
•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 1

Particle representations for stochastic partial differential equations

• McKean-Vlasov

• Exchangeability and de Finetti’s theorem

• Convergence of exchangeable systems

• Derivation of SPDE

• Weighted particle representations

• Stochastic Allen-Cahn equation

• Particle representation for Allen-Cahn

• Boundary conditions

• Weak form for SPDE

• Uniqueness

• References

New material joint with Dan Crisan and Chris Janjigian. Earlier work with Peter Donnelly, Phil Protter, Jie

Xiong, Yoonjung Lee, Peter Kotelenez,



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 2

McKean-Vlasov
For 1 ≤ i ≤ n,

Xn
i (t) = Xn

i (0) +

∫ t

0

σ(Xn
i (s), V n(s))dBi(s) +

∫ t

0

b(Xn
i (s), V n(s))ds

+

∫ t

0

α(Xn
i (s), V n(s))dW (s)

where V n(t) is the normalized empirical measure 1
n

∑n
i=1 δXn

i (t)
.

As n→∞, Xn
i “should” converge to a solution of the infinte system

Xi(t) = Xi(0) +

∫ t

0

σ(Xi(s), V (s))dBi(s) +

∫ t

0

b(Xi(s), V (s))ds

+

∫ t

0

α(Xi(s), V (s))dW (s)

Problem: Does V n converge, and if so, to what?
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Exchangeability and de Finetti’s theorem
X1, X2, . . . ∈ S is exchangeable if

P{X1 ∈ Γ1, . . . , Xm ∈ Γm} = P{Xs1 ∈ Γ1, . . . , Xsm ∈ Γm}

(s1, . . . , sm) any permutation of (1, . . . ,m).

Theorem 1 (de Finetti) Let X1, X2, . . . be exchangeable. Then there exists
a random probability measure Ξ such that for every bounded, measurable g,

lim
n→∞

g(X1) + · · ·+ g(Xn)

n
=

∫
g(x)Ξ(dx)

almost surely, and

E[
m∏
k=1

gk(Xk)|Ξ] =
m∏
k=1

∫
S

gkdΞ
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Convergence of exchangeable systems Kotelenez and Kurtz (2010)

Lemma 2 Let Xn = (Xn
1 , . . . , X

n
Nn

) be exchangeable families of DE[0,∞)-
valued random variables such that Nn ⇒ ∞ and Xn ⇒ X in DE∞[0,∞).
Define

Ξn = 1
Nn

∑Nn

i=1 δXn
i
∈ P(DE[0,∞))

Ξ = limm→∞
1
m

∑m
i= δXi

V n(t) = 1
Nn

∑Nn

i=1 δXn
i (t)
∈ P(E)

V (t) = limm→∞
1
m

∑m
i=1 δXi(t)

Then V n ⇒ V in DP(E)[0,∞) or more precisely,

(V n, Xn
1 , X

n
2 , . . .)⇒ (V,X1, X2, . . .)

in DP(E)×E∞[0,∞). If Xn → X in probability in DE∞[0,∞), then V n →
V in DP(E)[0,∞) in probability.
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McKean-Vlasov

Xn
i (t) = Xn

i (0) +

∫ t

0

σ(Xn
i (s), V n(s))dBi(s) +

∫ t

0

b(Xn
i (s), V n(s))ds

+

∫ t

0

α(Xn
i (s), V n(s))dW (s)

where V n(t) is the normalized empirical measure 1
n

∑n
i=1 δXn

i (t)
.

Along any convergent subsequence, Xn converges to a solution of
the infinite system

Xi(t) = Xi(0) +

∫ t

0

σ(Xi(s), V (s))dBi(s) +

∫ t

0

b(Xi(s), V (s))ds

+

∫ t

0

α(Xi(s), V (s))dW (s)

where V is theP(Rd)-valued process given by V (t) = limk→∞
1
k

∑k
i=1 δXi(t).
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Derivation of SPDE
Applying Itô’s formula

ϕ(Xi(t)) = ϕ(Xi(0)) +

∫ t

0

∇ϕ(Xi(s))
Tσ(Xi(s), V (s))dBi(s)

+

∫ t

0

L(V (s))ϕ(Xi(s))ds+

∫ t

0

∇ϕ(Xi(s))
Tα(Xi(s), V (s))dW (s)

where for a(x, ν) = σ(x, ν)σ(x, ν)T + α(x, ν)α(x, ν)T

L(ν)ϕ(x) =
1

2

∑
i,j

aij(x, ν)∂i∂jϕ(x) + b(x, ν) · ∇ϕ(x).

Averaging gives

〈V (t), ϕ〉 = 〈V (0), ϕ〉+

∫ t

0

〈V (s), L(V (s))ϕ(·)〉ds

+

∫ t

0

〈V (s),∇ϕ(·)Tα(·, V (s))dW (s)
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Uniqueness

Xi(t) = Xi(0) +

∫ t

0

σ(Xi(s), V (s))dBi(s) +

∫ t

0

b(Xi(s), V (s))ds

+

∫ t

0

α(Xi(s), V (s))dW (s) (1)

Let ρ(µ1, µ2) = sup{f :|f(x)−f(y)|≤|x−y|} |
∫
Rd fdµ1 −

∫
Rd fdµ2|.

ρ defines a metric on P1(Rd) = {µ ∈ P(Rd) :
∫
|x|µ(dx) <∞}.

If {Xi} and {X̃i} are solutions of (1), then

ρ(V (t), Ṽ (t)) ≤ lim
n→∞

1

n

n∑
i=1

|Xi(t)− X̃i(t)|

and if

|σ(x1, µ1)− σ(x2, µ2)|+ |b(x1, ·µ1)− b(x2, ·, µ2)|+ |α(x1, µ1)− α(x2, µ2)|
≤ C(|x1 − x2|+ ρ(µ1, µ2)),

the solution of the infinite system is unique.



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 8

Propagation of chaos

Theorem 3 If {Xi} satisfies a system of equations of the form

Xi = F (Xi, V, Ui),

where the Ui are iid, V is the de Finetti measure for {Xi}, and if the solution
of the system is strongly unique, then the Xi are independent.

Uniqueness of SPDE

Theorem 4 Uniqueness for the particle system implies uniqueness for the
SPDE.
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Weighted particle representations Kurtz and Xiong (1999)

Here we assume each particle has a weightAi(t) so that the measure-
valued state is given by

V (t) = lim
m→∞

1

m

m∑
i=1

Ai(t)δXi(t)

that is 〈V (t), ϕ〉 = limm→∞
1
m

∑m
i=1Ai(t)ϕ(Xi(t)), ϕ ∈ B(E).

The limit will exist provided {(Xi(t), Ai(t))} is exchangeable and

E[|Ai(t)|] <∞.
If V (t, dx) = v(x, t)π(dx), then

lim
m→∞

m∑
i=1

Ai(t)G(v(Xi(t), t))ϕ(Xi(t)) = 〈V (t), G(v(·, t))ϕ〉

=

∫
v(x, t)G(v(x, t))ϕ(x)π(dx)
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Stochastic Allen-Cahn equation
Consider a family of SPDEs of the form

dv = ∆vdt+ F (v)dt+ noise,
v(0, x) = h(x), x ∈ D,
v(t, x) = g(x), x ∈ ∂D, t > 0,

where F (v) = G(v)v and G is bounded above. For example,

F (v) = v − v3 = (1− v2)v.
To be specific, in weak form the equation is

〈V (t), ϕ〉 = 〈V (0), ϕ〉+

∫ t

0

〈V (s),∆ϕ〉ds+

∫ t

0

〈V (s), ϕG(v(s, ·))〉ds

+

∫
U×[0,t]

∫
D

ϕ(x)ρ(x, u)dxW (du× ds),

for ϕ ∈ C2
c (D).

cf. Bertini, Brassesco, and Buttà (2009)
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Constructing a particle representation
Crisan, Janjigian, and Kurtz (2017)

Assume D is bounded and {Xi} are independent, stationary, reflect-
ing diffusions in D. To be specific, take the Xi to satisfy

Xi(t) = Xi(0)+

∫ t

0

σ(Xi(s))dBi(s)+

∫ t

0

c(Xi(s))ds+

∫ t

0

η(Xi(s))dLi(s),

(2)
where η(x) is a vector field defined on the boundary ∂D and Li is a
local time on ∂D for Xi, that is, Li is a nondecreasing process that
increases only when Xi is in ∂D.

a(x) = σ(x)σT (x) nondegenerate.
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Itô’s formula

For ϕ ∈ C2
b (D), let

Lϕ(x) =
1

2

∑
i,j

aij(x)∂2xixjϕ(x) +
∑
i

ci(x)∂xiϕ(x), (3)

Then

ϕ(Xi(t)) = ϕ(Xi(0)) +

∫ t

0

∇ϕ(Xi(s))σ(Xi(s))dBi(s) +

∫ t

0

Lϕ(Xi(s))ds

+

∫ t

0

∇ϕ(Xi(s))η(Xi(s))dLi(s)

In (3), a(x) = σ(x)σ(x)T , where σT is the transpose of σ.
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Particle weights

dAi(t) = G(v(t,Xi(t)))Ai(t)dt+

∫
U
ρ(Xi(t), u)W (du× dt)

Ai(0) = h(Xi(0)

If Xi hits the boundary at time t, Ai(t) is reset to g(Xi(t)).

For V (t) = limk→∞
1
k

∑k
i=1Ai(t)δXi(t),

〈V (t), ϕ〉 = lim
k→∞

1

k

k∑
i=1

Ai(t)ϕ(Xi(t))

we have
〈V (t), ϕ〉 =

∫
D

ϕ(x)v(t, x)π(dx)

where π is the stationary distribution for Xi (normalized Lebesgue
measure on D for normally reflecting Brownian motion).
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Particle representation
Let τi(t) = 0 ∨ sup{s < t : Xi(s) ∈ ∂D, and

Ai(t) = g(Xi(τi(t)))1{τi(t)>0} + h(Xi(0))1{τi(t)=0} (4)

+

∫ t

τi(t)

G(v(s,Xi(s)), Xi(s))Ai(s)ds+

∫ t

τi(t)

b(Xi(s))ds

+

∫
U×(τi(t),t]

ρ(Xi(s), u)W (du× ds),

where

〈V (t), ϕ〉 = lim
n→∞

1

n

n∑
i=1

ϕ(Xi(t))Ai(t) =

∫
ϕ(x)v(t, x)π(dx).

Note that V will be absolutely continuous with respect to π.
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Corresponding SPDE

For ϕ ∈ C2
c (D), define Mϕ,i(t) = ϕ(Xi(t))−

∫ t
0 Lϕ(Xi(s))ds.

ϕ(Xi(t))Ai(t) = ϕ(Xi(0))Ai(0) +

∫ t

0

ϕ(Xi(s))dAi(s)

+

∫ t

0

Ai(s)dMϕ,i(s) +

∫ t

0

Lϕ(Xi(s))Ai(s)ds

= ϕ(Xi(0))Ai(0) +

∫ t

0

ϕ(Xi(s))G(v(s,Xi(s)), Xi(s))Ai(s)ds

+

∫ t

0

ϕ(Xi(s))b(Xi(s))ds

+

∫
U×[0,t]

ϕ(Xi(s))ρ(Xi(s), u)W (du× ds)

+

∫ t

0

Ai(s)dMϕ,i(s) +

∫ t

0

Lϕ(Xi(s))Ai(s)ds
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Averaging

〈V (t), ϕ〉 = 〈V (0), ϕ〉+

∫ t

0

〈V (s), ϕG(v(s, ·), ·)〉ds+

∫ t

0

∫
bϕdπds

+

∫
U×[0,t]

∫
D

ϕ(x)ρ(x, u)π(dx)W (du× ds) +

∫ t

0

〈V (s),Lϕ〉ds

which is the weak form of

v(t, x) = v(0, x) +

∫ t

0

(G(v(s, x), x)v(s, x) + b(x))ds

+

∫
U×[0,t]

ρ(x, u)W (du× ds) +

∫ t

0

L∗v(x, s)ds,

where L∗ is the adjoint determined by∫
gLfdπ =

∫
fL∗gdπ.



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 17

Boundary behavior
By the Riesz representation theorem that there exists a measure β on
∂D which satisfies

ϕ 7→ 1

t
E
[∫ t

0

ϕ(Xi(s))dLi(s)

]
=

∫
∂D

ϕ(x)β(dx). (5)

For sufficiently regular space-time functions ϕ, we have∫ t

0

∫
∂D

ϕ(x, s)β(dx)ds = E
[∫ t

0

ϕ(Xi(s), s)dLi(s)

]
. (6)

Denote partial derivatives with respect to time by ∂. Then∫ t

0

∫
D

(∂ + L)ϕ(x, s)π(dx)ds =

∫ t

0

∫
∂D

∇ϕ(x, s) · η(x)β(dx)ds.
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Boundary value identity

Theorem 5 Under mild regularity conditions, almost surely, for dLi al-
most every t, Ai(t) = Ai(t−) = g(Xi(t)) and therefore

lim
n→∞

1

n

n∑
i=1

∫ t

0

Ai(s−)η(Xi(s)) · ∇ϕ(Xi(s), s)dLi(s)

= E
[∫ t

0

Ai(s−)η(Xi(s)) · ∇ϕ(Xi(s), s)dLi(s)|σ(W )

]
=

∫ t

0

∫
∂D

g(x)η(x) · ∇ϕ(x, s)β(dx)ds.
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SPDE for test functions in C2
0(D)

ϕ(x, s) twice continuously differentiable in x, continuously differ-
entiable in s, and zero on ∂D × [0,∞). Applying Itô’s formula to
ϕ(Xi(s), s) and averaging,

〈ϕ(·, t), V (t)〉 = 〈ϕ(·, 0), V (0)〉+

∫ t

0

〈ϕ(·, s)G(v(s, ·), ·), V (s)〉ds

+

∫ t

0

∫
D

ϕ(x, s)b(x)π(dx)ds (7)

+

∫
U×[0,t]

∫
D

ϕ(x, s)ρ(x, u)π(dx)W (du× ds)

+

∫ t

0

〈Lϕ(·, s) + ∂ϕ(·, s), V (s)〉ds

+

∫ t

0

∫
∂D

g(x)η(x) · ∇ϕ(x, s)β(dx)ds,
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Linearized systems
Let ψ be an L1(π)-valued stochastic process that is compatible with
W , and assume (W,ψ) is independent of {Xi}. Define Aψ

i to be the
solution of

Aψ
i (t) = g(Xi(τi(t)))1{τi(t)>0} + h(Xi(0))1{τi(t)=0}

+

∫ t

τi(t)

G(ψ(s,Xi(s)), Xi(s))A
ψ
i (s)ds+

∫ t

τi(t)

b(Xi(s))ds

+

∫
U×(τi(t),t]

ρ(Xi(s), u)W (du× ds).

The {Aψ
i } will be exchangeable, so we can define Φψ(t, x) to be the

density of the signed measure determined by

〈ΦΨ(t), ϕ〉 ≡
∫
D

ϕ(x)Φψ(t, x)π(dx) = lim
n→∞

1

n

n∑
i=1

Aψ
i (t)ϕ(Xi(t)).
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Apriori bounds
Assume

K1 ≡ sup
x,D
|b(x)| <∞

K2 ≡ sup
x∈D

∫
ρ(x, u)2µ(du) <∞

K3 ≡ sup
v∈R,x∈D

G(v, x) <∞.

Lemma 6 Let

Hi(t) =

∫
U×[0,t]

ρ(Xi(s), u)W (du×ds) = Bi(

∫ t

0

∫
U
ρ(Xi(s), u)2µ(du)ds).

Then

|Aψ
i (t)| ≤ (‖g‖ ∨ ‖h‖+K1(t− τi(t)) + sup

τi(t)≤r≤t
|Hi(t)−Hi(r)|)eK3(t−τi(t))

≤ (‖g‖ ∨ ‖h‖+K1t+ sup
0≤s≤t

|Hi(t)−Hi(s)|)eK3t ≡ Γi(t).
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Weights and solution values

Lemma 7 Suppose that (W,ψ) is independent of {Xi}. Then Φψ is {FW,ψ
t }-

adapted and for each i,

E[Aψ
i (t)|W,ψ,Xi(t)] = Φψ(t,Xi(t))

so
Φψ(t,Xi(t)) ≤ E[Γi(t)|W,ψ,Xi(t)]
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Uniqueness
L1 ≡ supv,x∈D

|G(v,x)|
1+|v|2 <∞.

L2 ≡ supv1,v2,x∈D
|G(v1,x)−G(v2,x)|
|v1−v2|(|v1|+|v2|) <∞.

|Av1i (t)− Av2i (t)| ≤
∫ t

τi(t)

|G(v1(s,Xi(s)), Xi(s))A
v1
i (s)−G(v2(s,Xi(s)), Xi(s))A

v2
i (s)|ds

≤
∫ t

τi(t)

L1(1 + E[Γi(s)|W,Xi(s)]
2)|Av1i (s)− Av2i (s)|ds

+

∫ t

τi(t)

2L2E[Γi(s)|W,Xi(s)]Γi(s)|v1(s,Xi(s))− v2(s,Xi(s))|ds

≤
∫ t

0

L1(1 + C2)|Av1i (s)− Av2i (s)|ds

+

∫ t

0

2L2C
2|v1(s,Xi(s))− v2(s,Xi(s))|ds

+

∫ t

0

1{Γi(s)>C}∪{E[Γi(s)|W,Xi(s)]>C}Γi(s)L3(1 + E[Γi(s)|W,Xi(s)]
2)ds
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Uniqueness for nonlinear SPDE

Theorem 8 Uniqueness for the linear infinite system and the nonlinear
infinite system and uniqueness for the linear SPDE

〈ϕ(·, t), V ψ(t)〉 = 〈ϕ(·, 0), V (0)〉+

∫ t

0

〈ϕ(·, s)G(ψ(s, ·), ·), V ψ(s)〉ds

+

∫ t

0

∫
D

ϕ(x, s)b(x)π(dx)ds (8)

+

∫
U×[0,t]

∫
D

ϕ(x, s)ρ(x, u)π(dx)W (du× ds)

+

∫ t

0

〈Lϕ(·, s) + ∂ϕ(·, s), V ψ(s)〉ds

+

∫ t

0

∫
∂D

g(x)η(x) · ∇ϕ(x, s)β(dx)ds,

implies uniqueness for the nonlinear SPDE.
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Proof. Suppose ψ is a solution of the nonlinear SPDE. Use ψ as the
input into the linear infinite system. Uniqueness of the linear infinite
system implies Φψ is a solution of the linear SPDE, but ψ is also a
solution of the linear SPDE, so ψ = Φψ and uniqueness of the non-
linear infinite system implies there is only one such ψ. (See Section 3
of Kurtz and Xiong (1999).) �
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Abstract
Particle representations for stochastic partial differential equations

Stochastic partial differential equations arise naturally as limits of finite systems of weighted interacting parti-
cles. For a variety of purposes, it is useful to keep the particles in the limit obtaining an infinite exchangeable
system of stochastic differential equations for the particle locations and weights. The corresponding de Finetti
measure then gives the solution of the SPDE. These representations frequently simplify existence, uniqueness
and convergence results. Beginning with the classical McKean-Vlasov limit, the basic results on exchangeable
systems along with several examples will be discussed.


