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Overview

» Markov Chain Monte Carlo (MCMC)

» Metropolis-Hastings and MALA (Metropolis-Adjusted Langevin Algorithm)

» Reversible vs non-reversible Langevin dynamics

» How to quantify and exploit the advantages of non-reversibility in MCMC
» Various approaches taken so far

» Non-reversible Hamiltonian Monte Carlo

» MALA with irreversible proposal (ipMALA)
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Monte Carlo vs Markov Chain Monte Carlo

» Monte Carlo. Want to compute

En(f) = / £(x)d(x)

» Use Law of Large numbers: generate i. i. d. samples from =
1 K f K—oo f d
22 f0) T [ fxdr(x),  xj~w

=1

» MCMC. What if we can’t sample directly from «?



MCMC and non-reversibility

MCMC

Step 1. Generate samples from a given target distribution =



MCMC and non-reversibility

MCMC

Step 1. Generate samples from a given target distribution =

» How? Construct a Markov Chain x, that converges to =



MCMC and non-reversibility

MCMC

Step 1. Generate samples from a given target distribution =

» How? Construct a Markov Chain x, that converges to =

Step 2. Calculate integrals of the form

/R H(x)dn(x)



MCMC and non-reversibility

MCMC

Step 1. Generate samples from a given target distribution =

» How? Construct a Markov Chain x, that converges to =
Step 2. Calculate integrals of the form
/ f(x)dm(x)
RN

» How?: use the Ergodic Theorem

Jim Z f(x) = / f(x)dx(x
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Metropolis-Hastings Algorithm

> At step k, chainis in xx

1. Propose move
Yt ~ Q(Xk, -)

2. Calculate acceptance probability

ap, = @l =min< 1,
k (Xks Yir1) { 7 (Xk) Q(Xk > Y1)

3. Update position

Xers — 4 Vet with probability a
k1= "x  with probability 1 — vk

» Whatever the proposal, M-H always creates a reversible chain!
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Figure: Metropolis

Figure: The Tellers Figure: M. Rosenbluth

THE purpose of this paper is to describe a general
method, suitable for fast electronic computing
machines, of calculating the properties of any substance
which may be considered as composed of interacting
individual molecules.

MANIAC = Mathematical Analyzer Numerical Integrator And Calculator



e
MCMC and non-reversibility

Figure: Ulam



MCMC and non-reversibility

MALA (Metropolis-Adjusted Langevin Algorithm)

» Inspiration: the diffusion process
dX; = —VV(X;)dt + V2dW;

converges to 7(x) = e~ V(%)



MCMC and non-reversibility

MALA (Metropolis-Adjusted Langevin Algorithm)

» Inspiration: the diffusion process
dX; = —VV(X;)dt + V2dW;
converges to 7(x) = e~ V(%)

» MALA proposal:

y=x—0oVV(x)+V2s¢,  €~N(0,ldy), o= %



MCMC and non-reversibility

MALA (Metropolis-Adjusted Langevin Algorithm)

» Inspiration: the diffusion process
dX; = —VV(X;)dt + V2dW;
converges to 7(x) = e~ V(%)

» MALA proposal:

y=x—0oVV(x)+V2s¢,  €~N(0,ldy), o= %

» MALA algorithm: proposal + accept-reject



MCMC and non-reversibility

MALA (Metropolis-Adjusted Langevin Algorithm)

» Inspiration: the diffusion process
dX; = —VV(X;)dt + V2dW;
converges to 7(x) = e~ V(%)

» MALA proposal:

y=x—0oVV(x)+V2s¢,  €~N(0,ldy), o= %

» MALA algorithm: proposal + accept-reject

Remark:



MCMC and non-reversibility

MALA (Metropolis-Adjusted Langevin Algorithm)

» Inspiration: the diffusion process
dX; = —VV(X;)dt + V2dW;
converges to 7(x) = e~ V(%)

» MALA proposal:

y=x—0oVV(x)+V2s¢,  €~N(0,ldy), o= %

» MALA algorithm: proposal + accept-reject

Remark:
» Can think of MALA as a “correct” way of discretizing Langevin dynamics
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Non-reversible Langevin

» Langevin (reversible)

dX; = —VV(X)dt + vV2aW,,  X; eRVN.

> X; is ergodic with invariant measure = (y) = e~ V).

» Non-reversible Langevin

dZy = =V V(Zy)dt +~(Z)dt + vV2dW,, with V - (y(z)e= ")) =

> Invariant measure is still the same

0.
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Second Order Langevin

> For (q(t),p(t)) € R?
dg = padt
dp = —0qV(q)dt—p dt + /2 dW,

» Admits (g, p) = e—P*/2e=(9) = N/(0,1) x =(q) as unique invariant measure
» ltis ergodic, irreversible, hypoelliptic and hypocoercive.
» Decomposition of the dynamics in L2

L=B—-A"A
v N\
antisymmetric symmetric
conservative (deterministic) dissipative (stochastic)
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Reversible vs Non - Reversible

Advantages
» Faster convergence to Equilibrium (Huang, Sheu, Pavliotis, Nier, Lelievre, Duncan,
0., Stoltz, Olla, lacobucci)
» Reduction of asymptotic variance (some of above + Rey-Bellet & Spiliopoulos)

Problems

» Discretization

1. Keep invariant measure
2. Preserve non-reversibility

» Non-reversible processes are, in general, harder to study



MCMC and non-reversibility

...various sources of complication

S



MCMC and non-reversibility

...various sources of complication

1. Convergence criteria based on Lyapunov functions don’t do a good job



MCMC and non-reversibility

...various sources of complication

1. Convergence criteria based on Lyapunov functions don’t do a good job

2. e Reversible: geometric ergodicity < L2 — spectral gap



MCMC and non-reversibility

...various sources of complication

1. Convergence criteria based on Lyapunov functions don’t do a good job

2. e Reversible: geometric ergodicity < L2 — spectral gap
e In general : geometric ergodicity < L{°— spectral gap (Kontoyannis & Meyn)



MCMC and non-reversibility

...various sources of complication

1. Convergence criteria based on Lyapunov functions don’t do a good job

2. e Reversible: geometric ergodicity < L2 — spectral gap
e In general : geometric ergodicity < L{°— spectral gap (Kontoyannis & Meyn)

3. Example



MCMC and non-reversibility

...various sources of complication

1. Convergence criteria based on Lyapunov functions don’t do a good job

2. e Reversible: geometric ergodicity < L2 — spectral gap
e In general : geometric ergodicity < L{°— spectral gap (Kontoyannis & Meyn)

3. Example

dX; = édt + dW; on S’
Ls=A+6V



MCMC and non-reversibility

...various sources of complication

1. Convergence criteria based on Lyapunov functions don’t do a good job

2. e Reversible: geometric ergodicity < L2 — spectral gap
e In general : geometric ergodicity < L{°— spectral gap (Kontoyannis & Meyn)

3. Example
dX; = ddt + dW; on S'
Ls=A+6V
Eigenvalues ~» Ap= —n? + ind

2|cnl?
n + 42

o%e) oo
Asymptotic variance  ~» o2(8) = / (e"“f,fypat =>
0

n=1
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Approaches taken so far

» Produce non- reversible algorithm (abandon M-H framework)

1. Discretize non-reversible dynamics in a way that the discretization is still reversible -
Non-reversible Hamiltonian Monte Carlo (Horowitz, Stuart, Pinski, O., Pillai )

2. Piecewise linear algorithms, Bouncy Particle and Zig-Zag (Bierkens, Roberts, Volimer,
Doucet, Monmarche)

3. Event chain algorithm (W. Krauth et al, related to work of Diaconis)

4. General irreversible samplers (Chen et al, Poncet)
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Approaches taken so far

» Produce non- reversible algorithm (abandon M-H framework)

1. Discretize non-reversible dynamics in a way that the discretization is still reversible -
Non-reversible Hamiltonian Monte Carlo (Horowitz, Stuart, Pinski, O., Pillai )

2. Piecewise linear algorithms, Bouncy Particle and Zig-Zag (Bierkens, Roberts, Vollmer,
Doucet, Monmarche)

3. Event chain algorithm (W. Krauth et al, related to work of Diaconis)

4. General irreversible samplers (Chen et al, Poncet)
» Observe that bias is much smaller compared to gain in speed of convergence -
“just” simulate (Pavliotis, Duncan, Spiliopoulos, Zygalakis)
> Design appropriate splitting skemes

(above list not exhaustive)
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iPMALA

Question: is it good to use non-reversible proposals within Metropolis-Hastings?

Criterion (to compare with MALA): number of steps taken, in stationarity, to explore
target measure

» Consider non-reversibe Langevin in RV
dX; = -V V(X;)dt + dt+v2dW,,  with V. (y(z)e" V@) =0.
» Choose , S antisymmetric matrix

dX; = —VV(Xp)dt + dt + v2dw,

» Suppose we want to sample from a Gaussian

— =N €8 :

m(X) x e x=(x",...,x

that is,
m(x) ~N(0,Cn),  Cn=diag{\,...,An}.
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iPMALA

> Non reversible Langevin to sample from «(x) ~ A(0, Cy)

dX; = —(Cn) "' Xp dt + Sy(Cn) ' X + V2dW;,  X; e RN.

» Rescale and obtain

ax; = —%X,-q—CNSNX, dt + (Cn)'/2aw;

» Use a time- step Euler discretization of the above as M-H proposal
1
-y/(v+1 = Xliv - 5”%/)(10/ + U;GCNSNXIy + UN(CN)1/ZZ/<V+1

where

L
O'N:mz 4777a>0
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N _ N
Yier1 = Xk

L

N~

2 N N 1/2 _N
SONXR + oNCNSNXE + on(Cn)' P2y, oy =
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1 14
y,I(V+1 =X/(Vf50’,2VX/(V+O';\YICNSNX£I+UN(CN)1/ZZ/(V+1, oN = m
» Consider continuous interpolant of the chain
k k+1

xN(t) = (NSt — KX,y + (k+ 1= NTBxp, e St< e

(=a ffa<2 and (=2 ifa>2.
i) Diffusive regime when o >2 — SDE limit — cost is O(N?7)
2 2
dXt = —EI'H Xf at + thX at + 24/ h1 th
i) Fluid regime « <2 — ODE limit — cost is O(N7*) — Potential for improvement

dX; = hSx dt
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