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Introduction

1. Introduction

We are given a separable Hilbert space H (norm | · |, inner product 〈·, ·〉), a Borel vector
field F : [0,T ]× H → H and a Borel probability measure ζ on H. Consider the following
continuity equation,∫ T

0

∫
H

[
Dtu(t, x) + 〈Dxu(t, x),F (t, x)〉

]
νt(dx) dt

= −
∫
H

u(0, x) ζ(dx), ∀ u ∈ FC 1
b,T ,

(CE)

where the unknown ν = (νt)t∈[0,T ] is a probability kernel such that ν0 = ζ.
Moreover, Dx denotes the gradient operator and FC 1

b,T is defined as follows: for

k ∈ N ∪ {∞} let FC k
b and FC k

0 denote the R-linear span of all functions f : H → R of
the form

f (x) = f̃ (〈h1, x〉, · · · , 〈hN , x〉), x ∈ H,

where N ∈ N, f̃ ∈ C k
b (RN), Ck0 (RN) respectively, and h1, · · · , hN ∈ Y , where Y is a dense

linear subspace of H to be specified later.
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Then FC k
b,T and FC k

0,T are defined to be the R–linear span of all functions
u : [0,T ]× H → R of the form

u(t, x) = g(t)f (x), (t, x) ∈ [0,T ]× H,

where g ∈ C 1([0,T ]) with g(T ) = 0 and f ∈ FC k
b , FC k

0 respectively.
Correspondingly, let VFC k

0,T be the R-linear span of all maps G : [0,T ]× H → H of the
form

G(t, x) =
N∑
i=1

ui (t, x)hi , (t, x) ∈ [0,T ]× H, (1)

where N ∈ N, u1, · · · , uN ∈ FC k
0,T and h1, · · · , hN ∈ Y . Clearly, FC∞0,T is dense in

Lp([0,T ]× H, ν) for all finite Borel measures ν on [0,T ]× H and all p ∈ [1,∞). VFC k
b

denotes the set of all G as in (1) with ui ∈ FC k
0,T replaced by ui ∈ FC k

b .

It is well known that problem (CE) in general admits several solutions even when H is
finite dimensional. So, it is natural to look for well posedness of (CE) within the special
class of measures (νt)t∈[0,T ] which are absolutely continuous with respect to a given
reference measure γ.
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In this case, denoting by ρ(t, ·) the density of νt with respect to γ,

νt(dx) = ρ(t, x)γ(dx), t ∈ [0,T ],

equation (CE) becomes∫ T

0

∫
H

[Dtu(t, x) + 〈Dxu(t, x),F (t, x)〉] ρ(t, x) γ(dx) dt

= −
∫
H

u(0, x) ρ0(x)γ(dx), ∀ u ∈ FC 1
b,T .

(CEρ)

Here ρ0 := ρ(0, ·) is given and ρ(t, ·), t ∈ [0,T ], is the unknown.
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Our basic assumption on γ is the following

Hypothesis 1

γ is a nonnegative measure on (H,B(H)) with γ(H) <∞ such that there exists a dense
linear subspace Y ⊂ H having the following properties:
For all h ∈ Y there exists βh : H → R Borel measurable such that for some ch > 0∫

H

ech|βh| dγ <∞

and ∫
H

∂hu dγ = −
∫
H

uβh dγ,

where ∂hu denotes the partial derivative of u in the direction h.
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Assume from now on that γ satisfies Hypothesis 1.

Remark

It is well known that the operator Dx = Fréchet–derivative with domain FC 1
b is closable

in Lp(H, γ) for all p ∈ [1,∞), see e.g. [AlRo90]. Its closure will again be denoted by Dx

and its domain will be denoted by W 1,p(H, γ).

Let D∗x : dom(D∗x ) ⊂ L2(H, γ;H)→ L2(H, γ) denote the adjoint of Dx .

Lemma 1

VFC 1
b ⊂ dom(D∗x ) and for G ∈ VFC 1

b , G =
∑N

i=1 uihi we have

D∗x G = −
N∑
i=1

(∂hi ui + βhi ui ).
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Proof

For v ∈ FC 1
b we have ∫

H

〈Dxv ,G〉H dγ =
N∑
i=1

∫
H

∂hi v ui dγ

=
N∑
i=1

∫
H

∂hi (v ui ) dγ −
N∑
i=1

∫
H

v ∂hi ui dγ

= −
∫
H

v
N∑
i=1

(∂hi ui + βhi ui ) dγ.

�

We stress that if H is infinite dimensional, βh is typically not bounded and not
continuous. Here are some examples.
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Examples

(i) (Gaussian case) Let Q be a symmetric positive defined operator of trace class on H
and γ := N(0,Q), i.e. the centered Gaussian measure on H with covariance
operator Q. Assume that ker Q = {0} and let Y be the linear span of all
eigenvectors of Q. Then Hypothesis 1 is fulfilled with this Y and for h ∈ Y ,
h = cih1 + · · ·+ cNhN with Qhi = λ−1

i hi , we have

βh(x) = −
N∑
i=1

ciλi 〈hi , x〉H , x ∈ H.
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(ii) (Case of symmetric reaction diffusions) Let H := L2((0, 1), dξ) and A := −∆ with
zero boundary conditions. Define

γ(dx) :=
1

Z
e−

1
4

∫ 1
0 |x(ξ)|4dξ N(0,− 1

2
A−1)(dx),

where

Z :=

∫
H

e−
1
4

∫ 1
0 |x(ξ)|4dξ N(0,− 1

2
A−1)(dx).

Then with Y as in (i) for Q = − 1
2
A−1 we find for h = cih1 + · · ·+ cNhN as in (i)

βh(x) = −
N∑
i=1

ciλi 〈hi , x〉H −
∫ 1

0

hi (ξ) x(ξ)3 dξ, for N(0,− 1
2
A−1)–a.e. x ∈ H

and obviously the exponential integrability condition holds in Hypothesis 1.

(iii) Non-symmetric diffusion also ok!
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Concerning F in (CE) we assume:

Hypothesis 2

(i) F : [0,T ]× H → H is Borel measurable and bounded.

(ii) There exist Fj ∈ VFC 2
0,T , j ∈ N, uniformly bounded, such that lim

j→∞
Fj = F dt ⊗ γ-a.e.

sup
j∈N

CFj <∞,

where CFj is defined below.

Lemma 2

Assume, besides Hypothesis 1, that F ∈ dom (D∗x ) and ϕ ∈ C 1
b (H).

Then ϕF ∈ dom (D∗x ) and we have

D∗x (ϕF ) = ϕD∗x (F )− 〈Dxϕ,F 〉.
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2. Main Existence Result

First, we note that if F ∈ dom (D∗x ) then a regular solution ρ to (CEρ) solves the
equation

Dtρ+ 〈F ,Dxρ〉 − D∗x F ρ = 0,

ρ(0, ·) = ρ0,
(CE% diff)

and vice versa. In fact, since for all u ∈ VFC 1
b,T∫ T

0

Dtu(t, x) ρ(t, x) dt = −
∫ T

0

u(t, x)Dtρ(t, x) dt − u(0, x)ρ0(x), x ∈ H

and (by Lemma 2)∫
H

〈Dxu(t, x),F (t, x)〉 ρ(t, x) γ(dx) =

∫
H

〈Dxu(t, x), ρ(t, x)F (t, x)〉 γ(dx)

=

∫
H

u(t, x)D∗x (ρF )(t, x) γ(dx) =

∫
H

u(t, x) ρ(t, x)D∗x F (t, x) γ(dx)

−
∫
H

u(t, x) 〈Dxρ(t, x),F (t, x)〉 γ(dx).
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2. Main Existence Result

This implies that (CEρ) is equivalent to (CE% diff) by the density of FC 1
b,T in

L2([0,T ]× H, dt ⊗ dγ).

Theorem

Assume that Hypotheses 1 and 2 hold. Let ζ := ρ0 · γ be a probability measure on
(H,B(H)) such that∫

H

ρ0 ln ρ0 dγ <∞.

Then there exists ρ : [0,T ]× H → R+, B([0,T ]× H)–measurable such that
νt(dx) = ρ(t, x)γ(dx), t ∈ [0,T ], are probability measures on (H,B(H)) satisfying (CE).
In addition∫ T

0

∫
H

ρ(t, x) ln ρ(t, x) γ(dx) dt <∞. (2)

Sketch of proof in Section 4.
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3. A Deterministic Feynman–Kac formula

Consider the equation
d

dt
ξ(t) = F̃ (t, ξ(t)),

ξ(s) = x , x ∈ Rd ,

(FE)

with F̃ regular. Let V : [0,T ]× Rd → R be also regular. We want to solve vs(s, x) + 〈Dxv(s, x), F̃ (s, x)〉 − V (s, x)v(s, x) = 0, 0 ≤ s < T ,

v(T , x) = ϕ(x), x ∈ H.

(∗)
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3. A Deterministic Feynman–Kac formula

Proposition

Assume F̃ ∈ Cb([0,T ]× Rd ;Rd) such that F̃ (t, ·) ∈ C 1(Rd ,Rd) for all t ∈ [0,T ] and let
V ∈ C([0,T ]× Rd) such that V (t, ·) ∈ C 1(Rd) for all t ∈ [0,T ] such that
DxV : [0,T ]× Rd → Rd is continuous. Let ϕ ∈ C 1(Rd). Then the solution to (∗) is
given by

v(s, x) = ϕ(ξ(T , s, x))e
∫ T
s V (u,ξ(u,s,x))du, (s, x) ∈ [0,T ]× Rd , (RF)

where for s ≤ t, ξ(t, s, x) denotes the solution to (FE) at time t when started at time s
at x ∈ Rd . In particular, v(·, x) ∈ C 1([0,T ]) for every x ∈ Rd and Dtv ∈ C([0,T ]× Rd).
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3. A Deterministic Feynman–Kac formula

Proof

We only present the main steps. For any partition {s = s0 < s1 < · · · < sn = T} of [s,T ]
we write

v(s, x)− ϕ(x) = −
n∑

k=1

[v(sk , x)− v(sk−1, x)],

which is equivalent to,

v(s, x)− ϕ(x) = −
n∑

k=1

[v(sk , x)− v(sk , ξ(sk , sk−1, x))]

−
n∑

k=1

[v(sk , ξ(sk , sk−1, x))− v(sk−1, x)] =: J1 − J2.

Concerning J1 we write thanks to Taylor’s formula

J1 ∼
n∑

k=1

〈Dxv(sk , x), ξ(sk , sk−1, x)− x〉 ∼
n∑

k=1

〈Dxv(sk , x), F̃ (sk , x)〉(sk − sk−1)

→
∫ T

s

〈Dxv(r , x), F̃ (r , x)〉dr .
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3. A Deterministic Feynman–Kac formula

Concerning J2 we write

J2 =
n∑

k=1

v(sk , ξ(sk , sk−1, x))− v(sk−1, x))

=
n∑

k=1

ϕ(ξ(T , sk , ξ(sk , sk−1, x)))e
∫ T
sk

V (u,ξ(u,sk ,ξ(sk ,sk−1,x)))du

−
n∑

k=1

ϕ(ξ(T , sk−1, x))e
∫ T
sk−1

V (u,ξ(u,sk−1,x))du

=
n∑

k=1

ϕ(ξ(T , sk−1, x))

[
e
∫ T
sk

V (u,ξ(u,sk−1,x))du − e
∫ T
sk−1

V (u,ξ(u,sk−1,x))du
]

=
n∑

k=1

v(sk−1, x))
(
e
−

∫ sk
sk−1

V (u,ξ(u,sk−1,x))du − 1
)

∼ −
n∑

k=1

v(sk−1, x)V (sk−1, x)(sk − sk−1)→ −
∫ T

s

v(r , x)V (r , x)dr .
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3. A Deterministic Feynman–Kac formula

Replacing J1 and J2 yields

v(s, x) = ϕ(x) +

∫ T

s

〈Dxv(r , x), F̃ (r , x)〉dr +

∫ T

s

v(r , x)V (r , x)dr

and the claim is proved. �
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3. A Deterministic Feynman–Kac formula

As a trivial consequence we obtain

Corollary

Suppose H = Rd and γ satisfies Hypothesis 1. Let F ∈ Cb([0,T ]× Rd ;Rd) such that
F (t, ·) ∈ C 1(Rd ;Rd) and D∗x F (t, ·) ∈ C 1(Rd) for all t ∈ [0,T ], and
D∗x F ∈ C([0,T ]× Rd), DxD

∗
x F ∈ C([0,T ]× Rd ;Rd). Then for every ρ0 ∈ C 1(Rd),

ρ0 ≥ 0,

ρ(t, x) := ρ0(ξ(T ,T − t, x))e
∫ t

0 D∗
x F (T−u,ξ(T−u,T−t,x))du

is a solution of (CE% diff), where ξ(·, s, x) is the solution to (FE) started at time s at

x ∈ Rd , with F̃ (t, x) := −F (T − t, x), (t, x) ∈ [0,T ]× Rd . Furthermore,
ρ(·, x) ∈ C 1([0,T ]) for every x ∈ Rd and Dtρ ∈ C([0,T ]× Rd).

Proof

Apply Proposition with F̃ as in the assertion above,

V (t, x) = D∗x F (T − t, x), (t, x) ∈ [0,T ]× Rd

and ϕ := ρ0. �
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Sketch of Proof of Theorem

4. Sketch of Proof of Theorem

By disintegration we shall reduce the proof to the case H = RN and by regularization to
the Corollary in Section 3.

Case 1 Suppose F ∈ VFC 2
0,T , ρ0 ∈ FC 1

b , ρ0 ≥ 0.

In this case we can find an orthonormal basis {ei : i ∈ N} of H which consists of
elements in Y such that for some N ∈ N (which we fix below)

F (t, x) =
N∑
i=1

gi (t) fi (x) ei , (t, x) ∈ [0,T ]× H,

where for 1 ≤ i ≤ N, gi ∈ C 1([0,T ]) with gi (T ) = 0 and fi ∈ FC 2
0 such that for x ∈ H

fi (x) = f̃i (〈e1, x〉, ..., 〈eN , x〉)

and
ρ0(x) = ρ̃0(〈e1, x〉, ..., 〈eN , x〉)

with f̃i ∈ C 2
0 (RN), ρ̃0 ∈ C 1

b (RN).
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4. Sketch of Proof of Theorem

Define
HN := lin span {e1, ..., eN}

and let ΠN : H → HN be the orthogonal projection. Let E := H⊥N be the orthogonal
complement of HN , i.e.

H = HN ⊕ E ≡ RN × E ,

hence, for z ∈ H, z = (x , y) with unique x ∈ RN , y ∈ E .
Letting ν := γ ◦ Π−1

N be the image measure on (E ,B(E)) of γ under Π−1
N . Then we have

the well known disintegration result for γ
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4. Sketch of Proof of Theorem

Lemma 3

There exists Ψ : RN × E → [0,∞), B(RN × E)–measurable such that

γ(dz) = γ(dx dy) = Ψ2(x , y)dx ν(dy),

where dx denotes Lebesgue measure on RN .
Furthermore, for every y ∈ E

Ψ(·, y) ∈ H1,2(RN , dx),

i.e. the Sobolev space of order 1 in L2(RN , dx).

Proof

See [AlRoZh93, Proposition 4.1]. �
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4. Sketch of Proof of Theorem

We have by Hypothesis 1 that for all 1 ≤ i ≤ N there exists ci ∈ (0,∞) such that

∞ >

∫
H

eciβei dγ =

∫
E

∫
RN

eciβei (x,y) Ψ2(x , y) dx ν(dy)

=

∫
E

∫
RN

exp

{
ci

∂

∂xi
Ψ2(x , y)/Ψ2(x , y)

}
Ψ2(x , y)dx ν(dy),

where we used that

βei (x , y) =
∂

∂xi
Ψ2(x , y)/Ψ2(x , y), (x , y) ∈ RN × E = H,

and the right hand side is defined to be zero on {Ψ = 0}. Hence we can find E0 ∈ B(E)
such that ν(E0) = 1 and∫

RN

exp

{
ci

∂

∂xi
Ψ2(x , y)/Ψ2(x , y)

}
Ψ2(x , y)dx <∞

for y ∈ E0. Below we fix y ∈ E0.
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4. Sketch of Proof of Theorem

Define for M, l ∈ N and (x , y) ∈ RN × E(≡ H)

ΨM(x , y) :=
(

Ψ2(x , y) ∧M
)1/2

,

ΨM,l(x , y) :=
(

Ψ2
M(·, y) ∗ δl

)1/2

(x),

where δl(x) = lNη(lx), x ∈ RN , η ∈ S(RN) (:= set of Schwartz test functions) η > 0,
η(x) = η(−x), x ∈ RN and

∫
RN η dx = 1.) Then by the Corollary in Section 3 applied

with the measure γM,l,y (dx) = Ψ2
M,l(x , y)dx replacing γ(dx), we know that

ρM,l(t, (x , y)) := ρ0(ξ(T ,T − t, x)) e
∫ t

0 D∗
M,l F (T−u,(ξ(T−u,T−t,x),y)) du, (t, x) ∈ [0,T ]×RN ,

where

D∗M,lF (r , (x , y)) := −
N∑
i=1

gi (r)

(
∂ei fi (x) + fi (x)

∂

∂xi
Ψ2

M,l(x , y)/Ψ2
M,l(x , y)

)
,

r ∈ [0,T ], x ∈ RN , solves
DtρM,l(t, (x , y)) + 〈F (t, x),DxρM,l(t, (x , y))〉 − D∗M,l(t, (x , y))ρM,l(t, (x , y)) = 0,

ρM,l(0, (x , y)) = ρ0(x).
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4. Sketch of Proof of Theorem

Lemma 4 (crucial!)

Let ε > 0. Then for all 1 ≤ N, l ,M ∈ N∫
RN

exp

[
ε

∣∣∣∣∣∂Ψ2
M,l

∂xi
(x , y)/Ψ2

M,l(x , y)

∣∣∣∣∣
]

Ψ2
M,l(x , y) dx

≤
∫
RN

exp

[
ε

∣∣∣∣∂Ψ2
M

∂xi
(x , y)/Ψ2

M(x , y)

∣∣∣∣] Ψ2
M(x , y) dx

≤
∫
RN

exp [ε |βei (x , y)|] Ψ2(x , y) dx .
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4. Sketch of Proof of Theorem

Proof

Obviously, the left hand side is dominated by∫
RN

exp

[
ε

∫
RN

(∣∣∣∣∂Ψ2
M

∂xi

∣∣∣∣ /Ψ2
M

)
(x̃ , y) Ψ2

M(x̃ , y) δl(x − x̃) dx̃(Ψ2
M,l(x , y))−1

]
Ψ2

M,l(x , y))dx ,

(3)

where we used that ∂
∂xi

Ψ2
M = 0 dx–a.e. on {Ψ2

M = 0}.
Applying Jensen’s inequality for fixed x ∈ RN to the probability measure

(Ψ2
M,l(x , y))−1 Ψ2

M(x̃ , y) δl(x − x̃) dx̃

and the convex function r → eεr , we obtain that (3) is dominated by∫
RN

∫
RN

exp

[
ε

(∣∣∣∣∂Ψ2
M

∂xi

∣∣∣∣ /Ψ2
M

)
(x̃ , y)

]
Ψ2

M(x̃ , y) δl(x − x̃) dx̃ dx .
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4. Sketch of Proof of Theorem

By Young’s Inequality and since ‖δl‖L1(RN ) = 1, the latter is dominated by∫
RN

exp

[
ε

(∣∣∣∣∂Ψ2
M

∂xi

∣∣∣∣ /Ψ2
M

)
(x , y)

]
Ψ2

M(x , y) dx . (4)

Hence the fist inequality of the assertion is proved. To show the second we note that

∂Ψ2
M

∂xi
= 1Ψ2<M

∂Ψ2

∂xi

Hence (4) is dominated by∫
RN

exp

[
ε1Ψ2<M

(∣∣∣∣∂Ψ2

∂xi

∣∣∣∣ /Ψ2

)
(x , y)

]
Ψ2(x , y) dx ,

which implies the second inequality of the assertion. �
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4. Sketch of Proof of Theorem

Let
δ := inf

1≤i≤N

ci
N (‖gi‖∞‖fi‖∞) + 1

.

Then by Lemma 4

CF :=

T∫
0

∫
RN

exp

[
−δ

N∑
i=1

gi (t)∂ei fi (x)

]+

exp

[
δ

N∑
i=1

‖gi‖∞‖fi‖∞

(∣∣∣∣∣∂iΨ2
M,l

∂xi

∣∣∣∣∣ /Ψ2
M,l

)
(x , y)

]

Ψ2
M,l(x , y) dxdt <∞. (!)
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Sketch of Proof of Theorem

4. Sketch of Proof of Theorem

Lemma 5

(i) For dx-a.e. x ∈ {Ψ(·, y) > 0} and ∀t ∈ [0,T ]

lim
M→∞

lim
k→∞

ρM,lk (t, (x , y)) = ρ(t, (x , y)) (from Corollary)

(ii) (uniform entropy estimate)∫
RN

ρM,l(t, (x , y))(ln ρM,l(t, (x , y))− 1)Ψ2
M,l(x , y) dx

≤ e
t
δ

[ ∫
RN

ρ0(x)| ln ρ0(x)− 1|Ψ2
M,l(x , y) dx + CF

+
t

δ
| ln 1

δ
|
∫
RN

ρ0(x)Ψ2
M,l(x , y) dx +

∫
Ψ2

M,l(x , y) dx

]
∀t ∈ [0,T ]

! Can pass to the limit to get the same entropy estimate for ρ.
Hence can pass to the limit in (CE) and complete the proof of Step 1.
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Sketch of Proof of Theorem

4. Sketch of Proof of Theorem

Before we proceed to the general case and go from Fj and their corresponding ρj to F
and corresponding ρ, let us note that we have made the following underlying (standard)
heuristics rigorous: Multiplying (CEρ diff) by ln ρj and integrating with γ, we find

∫
H
Dtρj ln ρj dγ

= −
∫
H

〈Fj ,Dxρj〉H ln ρj dγ +

∫
H

D∗(Fj)ρj ln ρj dγ

= −
∫
H

〈Fj ,Dx(ρj ln ρj − ρj)〉H dγ +

∫
H

D∗(Fj)(ρj ln ρj − ρj) dγ +

∫
H

D∗(Fj)ρj dγ

≤
∫
H

eδ(D∗(Fj ))− dγ +

∫
H

(
1
δ
ρj ln( 1

δ
ρj)− 1

δ
ρj
)
dγ,

where the last step follows by Young’s Inequality. Since
∫
H
ρj dγ = 1, this implies that∫ T

0

∫
H

ρj ln ρj dγ dt ≤
(
M + 1

δ
ln 1
δ
− 1

δ

)
e

1
δ
T T . (∗∗)
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Sketch of Proof of Theorem

4. Sketch of Proof of Theorem

We get (∗∗) rigorously by passing to the limit in Lemma 5 (ii).
Hence (selecting a subsequence if necessary)

ρj → ρ weakly in L1([0,T ]× H, dt ⊗ dγ).

Now let us show that ρ solves (CE):
We have for all u ∈ FC 1

b,T∫ T

0

∫
H

[
d

dt
u(t, x) + 〈Dxu(t, x),Fj(t, x)〉H

]
ρj(t, x) γ(dx) dt

= −
∫
H

u(0, x) ρj(0, x)γ(dx).

So, if ρj(0, ·)→ ρj(0, ·) in L1(H, γ), we only have to consider the convergence of the left
hand side, more precisely only the part of it involving Fj .
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Sketch of Proof of Theorem

4. Sketch of Proof of Theorem

But ∣∣∣∣∫ T

0

∫
H

(〈Dxu,Fj〉H ρj − 〈Dxu,F 〉H ρ) dγ dt

∣∣∣∣
≤ ‖Du‖∞

∫ T

0

∫
H

|Fj − F |H ρj dγ dt +

∣∣∣∣∫ T

0

∫
H

〈F ,Du〉 (ρj − ρ) dγ dt

∣∣∣∣
Because of the boundedness of 〈F ,Du〉 the second term on the right hand side converges
to 0 if j →∞. Let ε > 0. Then, by Young’s Inequality, the first term on the right hand
side is up to a constant dominated by∫ T

0

∫
H

e
1
ε
|Fj−F |H dγ dt + ε

∫ T

0

∫
H

ρj ln(ερj) dγ dt,

of which the first summand converges to zero as j →∞, since Fj ,F are uniformly
bounded, while the second summand is dominated by

ε

∫ T

0

∫
H

ρj ln ρj dγ dt + ε ln ε,

which can be made arbitrarily small uniformly in j because of (∗∗). The entropy
condition for ρ in the Theorem then follows by Komlos’ Lemma.
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