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Motivation: branching random walks

Random i.i.d. potential (1(x)),eze-
Independent particles on Z? follow random walks (cont. time);

@ at site x particle has branching rate n(x)™; killing rate n(x)~;
@ branching: new independent copy, follows same dynamics;
°

killing: particle disappears.
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Motivation: branching random walks

Random i.i.d. potential (1(x)),eze-

Independent particles on Z? follow random walks (cont. time);
@ at site x particle has branching rate n(x)™; killing rate n(x)~;
@ branching: new independent copy, follows same dynamics;

o killing: particle disappears.

Complicated = consider simple statistics:

u(t, x) = E[# particles in (t, x)|n].
Get co-dim ODE “parabolic Anderson model” (PAM)

Oru = Aggu + un.
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Comparison with super-Brownian motion

o Indep. branching particles on Z? with det. branching/killing rate 1.
o u(0,x) = Nup(x), x € Z9.
@ Send only no. of particles — oc:

N
o07) = Jim =3

= E[# particles in (t, x)],

then limit is discrete heat equation

81_—U = Azdu.
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Comparison with super-Brownian motion
o Indep. branching particles on Z? with det. branching/killing rate 1.
o u(0,x) = Nup(x), x € Z9.
@ Send only no. of particles — oc:

N
. u™(t, x . .
u(t,x) = lim CGL) = E[# particles in (t,x)],
N—oco N
then limit is discrete heat equation
atu = Azd u.
@ Also zoom out as no. of particles increases:

N(N?t, N,
V(t’x):Jl“mW

9

then limit is super-Brownian motion
8tV = ARdV + \/Vg

@ Would be interesting to directly zoom out in random potential model,
not treated here.
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Large scale behavior of PAM

Ot = Ayau + un.
@ Intensely studied in past decades (Carmona, Molchanov, Gartner,
Konig, ... MANY more);

e if nis “truely random”: u is intermittent, mass concentrated in few,
small, isolated islands; survey Kanig '16;

e = only possible scaling limit is (finite sum of) Dirac deltas.
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Large scale behavior of PAM

Ot = Agau + un.

@ Intensely studied in past decades (Carmona, Molchanov, Gartner,
Konig, ... MANY more);

e if nis “truely random”: u is intermittent, mass concentrated in few,
small, isolated islands; survey Kanig '16;

e = only possible scaling limit is (finite sum of) Dirac deltas.

Competition between disorder:
Oru = un = u(t,x) = e yy(x)
and smoothing:
Oru = Agau = u(t,x) = P?d * Up(x).

Intermittency: disorder always wins; to see nontrivial limit: weaken
disorder; expect phase transition(s) between intermittence and smoothness.
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Weak disorder

Oru = Ayau+ %un.
@ To preserve scaling of Ayq:
ue(t, x) = ePu(t/e?, x/e).

@ Then
et = A _gat® + ufe 2T (- /e),

and e=9/2y(- /&) = & (white noise), so
2+a=-d2 & a=2-d/2
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Weak disorder

Oru = Ayau+ %un.
@ To preserve scaling of Ayq:
ue(t, x) = ePu(t/e?, x/e).

@ Then
et = A _gat® + ufe 2T (- /e),

and e=9/2y(- /&) = & (white noise), so
2+a=-d2 & a=2-d/2

Something goes wrong for d > 4.
Conjecture for d < 4 and centered n: uv* = v,

Orv = Agav + vE (continuous PAM)

where & = space white noise.
@ Continuous PAM only makes sense for d < 4, critical in d = 4 and
supercritical for d > 4!
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Phase transition

Ot = Dgau + \e?~92un, ue(t,x) = Pu(t/e?, x/e).

@ Assume we showed u® — v solving continuous PAM
6tV = A]RdV + )\Vg

e Conjecture: v is also intermittent (d = 1: Chen 16, Dumaz-Labbé in
progress; d = 2: first results in progress by Chouk, van Zuijlen).
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Phase transition

Ot = Dgau + \e?~92un, ue(t,x) = Pu(t/e?, x/e).

@ Assume we showed u® — v solving continuous PAM
Orv = Apav + AVE.

e Conjecture: v is also intermittent (d = 1: Chen 16, Dumaz-Labbé in
progress; d = 2: first results in progress by Chouk, van Zuijlen).

@ Scaling invariance of £: large scales for v < large A.

@ So A\ — oo: intermittency, A — 0: smoothness;

= discrete PAM has phase transition at noise strength O(2~9/2).
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Generalization: branching interaction
Same dynamics as before, but include interaction:

@ at site x particle has branching rate

f(# particles in (x))n(x)";

killing rate
f(# particles in (x))n(x)~;
@ example that models limited resources: f(u) =1 — u/C;

@ could include interaction through jump rate, but did not work this out.

Nicolas Perkowski Weak universality of PAM 7 /25



Generalization: branching interaction
Same dynamics as before, but include interaction:

@ at site x particle has branching rate

f(# particles in (x))n(x)";

killing rate
f(# particles in (x))n(x)~;
@ example that models limited resources: f(u) =1 — u/C;
@ could include interaction through jump rate, but did not work this out.

Very complicated = consider simple statistics:
u(t, x) = E[# particles in (t, x)|n].
Formally: get “generalized PAM"

Oru = Agau + f(u)un.
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© Results
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Scaling of generalized PAM

Consider d = 2 from now on. Will work in d =1 (easier) and d =3
(much harder).

Oru = Dgpu+ eF (u)n, u(0,x) = Ly=o.

e Natural conjecture: If E[n(0)] = 0, var(n(0)) = 1, then
I|m€ u(t/e?, x/e) = v,

where v solves generalized continuous PAM

Orv = Apev + F(V)E, v(0,x) = d(x —0).
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Scaling of generalized PAM

Consider d = 2 from now on. Will work in d =1 (easier) and d =3
(much harder).

Oru = Dgpu + eF (u)n, u(0, x) = Ty—o.

e Natural conjecture: If E[n(0)] = 0, var(n(0)) = 1, then
I|m€ u(t/e?, x/e) = v,

where v solves generalized continuous PAM
Orv = Apev + F(V)E, v(0,x) = d(x — 0).
@ Problem 1: (generalized) continuous PAM needs renormalization!
= assume instead E[n(0)] = —eF’(0)c® with ¢ ~ |loge|.
@ Problem 2: continuous generalized PAM cannot be started in § unless
Fu) =
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Weak universality of PAM

Oru = DApwu + eF(u)n, u(0,x) = Ly—o.
Assume:
@ A, generator of random walk with sub-exponential moments;
o F" e L™, F(0)=0;
o (n(x))yeze independent, E[n(x)] = —eF'(0)c®, var(n(x)) = 1,
sup, E[|n(x)|P] < oo for some p > 14 (might treat p > 4 by
truncation).
e We may also generalize Z? to any two-dimensional “crystal lattice” .

Theorem (Martin-P. '17)

Under these assumptions lim._,0e~2u(t/?,x/e) = v, where v solves
linear continuous PAM,

v = Agav + F'(0)VE, v(0,x) = d(x — 0).
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Weak universality of PAM

Call this weak universality since model changes with scaling:

Oru = Apwu + eF(u)n, u(0,x) = 1y—o.

e Continuous PAM treated pathwise (rough paths, regularity structures,
paracontrolled distributions);

@ pathwise approaches need subcriticality: nonlinearity unimportant on
small scales
= solutions not scale-invariant
= fixed model cannot rescale to continuous PAM.
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Comparison: weak universality of the KPZ equation
Conjecture (“Weak KPZ universality conjecture”)

All (appropriate) 1 + 1-dimensional weakly asymmetric interface growth
models scale to the KPZ equation

dth = Ah + (9ch)? + €.

Example: WASEP with open boundaries, Gongalves-P.-Simon "17.
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Figure: Jump rates. Leftmost and rightmost rates are entrance/exit rates.
Compare also Corwin-Shen '16.
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Strong KPZ universality

Conjecture (“Strong KPZ universality conjecture”)

All (appropriate) 1 4+ 1-dimensional asymmetric interface growth models
show the same large scale behavior as the KPZ equation.

@ Much harder than weak KPZ universality.
@ Example: ASEP with open boundaries
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© Proof
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Solution of the continuous PAM

atV = AR2V + Vg.
o Difficulty: & only noise in space, no martingales around;

e Analysis: £ € G}~ = expect v e C17;

loc - “loc
= sum of regularities < 0, so v¢ ill-defined.
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Solution of the continuous PAM

atV = AR2V+ Vg.

Difficulty: £ only noise in space, no martingales around;

Analysis: £ € C_ 1~ = expect v € C7;

loc - “loc
= sum of regularities < 0, so v¢ ill-defined.

Subcriticality: on small scales v should look like =,

3tE = AR2E -|-§

Direct computation ((=,£) is Gaussian):
ZE=lim[(Z*6:)(€ * 6:)—c7], c® ~|logel,
e—0

is well defined and in C.

Philosphy of rough paths: also v¢ is well defined.

Implement this with paracontrolled distributions Gubinelli-Imkeller-P. '15.
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Crash course on paracontrolled distributions |

o Littlewood-Paley blocks: A, are contributions of f on scale 2=
F=> F  (Lpmpme) () FF) = ZA f.
m

e Formally: fg =5,  AnfAsg.

@ Bony '81: paraproduct f <g=>
inherits regularity of g.

o We interpret f < g as frequency modulation of g:

> AmfA,g always well defined,

m<n—
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Crash course on paracontrolled distributions |l

@ Intuition: f < g "looks like” g (call it paracontrolled).

@ Gubinelli-Imkeller-P. '15: if gh is given, (f < g)h is well defined and
paracontrolled by h.
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Crash course on paracontrolled distributions |l

@ Intuition: f <g “looks like" g (call it paracontrolled).

@ Gubinelli-Imkeller-P. '15: if gh is given, (f < g)h is well defined and
paracontrolled by h.

@ Solutions to SPDEs often paracontrolled (paraproduct + smooth rest)

Example PAM:
81_-V == AR2V + Vg.

o v=v<=+vlwithvie Cl%);-

= v& ok if =€ ok, this we can control with Gaussian analysis.

Gubinelli-lmkeller-P. '15, Hairer '14: for periodic white noise &;
non-periodic: Hairer-Labbé '15.

v depends continuously on (&, =£); good for proving convergence!
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Back to our model

Oru = Arwu + eF(u)n, u(0,x) = 1x—o.

Problem: u lives on lattice, not R?. Possible solutions:

o Interpolation: find ii on R? with ii|;» = u and such that i solves
“similar” equation, e.g. Mourrat-Weber '16, Gubinelli-P. '17, Zhu-Zhu '15,
Chouk-Gairing-P. 17, Shen-Weber '16.

Needs random operators, highly technical.

o Discretization of regularity structures: Hairer-Matetski '16,
Cannizzaro-Matetski '16, Erhard-Hairer '17.

@ Paracontrolled distributions via semigroups: Replace Fourier
transform by heat semigroup, works on manifolds and on discrete
Spaces Bailleul-Bernicot "16.
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Back to our model

Oru = Arwu + eF(u)n, u(0,x) = 1x—o.

Problem: u lives on lattice, not R?. Possible solutions:

o Interpolation: find ii on R? with ii|;» = u and such that i solves
“similar” equation, e.g. Mourrat-Weber '16, Gubinelli-P. '17, Zhu-Zhu '15,
Chouk-Gairing-P. 17, Shen-Weber '16.

Needs random operators, highly technical.

o Discretization of regularity structures: Hairer-Matetski '16,
Cannizzaro-Matetski '16, Erhard-Hairer '17.

@ Paracontrolled distributions via semigroups: Replace Fourier
transform by heat semigroup, works on manifolds and on discrete
Spaces Bailleul-Bernicot "16.

We want to be similar to continuous paracontrolled distributions.
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Crystal lattices
Consider lattices G that allow for Fourier transform:

Fourier transform lives on “reciprocal Fourier cell” 6;
Fo(x) = 3(x) = [G] Y _p(k)e ™ >, xed.
keg

Example: G = 79 then G = ¢~1(R/7Z)
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Paracontrolled distributions on crystal lattices

e Given Fourier transform we define Littlewood-Paley blocks as on RY:
Apf = F (L m gminy (| - ) FF).
° SAhouId not interpret Ff as periodic function but embed
G =c"YR/Z) in RY.

@ £ > 0: maybe A,,f =0 for all m > 0, but nontrivial decomposition
for e — 0.

@ From here paracontrolled analysis exactly as in continuous space.
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Weighted paracontrolled distributions

Next difficulty: equation lives on unbounded domain
Oru = Apwu + eF(u)n, u(0,x) = Ly—o.

= cannot control 77 in C™17, but only in weighted Holder space.

@ Develop paracontrolled distributions in weighted spaces.
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Weighted paracontrolled distributions

Next difficulty: equation lives on unbounded domain
Oru = Apwu + eF(u)n, u(0,x) = Ly—o.

= cannot control 77 in C™17, but only in weighted Holder space.
@ Develop paracontrolled distributions in weighted spaces.

@ Trick from Hairer-Labbé '15: convenient to allow (sub-)exponential
growth of u, but then v is no tempered distribution, i.e. we have no
Fourier transform!

@ = consider ultra-distributions (can grow faster than polynomially, still
have Fourier transforms.) Similar to Mourrat-Weber '15, but their
approach does not work on L spaces.
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Analytic convergence proof

Rescale:
Oru = DApwu + eF(u)n, u(0, x) = Lx=o,

= for u¥(t,x) = e 2u(t/e?, x/e)
et = D ppuf + e 2F(%0°)E°, u®(0) = 6°.
@ Taylor expansion:

e 2F(2u°)E° = F'(0)u€® + o(1)
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Analytic convergence proof

Rescale:
Oru = DApwu + eF(u)n, u(0, x) = Lx=o,

= for u°(t,x) = e 2u(t/e?, x/¢)
Ot = A gpuf + e 2F(2uf)Ee, u®(0) = &°.
@ Taylor expansion:
e2F(e?uf)Ef = F/(0)ufE® + o(1)

@ Paracontrolled analysis of rescaled, Taylor expanded equation.
o Key ingredient: Schauder estimates for semigroup generated by A,.

o Final result: If £ — & and =°£° — =¢ in appropriate spaces, then
uc — v,

v = Apav + F'(0)VE, v(0) = 4.
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Convergence of the stochastic data

Remains to study convergence of (£5,=°¢°).

o Central limit theorem: £° — €.

@ Convergence of =¢£° often via diagonal sequence argument

(Mourrat-Weber '16, Hairer-Shen '16, Chouk-Gairing-P. '16, ...).
Here: Use Wick product to write =¢£° as discrete multiple stochastic
integral; apply results of Caravenna-Sun-Zygouras '17 to identify limit.

@ Regularity from Kolmogorov's criterion = need high moments;
obtain bounds via martingale arguments and Wick products.

This concludes the convergence proof.
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Conclusion

o Consider interacting branching population in a random potential.

@ Model too complicated =- average over particle dynamics, formally
get generalized discrete PAM.

@ Generalized discrete PAM with small potential on large scales
universally described by linear continuous PAM.

@ To prove this we develop paracontrolled distributions on lattices,

@ and we provide a systematic approach based on Caravenna-Sun-Zygouras '17
and Wick products to control multilinear functionals of i.i.d. variables.
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Thank you
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