MCMC and non-reversibility

M. Ottobre (Maxwell Institute, Edinburgh)

Joint work with N. Pillai (Harvard), K. Spiliopoulos (Boston)

Durham Symposium, July 2017

► Markov Chain Monte Carlo (MCMC)

- ► Markov Chain Monte Carlo (MCMC)
- ► Metropolis-Hastings and MALA (Metropolis-Adjusted Langevin Algorithm)

- ► Markov Chain Monte Carlo (MCMC)
- ► Metropolis-Hastings and MALA (Metropolis-Adjusted Langevin Algorithm)
- ▶ Reversible vs non-reversible Langevin dynamics

- Markov Chain Monte Carlo (MCMC)
- Metropolis-Hastings and MALA (Metropolis-Adjusted Langevin Algorithm)
- Reversible vs non-reversible Langevin dynamics
- ► How to quantify and exploit the advantages of non-reversibility in MCMC

- Markov Chain Monte Carlo (MCMC)
- Metropolis-Hastings and MALA (Metropolis-Adjusted Langevin Algorithm)
- ► Reversible vs non-reversible Langevin dynamics
- How to quantify and exploit the advantages of non-reversibility in MCMC
 - Various approaches taken so far

- Markov Chain Monte Carlo (MCMC)
- Metropolis-Hastings and MALA (Metropolis-Adjusted Langevin Algorithm)
- Reversible vs non-reversible Langevin dynamics
- ► How to quantify and exploit the advantages of non-reversibility in MCMC
 - Various approaches taken so far
- ▶ Non-reversible Hamiltonian Monte Carlo

- Markov Chain Monte Carlo (MCMC)
- Metropolis-Hastings and MALA (Metropolis-Adjusted Langevin Algorithm)
- Reversible vs non-reversible Langevin dynamics
- ► How to quantify and exploit the advantages of non-reversibility in MCMC
 - Various approaches taken so far
- Non-reversible Hamiltonian Monte Carlo
- ► MALA with irreversible proposal (ipMALA)

Monte Carlo vs Markov Chain Monte Carlo

► Monte Carlo. Want to compute

$$\mathbb{E}_{\pi}(f) = \int f(x) d\pi(x)$$

Monte Carlo vs Markov Chain Monte Carlo

► Monte Carlo. Want to compute

$$\mathbb{E}_{\pi}(f) = \int f(x) d\pi(x)$$

▶ Use Law of Large numbers: generate i. i. d. samples from π

$$\frac{1}{K}\sum_{j=1}^{K}f(x_j) \stackrel{K\to\infty}{\longrightarrow} \int f(x)d\pi(x), \qquad x_j \sim \pi$$

Monte Carlo vs Markov Chain Monte Carlo

► Monte Carlo. Want to compute

$$\mathbb{E}_{\pi}(f) = \int f(x) d\pi(x)$$

▶ Use Law of Large numbers: generate i. i. d. samples from π

$$\frac{1}{K}\sum_{j=1}^{K}f(x_j) \stackrel{K\to\infty}{\longrightarrow} \int f(x)d\pi(x), \qquad x_j \sim \pi$$

▶ MCMC. What if we can't sample directly from π ?

Step 1. Generate samples from a given target distribution $\,\pi\,$

Step 1. Generate samples from a given target distribution π

▶ How? Construct a Markov Chain x_k that converges to π

- Step 1. Generate samples from a given target distribution π
 - ▶ How? Construct a Markov Chain x_k that converges to π
- Step 2. Calculate integrals of the form

$$\int_{\mathbb{R}^N} f(x) d\pi(x)$$

- Step 1. Generate samples from a given target distribution π
 - ▶ How? Construct a Markov Chain x_k that converges to π
- Step 2. Calculate integrals of the form

$$\int_{\mathbb{R}^N} f(x) d\pi(x)$$

► How?: use the Ergodic Theorem

$$\lim_{M\to\infty}\frac{1}{M}\sum_{k=0}^M f(x_k)=\int_{\mathbb{R}^N} f(x)d\pi(x)$$

▶ Goal: Sample from a given target measure $\pi(x)$ on \mathbb{R}^N

- ▶ **Goal**: Sample from a given target measure $\pi(x)$ on \mathbb{R}^N
- ▶ How? Build a Markov Chain $\{x_k\}_{k\in\mathbb{N}}$ which converges to π

- ▶ Goal: Sample from a given target measure $\pi(x)$ on \mathbb{R}^N
- ▶ How? Build a Markov Chain $\{x_k\}_{k\in\mathbb{N}}$ which converges to π

Metropolis-Hastings Philosophy

- ▶ Goal: Sample from a given target measure $\pi(x)$ on \mathbb{R}^N
- ▶ How? Build a Markov Chain $\{x_k\}_{k\in\mathbb{N}}$ which converges to π

Metropolis-Hastings Philosophy

▶ Generate a chain $\{x_k\}_{k\in\mathbb{N}}$ satisfying the detailed balance condition with respect to the target measure π

$$\pi(x)p(x,y) = \pi(y)p(y,x)$$
 Detailed Balance

- ▶ Goal: Sample from a given target measure $\pi(x)$ on \mathbb{R}^N
- ▶ How? Build a Markov Chain $\{x_k\}_{k\in\mathbb{N}}$ which converges to π

Metropolis-Hastings Philosophy

▶ Generate a chain $\{x_k\}_{k\in\mathbb{N}}$ satisfying the detailed balance condition with respect to the target measure π

$$\pi(x)p(x,y) = \pi(y)p(y,x)$$
 Detailed Balance

Detailed Balance (Reversibility) $\Rightarrow \pi$ is invariant

- ▶ Goal: Sample from a given target measure $\pi(x)$ on \mathbb{R}^N
- ▶ How? Build a Markov Chain $\{x_k\}_{k\in\mathbb{N}}$ which converges to π

Metropolis-Hastings Philosophy

▶ Generate a chain $\{x_k\}_{k\in\mathbb{N}}$ satisfying the detailed balance condition with respect to the target measure π

$$\pi(x)p(x,y) = \pi(y)p(y,x)$$
 Detailed Balance

Detailed Balance (Reversibility) $\Rightarrow \pi$ is invariant

▶ At step k, chain is in x_k

- ightharpoonup At step k, chain is in x_k
 - 1. Propose move

$$y_{k+1} \sim Q(x_k, \cdot)$$

- ightharpoonup At step k, chain is in x_k
 - 1. Propose move

$$y_{k+1} \sim Q(x_k, \cdot)$$

2. Calculate acceptance probability

$$\alpha_k := \alpha(x_k, y_{k+1}) = \min \left\{ 1, \frac{\pi(y_{k+1})Q(y_{k+1}, x_k)}{\pi(x_k)Q(x_k, y_{k+1})} \right\}$$

- ▶ At step k, chain is in x_k
 - 1. Propose move

$$y_{k+1} \sim Q(x_k, \cdot)$$

2. Calculate acceptance probability

$$\alpha_k := \alpha(x_k, y_{k+1}) = \min \left\{ 1, \frac{\pi(y_{k+1})Q(y_{k+1}, x_k)}{\pi(x_k)Q(x_k, y_{k+1})} \right\}$$

3. Update position

$$x_{k+1} = \begin{cases} y_{k+1} & \text{with probability } \alpha_k \\ x_k & \text{with probability } 1 - \alpha_k \end{cases}$$

- ▶ At step k, chain is in x_k
 - 1. Propose move

$$y_{k+1} \sim Q(x_k, \cdot)$$

2. Calculate acceptance probability

$$\alpha_k := \alpha(x_k, y_{k+1}) = \min \left\{ 1, \frac{\pi(y_{k+1})Q(y_{k+1}, x_k)}{\pi(x_k)Q(x_k, y_{k+1})} \right\}$$

3. Update position

$$x_{k+1} = \begin{cases} y_{k+1} & \text{with probability } \alpha_k \\ x_k & \text{with probability } 1 - \alpha_k \end{cases}$$

► Whatever the proposal, M-H always creates a reversible chain!

1953, Equation of state calculations by fast computing machines

Figure: Metropolis

Figure: The Tellers

Figure: M. Rosenbluth

1953, Equation of state calculations by fast computing machines

Figure: The Tellers

Figure: M. Rosenbluth

THE purpose of this paper is to describe a general method, suitable for fast electronic computing machines, of calculating the properties of any substance which may be considered as composed of interacting individual molecules.

1953, Equation of state calculations by fast computing machines

Figure: The Tellers

Figure: M. Rosenbluth

THE purpose of this paper is to describe a general method, suitable for fast electronic computing machines, of calculating the properties of any substance which may be considered as composed of interacting individual molecules.

MANIAC = Mathematical Analyzer Numerical Integrator And Calculator

Figure: Ulam

► Inspiration: the diffusion process

$$\label{eq:def} dX_t = -\nabla V(X_t) dt + \sqrt{2} dW_t$$
 converges to $\pi(x) = e^{-V(x)}$

► Inspiration: the diffusion process

$$dX_t = -
abla V(X_t) dt + \sqrt{2} dW_t$$
 converges to $\pi(x) = e^{-V(x)}$

► MALA proposal:

$$y = x - \sigma \nabla V(x) + \sqrt{2\sigma} \, \xi, \qquad \xi \sim \mathcal{N}(0, Id_N), \, \sigma = \frac{\ell}{N^{\gamma}}$$

Inspiration: the diffusion process

$$d X_t = -
abla V(X_t) dt + \sqrt{2} d W_t$$
 converges to $\pi(x) = e^{-V(x)}$

MALA proposal:

$$y = x - \sigma \nabla V(x) + \sqrt{2\sigma} \, \xi, \qquad \xi \sim \mathcal{N}(0, Id_N), \, \sigma = \frac{\ell}{N^{\gamma}}$$

MALA algorithm: proposal + accept-reject

► Inspiration: the diffusion process

$$dX_t = -
abla V(X_t) dt + \sqrt{2} dW_t$$
 converges to $\pi(x) = e^{-V(x)}$

► MALA proposal:

$$y = x - \sigma \nabla V(x) + \sqrt{2\sigma} \, \xi, \qquad \xi \sim \mathcal{N}(0, Id_N), \, \sigma = \frac{\ell}{N^{\gamma}}$$

MALA algorithm: proposal + accept-reject

Remark:

Inspiration: the diffusion process

$$dX_t = -\nabla V(X_t)dt + \sqrt{2}dW_t$$

converges to $\pi(x) = e^{-V(x)}$

MALA proposal:

$$y = x - \sigma \nabla V(x) + \sqrt{2\sigma} \, \xi, \qquad \xi \sim \mathcal{N}(0, Id_N), \, \sigma = \frac{\ell}{N^{\gamma}}$$

MALA algorithm: proposal + accept-reject

Remark:

Can think of MALA as a "correct" way of discretizing Langevin dynamics

Non-reversible Langevin

Langevin (reversible)

$$dX_t = -\nabla V(X_t)dt + \sqrt{2}dW_t, \qquad X_t \in \mathbb{R}^N.$$

• X_t is ergodic with invariant measure $\pi(y) = e^{-V(y)}$.

Non-reversible Langevin

Langevin (reversible)

$$dX_t = -\nabla V(X_t)dt + \sqrt{2}dW_t, \qquad X_t \in \mathbb{R}^N.$$

- X_t is ergodic with invariant measure $\pi(y) = e^{-V(y)}$.
- ► Non-reversible Langevin

$$dZ_t = -\nabla V(Z_t)dt + \frac{\gamma(Z_t)}{2}dt + \sqrt{2}dW_t, \qquad \text{with } \nabla \cdot (\gamma(z)e^{-V(z)}) = 0.$$

Non-reversible Langevin

Langevin (reversible)

$$dX_t = -\nabla V(X_t)dt + \sqrt{2}dW_t, \qquad X_t \in \mathbb{R}^N.$$

- X_t is ergodic with invariant measure $\pi(y) = e^{-V(y)}$.
- ▶ Non-reversible Langevin

$$dZ_t = -\nabla V(Z_t)dt + \frac{\gamma(Z_t)dt}{\gamma(Z_t)dt} + \sqrt{2}dW_t, \quad \text{with } \nabla \cdot (\gamma(z)e^{-V(z)}) = 0.$$

Invariant measure is still the same

► For $(q(t), p(t)) \in \mathbb{R}^2$

$$dq = p dt$$

$$dp = -\partial_q V(q) dt - p dt + \sqrt{2} dW_t$$

▶ For $(q(t), p(t)) \in \mathbb{R}^2$

$$dq = p dt$$

$$dp = -\partial_q V(q) dt - p dt + \sqrt{2} dW_t$$

Admits $\mu(q,p)=e^{-p^2/2}e^{-V(q)}=\mathcal{N}(0,1) imes\pi(q)$ as unique invariant measure

▶ For $(q(t), p(t)) \in \mathbb{R}^2$

$$dq = p dt$$

$$dp = -\partial_q V(q) dt - p dt + \sqrt{2} dW_t$$

- Admits $\mu(q,p)=e^{-p^2/2}e^{-V(q)}=\mathcal{N}(0,1)\times\pi(q)$ as unique invariant measure
- ▶ It is ergodic, irreversible, hypoelliptic and hypocoercive.

▶ For $(q(t), p(t)) \in \mathbb{R}^2$

$$dq = p dt$$

$$dp = -\partial_q V(q) dt - p dt + \sqrt{2} dW_t$$

- Admits $\mu(q,p)=e^{-p^2/2}e^{-V(q)}=\mathcal{N}(0,1) imes\pi(q)$ as unique invariant measure
- ▶ It is ergodic, irreversible, hypoelliptic and hypocoercive.
- ▶ Decomposition of the dynamics in L^2_μ

Advantages

Advantages

 Faster convergence to Equilibrium (Huang, Sheu, Pavliotis, Nier, Lelievre, Duncan, O., Stoltz, Olla, Iacobucci)

Advantages

- ► Faster convergence to Equilibrium (Huang, Sheu, Pavliotis, Nier, Lelievre, Duncan, O., Stoltz, Olla, Iacobucci)
- ► Reduction of asymptotic variance (some of above + Rey-Bellet & Spiliopoulos)

Advantages

- ► Faster convergence to Equilibrium (Huang, Sheu, Pavliotis, Nier, Lelievre, Duncan, O., Stoltz, Olla, Iacobucci)
- ► Reduction of asymptotic variance (some of above + Rey-Bellet & Spiliopoulos)

Problems

Advantages

- ► Faster convergence to Equilibrium (Huang, Sheu, Pavliotis, Nier, Lelievre, Duncan, O., Stoltz, Olla, Iacobucci)
- ► Reduction of asymptotic variance (some of above + Rey-Bellet & Spiliopoulos)

Problems

Discretization

Advantages

- Faster convergence to Equilibrium (Huang, Sheu, Pavliotis, Nier, Lelievre, Duncan, O., Stoltz, Olla, Iacobucci)
- ► Reduction of asymptotic variance (some of above + Rey-Bellet & Spiliopoulos)

Problems

- Discretization
 - 1. Keep invariant measure
 - 2. Preserve non-reversibility

Advantages

- Faster convergence to Equilibrium (Huang, Sheu, Pavliotis, Nier, Lelievre, Duncan, O., Stoltz, Olla, Iacobucci)
- ► Reduction of asymptotic variance (some of above + Rey-Bellet & Spiliopoulos)

Problems

- Discretization
 - 1. Keep invariant measure
 - 2. Preserve non-reversibility
- Non-reversible processes are, in general, harder to study

1. Convergence criteria based on Lyapunov functions don't do a good job

- 1. Convergence criteria based on Lyapunov functions don't do a good job
- 2. Reversible: geometric ergodicity $\Leftrightarrow L_{\pi}^2$ spectral gap

- 1. Convergence criteria based on Lyapunov functions don't do a good job
- 2. Reversible: geometric ergodicity $\Leftrightarrow L_{\pi}^2$ spectral gap
 - ullet In general : geometric ergodicity $\Leftrightarrow L_V^\infty-$ spectral gap (Kontoyannis & Meyn)

- 1. Convergence criteria based on Lyapunov functions don't do a good job
- 2. Reversible: geometric ergodicity $\Leftrightarrow L_{\pi}^2$ spectral gap
 - ullet In general : geometric ergodicity $\Leftrightarrow L_V^\infty-$ spectral gap (Kontoyannis & Meyn)
- 3. Example

- 1. Convergence criteria based on Lyapunov functions don't do a good job
- 2. Reversible: geometric ergodicity $\Leftrightarrow L_{\pi}^2$ spectral gap
 - ullet In general : geometric ergodicity $\Leftrightarrow L_V^\infty-$ spectral gap (Kontoyannis & Meyn)
- 3. Example

$$dX_t = \delta dt + dW_t$$
 on S^1
 $\mathcal{L}_{\delta} = \Delta + \delta \nabla$

- 1. Convergence criteria based on Lyapunov functions don't do a good job
- 2. Reversible: geometric ergodicity $\Leftrightarrow L_{\pi}^2$ spectral gap
 - ullet In general : geometric ergodicity $\Leftrightarrow L_V^\infty-$ spectral gap (Kontoyannis & Meyn)
- 3. Example

$$dX_t = \delta dt + dW_t$$
 on S^1
 $\mathcal{L}_{\delta} = \Delta + \delta \nabla$

Eigenvalues
$$\rightarrow \lambda_n = -n^2 + in\delta$$

Asymptotic variance $\rightarrow \sigma^2(\delta) = \int_0^\infty \langle e^{t\mathcal{L}}f, f \rangle_{L^2} dt = \sum_{l=1}^\infty \frac{2 |c_n|^2}{n^2 + \delta^2}$

Approaches taken so far

- Produce non- reversible algorithm (abandon M-H framework)
 - Discretize non-reversible dynamics in a way that the discretization is still reversible -Non-reversible Hamiltonian Monte Carlo (Horowitz, Stuart, Pinski, O., Pillai)
 - Piecewise linear algorithms, Bouncy Particle and Zig-Zag (Bierkens, Roberts, Vollmer, Doucet, Monmarche)
 - 3. Event chain algorithm (W. Krauth et al, related to work of Diaconis)
 - 4. General irreversible samplers (Chen et al, Poncet)

Approaches taken so far

- Produce non- reversible algorithm (abandon M-H framework)
 - Discretize non-reversible dynamics in a way that the discretization is still reversible -Non-reversible Hamiltonian Monte Carlo (Horowitz, Stuart, Pinski, O., Pillai)
 - Piecewise linear algorithms, Bouncy Particle and Zig-Zag (Bierkens, Roberts, Vollmer, Doucet, Monmarche)
 - 3. Event chain algorithm (W. Krauth et al. related to work of Diaconis)
 - 4. General irreversible samplers (Chen et al, Poncet)
- Observe that bias is much smaller compared to gain in speed of convergence -"just" simulate (Pavliotis, Duncan, Spiliopoulos, Zygalakis)
 - Design appropriate splitting skemes

(above list not exhaustive)

Question: is it good to use non-reversible proposals within Metropolis-Hastings?

Question: is it good to use non-reversible proposals within Metropolis-Hastings?

Criterion (to compare with MALA): number of steps taken, in stationarity, to explore target measure

Question: is it good to use non-reversible proposals within Metropolis-Hastings?

Criterion (to compare with MALA): number of steps taken, in stationarity, to explore target measure

▶ Consider non-reversibe Langevin in \mathbb{R}^N

$$\label{eq:definition} dX_t = -\nabla \mathit{V}(X_t) dt + \gamma(X_t) dt + \sqrt{2} dW_t, \qquad \text{with } \nabla \cdot \left(\gamma(z) e^{-\mathit{V}(z)} \right) = 0 \,.$$

target measure

ipMALA

Question: is it good to use non-reversible proposals within Metropolis-Hastings? Criterion (to compare with MALA): number of steps taken, in stationarity, to explore

▶ Consider non-reversibe Langevin in \mathbb{R}^N

$$dX_t = -\nabla V(X_t)dt + \frac{\gamma(X_t)dt}{\gamma(X_t)}dt + \sqrt{2}dW_t, \quad \text{with } \nabla \cdot (\gamma(z)e^{-V(z)}) = 0.$$

▶ Choose $\gamma(X_t) = S \nabla V(X_t)$, S antisymmetric matrix

$$dX_t = -\nabla V(X_t)dt + \frac{\nabla \nabla V(X_t)}{\partial t}dt + \sqrt{2}dW_t$$

Question: is it good to use non-reversible proposals within Metropolis-Hastings? Criterion (to compare with MALA): number of steps taken, in stationarity, to explore target measure

▶ Consider non-reversibe Langevin in \mathbb{R}^N

$$dX_t = -\nabla V(X_t)dt + \gamma(X_t)dt + \sqrt{2}dW_t, \quad \text{with } \nabla \cdot (\gamma(z)e^{-V(z)}) = 0.$$

▶ Choose $\gamma(X_t) = S \nabla V(X_t)$, S antisymmetric matrix

$$dX_t = -\nabla V(X_t)dt + \frac{\nabla \nabla V(X_t)dt}{\nabla V(X_t)}dt + \sqrt{2}dW_t$$

Suppose we want to sample from a Gaussian

$$\pi(x) \propto e^{-\sum_{i=1}^{N} |x^i|^2/\lambda_i^2}$$
 $x = (x^1, ..., x^N)$

that is,

$$\pi(x) \sim \mathcal{N}(0, C_N), \qquad C_N = diag\{\lambda_1, \dots, \lambda_N\}.$$

▶ Non reversible Langevin to sample from $\pi(x) \sim \mathcal{N}(0, C_N)$

$$dX_t = -(C_N)^{-1}X_t dt + S_N(C_N)^{-1}X_t + \sqrt{2}dW_t, \qquad X_t \in \mathbb{R}^N.$$

▶ Non reversible Langevin to sample from $\pi(x) \sim \mathcal{N}(0, C_N)$

$$dX_t = -(C_N)^{-1} X_t dt + S_N(C_N)^{-1} X_t + \sqrt{2} dW_t, \qquad X_t \in \mathbb{R}^N.$$

Rescale and obtain

$$dX_t = \left[-\frac{1}{2}X_t + C_N S_N X_t \right] dt + (C_N)^{1/2} dW_t$$

▶ Non reversible Langevin to sample from $\pi(x) \sim \mathcal{N}(0, C_N)$

$$dX_t = -(C_N)^{-1}X_t dt + S_N(C_N)^{-1}X_t + \sqrt{2}dW_t, \qquad X_t \in \mathbb{R}^N.$$

Rescale and obtain

$$dX_t = \left[-\frac{1}{2}X_t + C_N S_N X_t \right] dt + (C_N)^{1/2} dW_t$$

▶ Use a time- step Euler discretization of the above as M-H proposal

$$y_{k+1}^{N} = x_{k}^{N} - \frac{1}{2} \frac{\sigma_{N}^{2} x_{k}^{N}}{\sigma_{N}^{N} c_{N} S_{N} x_{k}^{N}} + \sigma_{N} (C^{N})^{1/2} z_{k+1}^{N}$$

where

$$\sigma_{N} = \frac{\ell}{N^{\gamma}}, \qquad \ell, \gamma, \alpha > 0$$

$$y_{k+1}^{N} = x_{k}^{N} - \frac{1}{2} \frac{\sigma_{N}^{2}}{\sigma_{N}^{2}} x_{k}^{N} + \frac{\sigma_{N}^{\alpha}}{\sigma_{N}^{\alpha}} C_{N} S_{N} x_{k}^{N} + \sigma_{N} (C_{N})^{1/2} z_{k+1}^{N}, \quad \sigma_{N} = \frac{\ell}{N^{\gamma}}$$

$$y_{k+1}^N = x_k^N - \frac{1}{2} \sigma_N^2 x_k^N + \frac{\sigma_N^\alpha}{\sigma_N^2} C_N S_N x_k^N + \sigma_N (C_N)^{1/2} z_{k+1}^N, \quad \sigma_N = \frac{\ell}{N^\gamma}$$

Consider continuous interpolant of the chain

$$x^{(N)}(t) = (N^{\zeta\gamma}t - k)x_{k+1}^N + (k+1 - N^{\zeta\gamma}t)x_k^N, \qquad \frac{k}{N^{\zeta\gamma}} \le t < \frac{k+1}{N^{\zeta\gamma}},$$
$$\zeta = \alpha \quad \text{if } \alpha < 2 \quad \text{and} \quad \zeta = 2 \quad \text{if } \alpha \ge 2.$$

$$y_{k+1}^{N} = x_{k}^{N} - \frac{1}{2} \sigma_{N}^{2} x_{k}^{N} + \sigma_{N}^{\alpha} C_{N} S_{N} x_{k}^{N} + \sigma_{N} (C_{N})^{1/2} z_{k+1}^{N}, \quad \sigma_{N} = \frac{\ell}{N^{\gamma}}$$

Consider continuous interpolant of the chain

$$x^{(N)}(t) = (N^{\zeta\gamma}t - k)x_{k+1}^N + (k+1 - N^{\zeta\gamma}t)x_k^N, \qquad \frac{k}{N^{\zeta\gamma}} \le t < \frac{k+1}{N^{\zeta\gamma}},$$
$$\zeta = \alpha \quad \text{if } \alpha < 2 \quad \text{and} \quad \zeta = 2 \quad \text{if } \alpha \ge 2.$$

i) Diffusive regime when $\alpha \geq 2 \longrightarrow \text{SDE limit} - \text{cost is } O(N^{2\gamma})$

$$dX_t = -\frac{\ell^2}{2}h_1X_t dt + h_2\tilde{S}x dt + 2\sqrt{h_1}dW_t$$

ii) Fluid regime $\alpha < 2 \longrightarrow \mathsf{ODE} \mathsf{\ limit} - \mathsf{cost} \mathsf{\ is\ } \mathcal{O}(N^{\gamma \alpha}) - \mathsf{Potential\ for\ improvement}$

$$dX_t = \bar{h}\tilde{S}x dt$$

- [1] Chii-Ruey Hwang, Shu-Yin Hwang-Ma, and Shuenn-Jyi Sheu. *Accelerating diffusions*. (2005)
- [2] M.O., N. S. Pillai, F. J. Pinski, A.M. Stuart. A function space HMC algorithm with second order Langevin diffusion limit. Bernoulli, 2016.
- [3] L. Rey-Bellet, K. Spiliopoulos. *Irreversible Langevin samplers and variance reduction: a large deviations approach.* (2015)
- [4] A. Bouchard-Cote, A. Doucet, S. Vollmer. The Bouncy Particle Sampler. (2017)
- [5] J. Bierkens, P. Fearnhead, G. Roberts. *The Zig-Zag Process and super-efficient sampling.* (2016)
- [6] A. Duncan, T. Lelievre, G. Pavliotis. *Variance Reduction using non-reversible Langevin Samplers* (2015)
- [7] M.O., N. Pillai, K. Spiliopoulos. *Optimal Scaling of the MALA algorithm with irreversible proposals for Gaussian targets* (2017)