). (BG )

We give five special cases below: two classical, one from my early
work, two recent. For background and details, see e.g. [Wol1, Th.
9.3.4], Faraut [Far2, Th. 1.2]; cf. Faraut and Harzallah [FarH, Th.
3.1], Askey and Bingham [AskB].
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Bochner’s theorem (1933). The general positive definite
function ψ : R→ R is a multiple of a characteristic function
(Fourier-Stieltjes transform of a probability measure F ):

ψ(t) = c

∫
R

e itxdF (x).

This is the Euclidean case G = R,K = {e}; similarly for locally
compact abelian groups (Weil).

Bochner-Schoenberg theorem (1940-42). For Sd , the general
isotropic pd function is (to within scale) a mixture of Gegenbauer
polynomials Pλ

n (x): for x, y ∈ Sd , x = cos d(x, y) ∈ [−1, 1],

c
∞∑
n=0

anPλ
n (x), an ≥ 0,

∞∑
n=0

an = 1. (BS)

This is the Bochner-Godement theorem for spheres; cf. Bingham
(1973), Faraut (1973).
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Similarly for compact symmetric spaces of rank one
(Askey-Bingham theorem, ZfW 1976):

c
∞∑
n=0

anφn(x), an ≥ 0,
∞∑
n=0

an = 1, (AB)

with φn the spherical functions (countably many, all pd).

Guella-Menegatto-Peron theorem (2016). The general
isotropic pd function on Sd1 × Sd2 is

c
∞∑

m,n=0

amnPλ1
m (x1)Pλ2

n (x2), amn ≥ 0,
∑

amn = 1,

xi = cos d(xi , yi ), xi , yi ∈ Sdi , λi =
1

2
(di − 1).

This is immediate from the Bochner-Godement theorem, as the
direct product of symmetric spaces is a symmetric space, with
spherical dual the direct product of the spherical duals.
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The case of ‘sphere cross line’, M = Sd × R, gives us the
‘geotemporal’ of our title (taking Planet Earth to have unit
radius!). Write Λ,Λ1,Λ2 for the spherical duals. The next result
answers a question raised in Bingham, Mijatović and Symons
[BinMS] in 2016:

Berg-Porcu Theorem (2017). The class of isotropic stationary
sphere-cross-line covariances coincides with the class of mixtures of
products of Gegengauer polynomials Pλ

n (x) and characteristic
functions φn(t) on the line:

c
∞∑
n=0

anPλ
n (x)φn(t), an ≥ 0,

∑
an = 1. (BP)
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Proof

Here Λ1 is the Gegenbauer polynomials Pn, Λ2 is the set of
characters, which can also be identified with the line:

t ↔ e it. = (x 7→ e itx).

Use disintegration in (BG ) (Fubini’s theorem extended beyond
product measures: see e.g. Kallenberg [Kal, Th. 6.4]), integrating
µ on Λ first over the x-variable above for fixed n. This gives a
probability measure, µn say; integrating the character e itx over
µn(dx) gives its CF φn(t), the second factor in (BP); the
remaining integration, a summation over n, gives the first factor
Pλ
n in (BP). Equivalently, take λ = (λ1, λ2) in (BG ) as random

with law µ, condition on its second coordinate, and use the
Conditional Mean Formula (tower property). �
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12. Remarks.
This result, very recent, resolves a long-standing question in the
geostatistical community. Here one needs to work on the sphere
(Planet Earth), and take time into account (e.g. for Numerical
Weather Prediction, NWP). A range of parametric models were
known, but these did not suffice for practical purposes.
Researchers were reduced to using ‘covariances’ which they knew
were not positive definite! Thanks to taking on a research student
(Symons) under the Mathematics of Planet Earth CDT, I became
interested in this area, for the first time since my thesis work
(1966-69), papers in the early 70s, and Askey-Bingham (1976).
Askey-Bingham makes explicit use of the Bochner-Godement
theorem, but I still did not make the link, despite [BinMS] being
motivated by questions of this sort (but then, nor did anyone else).
The moral (apart from human error, failings of memory, and
communication failings between subject areas) is how precious
theory in general, and the Bochner-Godement theorem in
particular, is.
Thanks again to Alex and Tas, and to the organisers. NHB. 18 / 21
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