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Two common learning tasks

X topological space in which data lives, e.g. R", a manifold, space
of graphs, space of paths, etc.

» make inference about a function f € R¥

» make inference about a probability measure on X



Two common learning tasks

X topological space in which data lives, e.g. R", a manifold, space
of graphs, space of paths, etc.

» make inference about a function f € RY

» make inference about a probability measure on X
This talk:

» X space of paths

» Examples: text, evolution of a social network, rough
paths/semimartingales, diffusions,...



Inference on pathspace studied by different communities:

» Statistics/stochastic analysis approach. Focus on
parametrized models. Typically lto diffusions and stochastic
calculus. Very few truly nonparametric results.

» Machine learning: Focus on black box/non-parametric
approaches and efficient algorithms. Most in discrete time

Mathematical difficulties if data is path-valued
» infinite dimensional and non-locally compact

» computational complexity



Learning

» Stylized facts.

» data nonlinear
» scaleable learning algorithms are linear

> Feature map ¢

» map X into a linear space; run learning algorithm there

> linearize functionals f (x) ~ (¥ (x),¢)
> efficiently computable
> robust
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» Signature as a feature map?
o (x) = (/ dx®m)
m>0

1. Combinatorial explosion! O (d") coordinates for
d-dimensional path and up to m-iterated integrals

2. Signature of paths in non-linear or infinite dimensional space?
E.g. network evolution, SPDE, etc.

> Issues



Rest of talk

1. Randomization (with Terry Lyons)
2. Kernelization (with Franz Kiraly)
3. Expected signatures (with llya Chevyrev)



Randomization (with Terry Lyons)



Example

» X ={1,...,10%} IP addresses

» 0 = (0;)f_; € XL requests to a server from IP addresses

» Engineer: most active IP addresses over a month?
i.e. compute ¢ (0) = (Z,-.U_:X 1) e RI¥I
e xeX
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X ={1,...,10%} IP addresses

o = (07); € XL requests to a server from IP addresses
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Engineer: most active IP addresses over a month?
i.e. compute ¢ (0) = (Z;.U:X 1) e RI¥I
e xeX

v

Naive algorithm |X'| counters and parse once over stream

» needs O (|X|) space...infeasible

v

Randomized algorithm: compute random variable ®

» (o) ~ ® (o) for big coordinates with high probability

» sublinear space complexity & single pass over o

» Work of: Flajolet, Alon, Matias, Szegedy, Charikar, Chen,
Colton, Cormode, Muthukrishnan,...



Massive data streams

o€ Xt for X large set
Compute ¢ (o) = (Zi:a,-:x 1)

Randomized algorithm

v

v

xXeX

v

Fix “small set” Y with |V| < |X]

sample random function h: X — Y

Calculate ® (h (o))

Define ®" () as (®" (0), x) := (® (h (o)), h(x))

Sample several h, take <&> (a),x> := min, & (x)

vV vV VY

v

Easy to extend to o € (R x X)-



Proof: elementary

E[(®(h()),h(x)) = (® (o), x)]

]E[ > 1] - > 1
i:h(oi)=h(x) iroi=x
= 2 E [La(o)=ht]

= > I <elyr
iioi#x

> Ve >0, P((®(h(0)),h(x)) — (®(a),x) >e€lo]) < 3 for

g )

> repeat k times; then (& (0),x) 1= miny (& (h(0)), h(x))
gives P <<<f> (o) ,x> —(P(0),x) >¢€ |a|) <27k



Massive data streams
» o € XL for X large set
» Compute ¢ (o) = (Zi:a,-:x 1)
» Sketch algorithm:

xXEX

> Given ¢, , compute random variable & (o)

L ((3@x) - @)%

>e| >1-9§
|¢(‘7)|1

Where ‘CD (0)|1 = ZXEX (Zi:o’,-:x 1)

» Complexity: single pass over o, O (1log$) space and
log 3 log | X'| random bits

» Compressed sensing: linear projection via hashes and ¢1-norm.
Difference: projection more structure

» Much information about path lost

» Above is first level of the signature of a lattice path in
|X| = 1038 dimensions...



Streams, paths, polynomials

» Fix “event map”
v X = R{(X))

from X = {x1,..., x4} into
R (X)) = { i G Xin |

» Extend to XL by multiplication

L
XL SR, o [[7(00)
i=1



Example: 0 = (a, b, b, a)
» with y(x) =1+ x,

L
(o) = J[v(ei)=@1+a)(1+b)(1+b)(1+ a)
i=1
= 1+4+2a+2b+ a°+2ab+ b>+2ba

> With’y(x):l—i-x—i-%?—i—‘--

L 22 22
(o) = H'y(a,-)—<1+a+2|+ > (1+a+2|+-~-

1 1
= 1+2a+2b+<1+2'+20 a’+

> Latter is the standard rough paths; good scaling limit, rich
mathematical structure (Hopf algebra of shuffles)

» First recovers standard ML features (string kernels). We will
see that there's also Hopf algebra structure (with different
coproduct)



Hopf algebras

» Consider an algebra (A, m), where m: A® A — A denotes
multiplication
Define A : A* @ A* — A* as (A(a),b® c) := (a,m(b® c)).
Then (A*, A*) is a so-called co-algebra

v

v

Applied to two “compatible” algebra structures
(A, m) and (A*, m*). Then

(Av m, Am*)

a so-called bi-algebra.

v

If Ais additionally graded Hopf algebra.
G(A)={ac A: A(a) =a® a} is a group

v



Hopf algebras

>

Consider an algebra (A, m), where m: A® A — A denotes
multiplication

Define A : A* @ A* — A* as (A(a),b® c) := (a,m(b® c)).
Then (A*, A*) is a so-called co-algebra

Applied to two “compatible” algebra structures
(A, m) and (A*, m*). Then

(Av m, Am*)

a so-called bi-algebra.
If Ais additionally graded Hopf algebra.
G(A)={ac A: A(a) =a® a} is a group

Our setting:

> A=R(X), A* =R ((X))
» non-commutative multiplication in R ((X’)) concatenation
» commutative multiplication in R (X) implies f () ~ (¢ (o), ¢)



Back to “rough paths”

» Finite set X, sequence o € X't

» Fix map v : X — R((X)) and define ® : XL = R ((X)) as
(o) = =17 (07)

» Feature space ® (o) € R ((X')). Algebra using concatention
product meoncat

» Linear functionals R (X'). Algebra using mspsfe
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Back to “rough paths”

» Finite set X, sequence o € X't

» Fix map 7 : X — R ((X)) and define ® : XL — R ((X)) as
(o) = =1 7 (07)

> Feature space ¢ (0) € R ((X')). Algebra using concatention
product meoncat

» Linear functionals R (X’). Product that turns it into
commutative algebra?

Theorem (Lyons&O)
With v (x) =1 + x, ¢( ) =TT, v (x)

)
< ( ) > - :1, im)EA 10'i1"'UiM:W'
> (R(X), mjnf, Aconcat) is @ commutative Hopf algebra
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Back to “rough paths”

v

Goal: approximate

with random variable ® (o)

v

Step 1. Fix Y, |V| < |X|, sample uniformly h: X — Y
Step 2. Calculate ® (h(0)) € R {(}))

Step 3. Repeat steps 1&2 several times; combine
® (h(o)) € R{{})) to one estimator for ¢ (o) € R ((X))

v

v



Step 1. Universal hashing

» Step 1. Fix small set ), sample uniformly h: X — Y

» Sampling uniformly from )% is too expensive: |y||X| possible
choices; specifying h costs O (|X|log|)V|)

> If h drawn uniformly from V¥, then P (h(x) = h(y)) = |V|!
for x,ye X, x#y



Step 1. Universal hashing

» Step 1. Fix small set ), sample uniformly h: X — Y

» Sampling uniformly from )% is too expensive: |y||X| possible
choices; specifying h costs O (|X|log|)V|)

> If h drawn uniformly from V¥, then P (h(x) = h(y)) = |V|!
for x,ye X, x#y

Definition
H C V¥ is called 2-universal if h is drawn uniformly from #

P(h(a) = h(b)) =|Y|™* fora,bec X,a#b



Step 1. Universal hashing

» Step 1. Fix small set ), sample uniformly h: X — Y

» Sampling uniformly from )% is too expensive: |3)||X| possible
choices; specifying h costs O (|X|log|)V|)

> If h drawn uniformly from V¥, then P (h(x) = h(y)) = |V|!
for x,ye X, x#y

Definition
H C V¥ is called 2-universal if h is drawn uniformly from #

P(h(a) = h(b)) =|Y|™* fora,bec X,a#b

Example. Fix prime p > |X|.
H = {hyblhos (x) = ((ax + b) mod p) mod m),1<a<p—1,0<

is 2-universal. Choosing a random element of H requires 2 log p
random bits.



Step 2
Step 2. Calculate ® (h(0)) € R((})), estimate ¢ (o)

Proposition
Let h€ Y* and o € XL . Define ®;, () as
(Pp(0),w) :=(P(h(c)),h(w)). Then

b, (O‘) = (D(O') + b and <b, W> = . Z 10(,~)¢W

Corollary

Let h be choosen uniformly from a universal hash family H C Y,

then

2ol (o)),
Pl (®(0),w) € <¢h(0)7W>_Ta<¢h(U)7W> >

N -



Randomized algorithms

Theorem (Lyons&O 16)

X finite set, ® (o) € R ((X)) signature of o € X*. For any
€,0 > 0 there exists a random variable ® (o) such that

|{(®(0),w)—((a),w)]
1. IP>< G >e)| <6

2. for M > 1 the set of coordinates

{{(®(0), w) :|w| < M}

can be calculated using O (e_M log %) memory units,
[—log d] log |X| random bits and a single pass over o.

Remark
Extends to 0 € (R x X)L. Good estimate if few “heavy hitter
patterns”



memory for ®(o)

|| | Nr. of hashes | letters/second memory for (o) 14 (CD (0),d (0))
4 8 17651.8 1503.13 2927.01
4 16 9120.63 751.56 2086.38
4 32 4620.79 375.78 2061.50
8 8 3411.47 216.20 293.34
8 16 1712.27 108 268.00
8 32 850.85 54.05 230.30
16 8 390.48 28.91 38.66
16 16 194.98 14.45 33.14
16 32 97.213 7.23 26.29
32 8 195.25 3.73 5.01
32 16 97.93 1.87 4.41
32 32 49.21 0.99 3.60

Table: 10 letters appear 10 percent of the time, the rest of the events is
uniformly distributed among the remaining 90 letters.



Il. Kernelization (with Franz Kiraly)



» feature map x — @ (x) typically computationally expensive.

» Kernel learning (Aizerman’'64, Wahba'90, Vapnik'95,
Smale'00,...)
» often an inner product (® (x),® (y)) makes sense &
computationally cheap
» many learning algorithms depend only on (® (x),® (y))
> with
k: X xX >R, (x,y) = (P (x),P(y))

our features take value in reproducing kernel Hilbert space
(", k)
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Kernel learning

> (+) rich literature of kernels for static non-linear data
» e.g. kernels for graphs, images, molecules,... (constructed
using expert domain knowledge)
> (4+) modularity:
> evaluate kernel matrix (k (x,y)), ,ex
> plug into kernelized algorithm
» (+4) quantified Occam's razor: PAC/VC/Rademacher bounds
(Vapnik, Smale, ...)
> (-) possible issues: huge matrix (k (x,y)), ,cx. Hilbert norm
as regularizer, ...
» (-) not so much literature for sequences of observations

(BUT: string kernels)



Kernelized signatures
» Key remark: How to evaluate univariate polynomial
P e R[X]?
» Horner scheme! P(x) = ¢+ X (a1 + X (c2--+))
» already non-trivial for R[X, Y]; truncated signature is
“non-commutative polynomial” R (X)

» Signature Horner type scheme: Let 0,7 € C! ([0,1],H)
k(o,7) = (®(0), (7))
= 1+</da,/dr> +'”+</d0®M,/dT®M>
H HOM

M

_ Z/ </ do.®(m1)7/d7.®(ml)> d (05, 74)
st H®(m—1)

m=0

= 1+ <1+/ (l—i----/ d<05M,TtM>H>---d<Jsl,1
s1,t1 S, to SMstm

» only evalutate (o5, 7¢),, for s, t € [0,1]...can be cheap, even if
‘H is infinite dimenensional & recursive evalution!



Theorem (Kiraly&O '16)
Let o,7 € C1([0,1],H) and
k:Ctx Ct >R

defined as inner product of their signatures. Then there exists a
positive definite kernel

ke JHExUHE =R
L L

such that

1. kg (6™, 7™) — k (o, 7)| < O (mesh(r)) for any partition
T= (ti) - [Oa ]-],

2. ke (07, 7™) can be evaluated with...



Complexity

’ algorithm ‘ steps ‘ storage ‘
A O(c-M-L%) | O(L?
B O(c-M-p-L)| O(L-p)

c cost of evaluating (-, )4,

L number of time points

M truncation level of tensor algebra

p low rank approximation meta parameter

where

Remark
For paths in # = RY

M

ke (0:7) = (8(0). 0 (1) = > ( [ do®, [ arom)

m=0 (Rd)®m

needs O(d- M- p-L). Compare to O (dML) for direct feature

evaluation.



Black box to produce features for paths/sequences

v

Data in some space X (e.g. networks) and we are given a
feature map

p: X —>H
Now observe data in X' over time (e.g. network evolution)
Kernelization allows to use the signature of this infinite
dimensional path for learning!
Canonical method to transform from static to dynamic
features
Fun fact: already powerful with X = R? low dimensional and
0 a nonlinearity



toy example: pendigts
D= {(x,-,y,-) € (R?)" x {0,...,9},i= 1,...,7494}

label precision recall fl-score support
0.0 0.96 1.00 0.98 363
1.0 0.88 0.45 0.59 364
2.0 0.73 1.00 0.85 364
3.0 0.85 0.99 0.92 336
4.0 1.00 0.99 0.99 364
5.0 0.94 0.88 0.91 335
6.0 0.96 0.97 0.96 336
7.0 0.91 0.85 0.88 364
8.0 0.98 0.97 0.98 336
9.0 0.88 0.94 0.91 336

average/sum 0.91 0.90 0.89 total 3498

label precision recall fl-score support
0.0 1.00 0.99 1.00 363
1.0 0.98 0.99 0.98 364
2.0 0.99 1.00 0.99 364
3.0 0.87 0.99 0.92 336
4.0 0.96 1.00 0.98 364
5.0 0.97 0.92 0.94 335
6.0 1.00 0.99 1.00 336
7.0 0.98 0.92 0.95 364
8.0 0.97 0.98 0.97 336
9.0 0.96 0.88 0.92 336
average/sum 0.97 0.97 0.97 3498




Gesture recognition

D ={(xy) € ®)™ x {1,....6}}

o

CYRINDARICAL GRASP

% @ HOOK or SNAP
)y, -
PALMAR

SPHERICAL LATERAL

label precision recall fl-score support
1.0 0.66 0.83 0.74 30
2.0 0.88 0.77 0.82 30
3.0 0.88 0.77 0.82 30
4.0 0.87 0.90 0.89 30
5.0 0.97 0.93 0.95 30
6.0 0.93 0.93 0.93 30
avg/ total 0.87 0.86 0.86 total 180

» no feature extraction & beats baseline



I1l. Expected signatures (with llya Chevyrev)



> Let X, Y be random variables taking values in a topological
space X

» Hypothesis test
Ho: X =" Y versus H; : X % Y

given iid samples X1,..., X, ~ X and Y1,...Y,~ Y

» Our motivation X, Y path-valued random variables,
i.e. stochastic processes



Metrics on measures

Fix F C RY and define

d —?gg‘/ F(x (dx)—/Xf(x)V(dx)

— sup [Exey [f (X)] = Eyy [F (X)]]
feFr

v

v

If F is big enough, this becomes a metric; e.g. Cp (X),
{Fosup|F ()| <1}, {F 1 [fly, <1}
Test if d (u,v) =0o0r >0

Bad news: computing d is typically hard due to supremum

v

v



Metrics from RKHS
» Let F be unit ball in a RKHS (#, k). Denote

o= [ K(x)(d) € M

By reproducing property

—;gg‘/f (dx)—/f(x)u dx

= sup [(f, ik — Vi) 4|
fer

= k= vy = [ KGy) (0= 1) (e dy)
= Expxi~u [k (X, X")] — 2Ex o,y [K (X, Y)] + By v

» Easy to estimate from finite samples! Leads to uniformly most
powerful tests (Gretton et. al)

» Put differently: if feature map ¢ : X — H can be kernelized,
above gives optimal tests via expected features



Theorem (Chevyrev&O)
There exists a kernel
k:ClxC'—=R
such that
d(p,v) == Expximp [k (Xs X)) =2Exp,yow [k (X, Y)+Ey oy [k

is a metric on Borel probablity measures on C' and k is cheap to
evaluate.

» Extends from C! to branched rough paths and to signed
measures on paths

» Equivalent to “expected signature characterizes measures”

» Completely non-parametric testing in Neyman-Pearson setting
Ho : d(u,v)=0vs Hy : d(u,v) #0.



Summary: from stochastic analysis to ML and back

» Randomization

> signatures often computable in high dimensions (d ~ 10° on a
standard desktop)

» Kernelization

» Special cases of signatures classic in ML literature
(e.g. string/alignment/Anova kernels)
» Black box to turn static into dynamic features:
> canonical: input is kernel, output is kernel for sequences in
data
> general PAC learning guarantees apply

» Easy to implement: algorithms vectorized

» Hypothesis testing

» ML literature provides kernel based MMD
» combined with signatures:

> non-parametric(!) tests for pathvalued random variables
> new results about expected signatures



THANKS FOR YOUR TIME!



