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Introduction Numerical methods

Consider a d-dimensional SDE

dx(t) = f (x(t))dt + g(x(t))dB(t) (1.1)

on t ≥ 0 with the initial value x(0) = x0 ∈ Rd , where B(t) is an
m-dimensional Brownian motion,

f : Rd → Rd and g : Rd → Rd×m
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Introduction Numerical methods

The stochastic theta method: Given a stepsize ∆ > 0 and a
parameter θ ∈ [0,1], compute approximations X∆(tk ) ≈ x(tk ), where
tk = k∆ (k = 0,1,2, · · · ), by setting X∆(0) = x0 and forming

X∆(tk+1) = X∆(tk ) + [θf (X∆(tk )) + (1− θ)f (X∆(tk+1))]∆

+ g(X∆(tk ))∆Bk , (1.2)

where ∆Bk = B(tk+1)− B(tk ).

The Euler-Maruyama (EM) method:

The stochastic theta method when θ = 1. (1.3)

The backward EM method:

The stochastic theta method when θ = 0. (1.4)

There are other numerical methods, e.g. the Milstein method, the split
step backward Euler.
Xuerong Mao (Univ of Strathclyde) Numerical Methods for SDEs 5 / 46



Introduction Pre 2002

Outline

1 Introduction
Numerical methods
Pre 2002
2002

2 Contributions of Higham, Mao and Stuart 2002
General result for Euler-Maruyama
Convergence Rate

3 SDEs without linear growth condition
Post 2002
The truncated EM method

Local Lipschitz and Khasminskii condition
Definition of the truncated EM
Convergence
Convergence rate

4 Summary

Xuerong Mao (Univ of Strathclyde) Numerical Methods for SDEs 6 / 46



Introduction Pre 2002

Up to 2002, all positive results on the numerical methods for SDEs
were based on a much more restrictive global Lipschitz assumption
(namely both coefficients f and g satisfy the global Lipschitz condition).
See, for example, Kloeden and Platen 1992, Mao 1997, Milstein and
Tretyakov 2004. One of the key results is that for any given T > 0,

E|X∆(T )− x(T )|2 = O(∆).

However, the global Lipschitz assumption rules out most realistic
models.
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Introduction 2002

Higham, D.J., Mao, X. and Stuart, A.M., Strong convergence of
Euler-type methods for nonlinear stochastic differential equations,
SIAM Journal on Numerical Analysis 40(3) (2002), 1041-1063.
This was the first to study the strong convergence of numerical
solutions of SDEs under a local Lipschitz condition.
The field of numerical analysis of SDEs now has a very active
research profile, much of which builds on the techniques
developed in that paper, which has so far attracted 386 Google
Scholar Citations.
In particular, the theory developed there has formed the
foundation for several recent very popular methods, including
tamed Euler-Maruyama method and truncated Euler-Maruyama.
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Contributions of Higham, Mao and Stuart 2002 General result for Euler-Maruyama

Let X∆(tk ) be the discrete-time EM approximation (1.3). The
continuous-time approximation are defined by

X̄∆(t) := x0 +

∫ t

0
f (X∆(s))ds +

∫ t

0
g(X∆(s))dB(s), (2.1)

where
X∆(t) := X∆(tk ) for t ∈ [tk , tk+1). (2.2)

Note
X̄∆(tk ) = X∆(tk ) ∀k ≥ 0.
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Contributions of Higham, Mao and Stuart 2002 General result for Euler-Maruyama

Assumption 1

For each R > 0 there exists a constant CR, depending only on R, such
that

|f (a)− f (b)|2 ∨ |g(a)− g(b)|2 ≤ CR|a− b|2, (2.3)

for ∀a,b ∈ Rd with |a| ∨ |b| ≤ R. Moreover, for some p > 2 there is a
constant A such that

E

[
sup

0≤t≤T
|X̄∆(t)|p

]
∨ E

[
sup

0≤t≤T
|x(t)|p

]
≤ A. (2.4)
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Contributions of Higham, Mao and Stuart 2002 General result for Euler-Maruyama

Theorem 2
Under Assumption 1, the Euler–Maruyama solution (1.3) with
continuous-time extension (2.1) satisfies

lim
∆→0

E

[
sup

0≤t≤T
|X̄∆(t)− x(t)|2

]
= 0. (2.5)
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Contributions of Higham, Mao and Stuart 2002 General result for Euler-Maruyama

Outlined Proof
Define

τR := inf{t ≥ 0 : |X̄∆(t)| ≥ R}, ρR := inf{t ≥ 0 : |x(t)| ≥ R},

θR := τR ∧ ρR e(t) := X̄∆(t)− x(t).

By the Young inequality, show that for any δ > 0

E

[
sup

0≤t≤T
|e(t)|2

]

≤ E

[
sup

0≤t≤T
|e(t ∧ θR)|21{θR>T}

]
+

2δ
p
E

[
sup

0≤t≤T
|e(t)|p

]

+
1− 2

p

δ2/(p−2)
P
(
τR ≤ T or ρR ≤ T

)
. (2.6)
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Contributions of Higham, Mao and Stuart 2002 General result for Euler-Maruyama

By (2.4)

P
(
τR ≤ T or ρR ≤ T

)
≤ P

(
τR ≤ T

)
+ P

(
ρR ≤ T

)
≤ 2A

Rp .

Using this bound along with

E

[
sup

0≤t≤T
|e(t)|p

]
≤ 2p−1E

[
sup

0≤t≤T

(
|X̄∆(t)|p + |x(t)|p

)]
≤ 2pA

in (2.6) gives

E

[
sup

0≤t≤T
|e(t)|2

]
≤ E

[
sup

0≤t≤T
|X̄∆(t ∧ θR)− x(t ∧ θR)|2

]

+
2p+1δA

p
+

(p − 2)2A
pδ2/(p−2)Rp . (2.7)
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Contributions of Higham, Mao and Stuart 2002 General result for Euler-Maruyama

Show

E

[
sup

0≤t≤T

(
X̄∆(t ∧ θR)− x(t ∧ θR)

)2
]
≤ C∆(C2

R + 1)e4CR(T +4),

where C is a universal constant independent of ∆, R and δ. Inserting
this into (2.7) gives

E

[
sup

0≤t≤T
|e(t)|2

]
≤ C∆(C2

R +1)e4CR(T +4)+
2p+1δA

p
+

(1− 2
p )2A

δ2/(p−2)Rp . (2.8)
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Contributions of Higham, Mao and Stuart 2002 General result for Euler-Maruyama

Given any ε > 0, we can choose δ so that (2p+1δA)/p < ε/3, then
choose R so that

(1− 2
p )2A

δ2/(p−2)Rp <
ε

3
and then choose ∆ sufficiently small for

C∆(C2
R + 1)e4CR(T +4) <

ε

3
,

so that, in (2.8), E[sup0≤t≤T |e(t)|2] < ε, as required.

Xuerong Mao (Univ of Strathclyde) Numerical Methods for SDEs 17 / 46



Contributions of Higham, Mao and Stuart 2002 Convergence Rate

Outline

1 Introduction
Numerical methods
Pre 2002
2002

2 Contributions of Higham, Mao and Stuart 2002
General result for Euler-Maruyama
Convergence Rate

3 SDEs without linear growth condition
Post 2002
The truncated EM method

Local Lipschitz and Khasminskii condition
Definition of the truncated EM
Convergence
Convergence rate

4 Summary

Xuerong Mao (Univ of Strathclyde) Numerical Methods for SDEs 18 / 46



Contributions of Higham, Mao and Stuart 2002 Convergence Rate

Assumption 3

The functions f and g in (1.1) are C1 and there exist constants µ, c > 0
such that

〈a− b, f (a)− f (b)〉 ≤ µ|a− b|2 ∀a,b ∈ Rd , (2.9)
|g(a)− g(b)|2 ≤ c|a− b|2 ∀a,b ∈ Rd . (2.10)
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Contributions of Higham, Mao and Stuart 2002 Convergence Rate

Assumption 4
There exists a pair of positive constants D and q such that for all
a,b ∈ Rd ,

|f (a)− f (b)|2 ≤ D (1 + |a|q + |b|q) |a− b|2. (2.11)

Assumption 5
The SDE and EM solutions satisfy

E sup
0≤t≤T

|x(t)|p <∞, E sup
0≤t≤T

|X̄∆(t)|p <∞, ∀p ≥ 1.
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Contributions of Higham, Mao and Stuart 2002 Convergence Rate

Theorem 6

Under Assumptions 3, 4 and 5 the Euler–Maruyama solution (1.3) with
continuous-time extension (2.1) satisfies

E

[
sup

0≤t≤T
|X̄∆(t)− x(t)|2

]
= O(∆).
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Contributions of Higham, Mao and Stuart 2002 Convergence Rate

Higham, Mao and Stuart 2002 proposed the bounded condition on the
pth moments of both exact solution and numerical solution to the
underlying SDE and proved the strong convergence theory. Their
theory turns the problem of the strong convergence into the verification
of the boundedness of the pth moments of the exact and numerical
solutions under the local Lipschitz condition.

They showed that under the linear growth condition, both exact and
numerical solutions by either the Euler-Maruyama (EM) or the
stochastic theta method satisfy the moment bounded condition, and
hence they proved that the numerical solutions converge to the exact
solution in the strong sense under the Local Lipschitz condition and
the linear growth condition.
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SDEs without linear growth condition Post 2002
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SDEs without linear growth condition Post 2002

However, the linear growth condition is still too restrictive. Higham,
Mao and Stuart (2002) pointed out that in general, it is not clear when
such moment bounds can be expected to hold for the EM method even
when both drift coefficient and the diffusion coefficient are C1

(unbounded derivatives of course).
Hutzenthaler, Jentzen and Kloeden (2011) answered the question
negatively by proving that the moment of the explicit EM method will
diverge in finite time for those SDEs with either the drift coefficient or
the diffusion coefficient being superlinear.
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SDEs without linear growth condition Post 2002

Implicit methods have therefore naturally been used to study the
numerical solutions to SDEs without the linear growth condition
recently, for example, in Szpruch, Mao, Higham and Pan (2011), Mao
and Szpruch (2013), Tretyakov and Zhang (2013).

Methods with variable stepsize also attract a lot of attention. See, for
example, Werner and Renate (2006), Valinejad and Hosseini (2010).

Xuerong Mao (Univ of Strathclyde) Numerical Methods for SDEs 25 / 46



SDEs without linear growth condition Post 2002

Since the classical explicit EM method has its simple algebraic
structure, cheap computational cost and acceptable convergence rate
under the global Lipschitz condition, it has been attracting lots of
attention. Although Hutzenthaler, Jentzen and Kloeden (2011) showed
the strong and weak divergence in finite time of the EM method for
SDEs with non-globally Lipschitz continuous coefficients, some
modified EM methods have recently been developed for the nonlinear
SDEs without the linear growth condition. For example:
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SDEs without linear growth condition Post 2002

The tamed EM method was developed by Hutzenthaler, Jentzen
and Kloeden (2012) to approximate SDEs with one-sided
Lipschitz drift coefficient and the linear growth diffusion coefficient.
This method was further developed by Sabanis (2013) while the
tamed Milstein method was developed by Wang and Gan (2013).
The stopped EM method was developed by Liu and Mao (2013)
for highly nonlinear SDEs as well.
The truncated EM method was developed by Mao (2015,2016).
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SDEs without linear growth condition The truncated EM method

Assumption 7

Assume that the coefficients f and g satisfy the local Lipschitz
condition: For any R > 0, there is a KR > 0 such that

|f (x)− f (y)| ∨ |g(x)− g(y)| ≤ KR|x − y | (3.1)

for all x , y ∈ Rd with |x | ∨ |y | ≤ R.

Assumption 8

We also assume that the coefficients satisfy the Khasminskii-type
condition: There is a pair of constants p > 2 and K > 0 such that

xT f (x) +
p − 1

2
|g(x)|2 ≤ K (1 + |x |2) (3.2)

for all x ∈ Rd .
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SDEs without linear growth condition The truncated EM method

Lemma 9

Under Assumptions 7 and 8, the SDE (1.1) has a unique global
solution x(t) and, moreover,

sup
0≤t≤T

E|x(t)|p <∞, ∀T > 0. (3.3)
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SDEs without linear growth condition The truncated EM method

Assumptions 7 and 8 cover many nonlinear SDEs, for example, the
scalar SDE in financial mathematics

dx(t) = (µ− αxβ(t))dt + σxθ(t)dB(t), β, θ > 1, µ, α, σ > 0, (3.4)

and the stochastic population system

dx(t) = diag(x1(t), x2(t), ..., xd (t))[(b + Ax2(t))dt + Cx(t)dB(t)], (3.5)

where B(t) is a scalar Brownian motion, b = (b1, · · · ,bd )T ,
x2 = (x2

1 , · · · , x2
d )T , C = (Cij)d×d ∈ Rd×d and A = (Aij)d×d ∈ Rd×d is

such that λmax(A + AT ) < 0.
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SDEs without linear growth condition The truncated EM method

To define the truncated EM numerical solutions, we first choose a
strictly increasing continuous function µ : R+ → R+ such that
µ(r)→∞ as r →∞ and

sup
|x |≤r

(
|f (x)| ∨ |g(x)|

)
≤ µ(r), ∀r ≥ 1. (3.6)

Denote by µ−1 the inverse function of µ and we see that µ−1 is a
strictly increasing continuous function from [µ(0),∞) to R+. We also
choose a strictly decreasing function h : (0,1]→ (0,∞) such that

lim
∆→0

h(∆) =∞ and ∆1/4h(∆) ≤ 1, ∀∆ ∈ (0,1]. (3.7)

Xuerong Mao (Univ of Strathclyde) Numerical Methods for SDEs 32 / 46



SDEs without linear growth condition The truncated EM method

For a given stepsize ∆ ∈ (0,1), let us define the truncated functions

f∆(x) = f
(

(|x |∧µ−1(h(∆)))
x
|x |

)
and g∆(x) = g

(
(|x |∧µ−1(h(∆)))

x
|x |

)
(3.8)

for x ∈ Rd , where we set x/|x | = 0 when x = 0. It is easy to see that

|f∆(x)| ∨ |g∆(x)| ≤ µ(µ−1(h(∆))) = h(∆) ∀x ∈ Rd . (3.9)

That is, both truncated functions f∆ and g∆ are bounded although both
f and g may not. Moreover, these truncated functions preserve the
Khasminskii-type condition for all ∆ ∈ (0,1] as described in the
following lemma.
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SDEs without linear growth condition The truncated EM method

Lemma 10

Let Assumption 8 hold. Then, for all ∆ ∈ (0,1], we have

xT f∆(x) +
p − 1

2
|g∆(x)|2 ≤ K̂ (1 + |x |2), ∀x ∈ Rd , (3.10)

where K̂ = 2K
(
1 ∨ [1/µ−1(h(1))]

)
.
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SDEs without linear growth condition The truncated EM method

We can now form the discrete-time truncated EM numerical solutions
X∆(tk ) ≈ x(tk ) for tk = k∆ by setting X∆(0) = x0 and computing

X∆(tk+1) = X∆(tk ) + f∆(X∆(tk ))∆ + g∆(X∆(tk ))∆Bk , (3.11)

for k = 0,1, · · · , where ∆Bk = B(tk+1)− B(tk ).
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SDEs without linear growth condition The truncated EM method

Let us now form two versions of the continuous-time truncated EM
solutions. The first one is defined by

x̄∆(t) =
∞∑

k=0

X∆(tk )I[tk ,tk+1)(t), t ≥ 0. (3.12)

This is a simple step process so its sample paths are not continuous.
We will refer this as the continuous-time step-process truncated EM
solution. The other one is defined by

x∆(t) = x0 +

∫ t

0
f∆(x̄∆(s))ds +

∫ t

0
g∆(x̄∆(s))dB(s) (3.13)

for t ≥ 0. We will refer this as the continuous-time continuous-sample
truncated EM solution.
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SDEs without linear growth condition The truncated EM method

We observe that x∆(tk ) = x̄∆(tk ) = X∆(tk ) for all k ≥ 0. Moreover,
x∆(t) is an Itô process with its Itô differential

dx∆(t) = f∆(x̄∆(t))dt + g∆(x̄∆(t))dB(t). (3.14)
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Lemma 11

Let Assumptions 7 and 8 hold. Then

sup
0<∆≤∆∗

sup
0≤t≤T

E|x∆(t)|p ≤ C, ∀T > 0, (3.15)

where C is a positive constant dependent on T ,p,K , x0 etc but
independent of ∆.
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Theorem 12

Let Assumptions 7 and 8 hold. Then, for any q ∈ [2,p),

lim
∆→0

E|x∆(T )− x(T )|q = 0 and lim
∆→0

E|x̄∆(T )− x(T )|q = 0. (3.16)
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Assumption 13

Assume that there is a pair of constants q > 2 and H1 > 0 such that

(x − y)T (f (x)− f (y)) +
q − 1

2
|g(x)− g(y)|2 ≤ H1|x − y |2 (3.17)

for all x , y ∈ Rd .

Assumption 14

Assume that there is a pair of positive constants ρ and H2 such that

|f (x)− f (y)|2 ∨ |g(x)− g(y)|2 ≤ H2(1 + |x |ρ + |y |ρ)|x − y |2 (3.18)

for all x , y ∈ Rd .
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Note that Assumption 14 implies

|f (x)| ∨ |g(x)| ≤ H3|x |(2+ρ)/2, ∀|x | ≥ 1, (3.19)

where H3 =
√

2H2 + |f (0)|+ |g(0)|.
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Theorem 15

Let Assumptions 7, 13 and 14 hold and let Assumption 8 hold for any
p > 2. Define

µ(u) = H3u(2+ρ)/2, u ≥ 0, (3.20)

and let
h(∆) = ∆−ε for some ε ∈ (0,1/4]. (3.21)

Then, for any q̄ ∈ [2,q),

E|x(T )− x∆(T )|q̄ ≤ O
(
∆q̄(1−2ε)/2) (3.22)

and
E|x(T )− x̄∆(T )|q̄ ≤ O

(
∆q̄(1−2ε)/2). (3.23)
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Example
Consider the scalar stochastic Ginzburgh–Landau equation

dx(t) = (ax(t)− bx3(t))dt + cx(t)dB(t), (3.24)

where B(t) is a scalar Brownian motion and a,b, c are three positive
numbers. Clearly, its coefficients f (x) = ax − bx3 and g(x) = cx are
locally Lipschitz continuous for x ∈ R, namely, satisfy Assumption 7.
Also, for any p > 2, we have

xf (x)+
p − 1

2
|g(x)|2 = ax2−bx4 +

(p − 1)c2

2
x2 ≤ 1

16
b(2a+(p−1)c2)2.

That is, Assumption 8 is satisfied for any p > 2.
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Moreover, for any q > 2,

(x − y)(f (x)− f (y)) +
q − 1

2
|g(x)− g(y)|2

≤
(
a + 0.5c2(q − 1)

)
(x − y)2, x , y ∈ R.

This means that Assumption 13 is satisfied for any q > 2 with
H1 = a + 0.5c2(q − 1).

Furthermore, we can show

|f (x)− f (y)|2 ∨ |g(x)− g(y)|2 ≤ H2(1 + |x |4 + |y |4)|x − y |2,

where H2 = a2 + 9b2 + c2. So, Assumption 14 is also satisfied with
ρ = 4.
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Finally, we need to design functions µ(·) and h(·). Noting that

sup
|x |≤u

(|f (x)| ∨ |g(x)|) ≤ αu3, ∀u ≥ 1,

where α = a + b + c, we can have µ(u) = αu3 and its inverse function
µ−1(u) = (u/α)1/3 for u ≥ 0. For ε ∈ (0,1/4], we define h(∆) = ∆−ε

for ∆ > 0. We can therefore conclude by Theorem 15 that the
truncated EM solutions of the SDE (3.24) satisfy

E|x(T )− x∆(T )|q̄ = O(∆q̄(1−2ε)/2)

and
E|x(T )− x̄∆(T )|q̄ = O(∆q̄(1−2ε)/2).

That is, the order of Lq̄-convergence can be arbitrarily close to q̄/2.
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Summary

This talk was concerned with Lq convergence theory for numerical
SDE simulations beyond the realm of globally Lipschitz problems.
We reviewed the contributions of Higham, Mao and Stuart 2002.
We reviewed the recent developments on the modified EM
methods with some emphasize on the truncated EM.
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