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1. Motivation

• γ – the standard Gaussian measure in Rd ,

γ(dx) := (2π)−d/2 exp(−|x |2/2) dx

• L – the Ornstein–Uhlenbeck operator

L := ∇∗∇

with ∇ the Malliavin derivative: the realisation of the gradient in
L2(Rd , γ).

Integrating by parts, we obtain

L = −∆ + x · ∇.



Consider the Dirac operator on L2(Rd)× L2(Rd ;Cd):

D =

[
0 ∇∗
∇ 0

]

Then

D2 =

[
∇∗∇ 0

0 ∇∇∗
]

=

[
L 0
0 L

]
with L := ∇∇∗.

Key observation:

L does not belong to the functional calculus of ∇,

but

[
L 0
0 L

]
belongs to the functional calculus of D.
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In a more general (infinite-dimensional, non-symmetric) setting this enabled
us to prove:

Theorem. (Maas, vN ’09) For 1 < p <∞ TFAE:

1. The Riesz transform ∇/
√
L is bounded on Lp(Rd , γd)

2. L has a bounded H∞-calculus on Lp(Rd , γd)

Observation: In terms of annihilation and creation operators:

∇ = (a1, . . . , ad), ∇∗ = (a†1, . . . , a
†
d)

Associated with these are the position and momentum operators

qj =
1√
2

(aj + a†j ), pj =
1

i
√

2
(aj − a†j )

=⇒ Study L in terms of Q = (q1, . . . , qd) and P = (p1, . . . , pd)
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2. The Ornstein-Uhlenbeck semigroup

• −L generates a C0-semigroup of contractions on Lp(Rd , γ) for all
p ∈ [1,∞), the so-called Ornstein-Uhlenbeck semigroup, given by

P(t)f (x) =

∫
Rd

f (e−tx +
√

1− e−2ty)dγ(y)

=

∫
Rd

Mt(x , y)g(y)dy

with

Mt(x , y) =
1

(2π(1− e−2t))d/2
exp
(
−|e

−tx − y |2

2(1− e−2t)

)
the so-called Mehler kernel.
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Probabilistic interpretation:

e−
1
2 tL = Ef (X x

t )

with X x
t the solution of the stochastic differential equation dXt = −1

2
Xt dt + dBt

X0 = x

with (Bt)t≥0 a standard Brownian motion.



Analyticity:

• The OU is an analytic C0-semigroup of contractions on Lp(Rd , γ) for
all p ∈ (1,∞), of angle φp, where

cosφp =
∣∣∣2
p
− 1
∣∣∣

• The angle φp is optimal [Chill-Fašangová-Metafune-Pallara 05]

• The domain of analyticity of e−zL in Lp(Rd , γ) equals the Epperson
region

Ep = {x + iy ∈ C : | sin(y)| < tan(φp) sinh(x)}

and e−zL is contractive there.

[Epperson 89], [Garćıa Cuerva-Mauceri-Meda-Sjögren-Torrea 01]
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The region Ep for p = 4/3 (red)
and the sector of angle φp (orange)



Hypercontractivity:

• e−tL is contractive from Lp(Rd , γ) to Lq(Rd , γ) if and only if

e−2t ≤ p − 1

q − 1

[Nelson 66]

• e−zL is contractive from Lp(Rd , γ) to Lq(Rd , γ) if and only if for all
w ∈ C

(Im(we−z))2 + (q − 1)(Re(we−z))2 ≤ (Imw)2 + (p − 1)(Rew)2

[Epperson 89]
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3. Position and momentum

On L2(Rd), consider the position and momentum operators

X = (x1, . . . , xd), D = (
1

i
∂1, . . . ,

1

i
∂d).

They satisfy the commutation relations

[xj , xk ] = [Dj ,Dk ] = 0 [xj ,Dk ] = iδjk . (1)

Note: ∑
j

(D2
j + x2

j ) = −∆ + |x |2
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Let m(dx) = (2π)−d/2dx denote the normalised Lebesgue measure on Rd .

• The pointwise multiplier

Ef (x) := e(x)f (x)

with e(x) := exp(− 1
4 |x |

2), is unitary from L2(Rd , γ) onto L2(Rd ,m).

• The dilation
δf (x) := (

√
2)d f

(√
2x
)

is unitary on L2(Rd ,m).

Consequently,

• The operator
U := δ ◦ E

is unitary from L2(Rd , γ) onto L2(Rd ,m).
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By [Segal 56] the operator U establishes a unitary equivalence

W = U−1 ◦F ◦ U

of the Fourier-Plancherel transform F as a unitary operator on L2(Rd ,m),

F f (y) =

∫
Rd

f (x) exp(−ix · y)dm(x),

with the unitary operator W on L2(Rd , γ), defined for polynomials f by

W f (y) :=

∫
Rd

f (−iy +
√

2x)dγ(x).

We have the following representation of this operator in terms of the second
quantisation functor Γ:

W = Γ(−i).

NB.: Without the dilation δ, this identity would not come out right.



By [Segal 56] the operator U establishes a unitary equivalence

W = U−1 ◦F ◦ U

of the Fourier-Plancherel transform F as a unitary operator on L2(Rd ,m),

F f (y) =

∫
Rd

f (x) exp(−ix · y)dm(x),

with the unitary operator W on L2(Rd , γ), defined for polynomials f by

W f (y) :=

∫
Rd

f (−iy +
√

2x)dγ(x).

We have the following representation of this operator in terms of the second
quantisation functor Γ:

W = Γ(−i).

NB.: Without the dilation δ, this identity would not come out right.



By [Segal 56] the operator U establishes a unitary equivalence

W = U−1 ◦F ◦ U

of the Fourier-Plancherel transform F as a unitary operator on L2(Rd ,m),

F f (y) =

∫
Rd

f (x) exp(−ix · y)dm(x),

with the unitary operator W on L2(Rd , γ), defined for polynomials f by

W f (y) :=

∫
Rd

f (−iy +
√

2x)dγ(x).

We have the following representation of this operator in terms of the second
quantisation functor Γ:

W = Γ(−i).

NB.: Without the dilation δ, this identity would not come out right.



Gaussian position and momentum

On L2(Rd , γ), consider the Gaussian position and Gaussian momentum
operators

Q = (q1, . . . , qd), P = (p1, . . . , pd),

where

qj := U−1 ◦ xj ◦ U, pj := U−1 ◦ Dj ◦ U.

They satisfy the Heisenberg commutation relations

[pj , pk ] = [qj , qk ] = 0, [qj , pk ] = iδjk .

We have
1

2
(P2 + Q2) = L +

d

2
I ,

with L the OU operator (in the physics literature: L is the ‘boson number
operator’, 1

2 (P2 + Q2) the ‘quantum harmonic oscillator’, and d
2 the ‘ground

state energy’).



Gaussian position and momentum

On L2(Rd , γ), consider the Gaussian position and Gaussian momentum
operators

Q = (q1, . . . , qd), P = (p1, . . . , pd),

where

qj := U−1 ◦ xj ◦ U, pj := U−1 ◦ Dj ◦ U.

They satisfy the Heisenberg commutation relations

[pj , pk ] = [qj , qk ] = 0, [qj , pk ] = iδjk .

We have
1

2
(P2 + Q2) = L +

d

2
I ,

with L the OU operator (in the physics literature: L is the ‘boson number
operator’, 1

2 (P2 + Q2) the ‘quantum harmonic oscillator’, and d
2 the ‘ground

state energy’).



Gaussian position and momentum

On L2(Rd , γ), consider the Gaussian position and Gaussian momentum
operators

Q = (q1, . . . , qd), P = (p1, . . . , pd),

where

qj := U−1 ◦ xj ◦ U, pj := U−1 ◦ Dj ◦ U.

They satisfy the Heisenberg commutation relations

[pj , pk ] = [qj , qk ] = 0, [qj , pk ] = iδjk .

We have
1

2
(P2 + Q2) = L +

d

2
I ,

with L the OU operator (in the physics literature: L is the ‘boson number
operator’, 1

2 (P2 + Q2) the ‘quantum harmonic oscillator’, and d
2 the ‘ground

state energy’).



4. The Weyl calculus

For Schwartz functions a : R2d → C define

a(X ,D)f (x) :=

∫
Rd

∫
Rd

â(u, v) exp(i(uX + vD))f (x)m(du)m(dv).

Here

• â is the Fourier-Plancherel transform of a,

• the unitary operators exp(i(uX + vD)) on L2(Rd , γ) are defined
through the action

exp(i(uX + vD))f (x) := exp(iux + 1
2 iuv)f (v + x)

(formally apply the Baker-Campbell-Hausdorff formula and use the
commutator relations, or note that it gives a unitary representation of
the Heisenberg group; see [Hall 13]).
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• â is the Fourier-Plancherel transform of a,

• the unitary operators exp(i(uX + vD)) on L2(Rd , γ) are defined
through the action

exp(i(uX + vD))f (x) := exp(iux + 1
2 iuv)f (v + x)

(formally apply the Baker-Campbell-Hausdorff formula and use the
commutator relations, or note that it gives a unitary representation of
the Heisenberg group; see [Hall 13]).



The Gaussian Weyl calculus

For Schwartz functions a : R2d → C define

a(Q,P) := U−1 ◦ a(X ,D) ◦ U.

By explicit computation,

a(Q,P)f (x) =

∫
Rd

Ka(x , y)f (y) dy ,

where

Ka(x , y) :=
1

(2
√

2π)d

∫
Rd

a(
x + y

2
√

2
, ξ)

× exp(iξ(
x − y√

2
)) exp( 1

4 |x |
2 − 1

4 |y |
2) dξ.
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Recall the identity 1
2 (P2 + Q2) = L + 1

2 I . Thus one would expect

e−zL = e−
1
2 z exp(− 1

2z(P2 + Q2)).

But this ignores the commutation relations of P and Q.

Rather, the Weyl calculus gives:

Theorem 1.

e−zL =
(

1 +
1− e−z

1 + e−z

)d
exp
(
−1− e−z

1 + e−z
(P2 + Q2)

)
.

NB.: The RHS can be computed explicitly using the integral representation
for the Weyl calculus.

Sketch of the proof: By elementary computation, the integral representation

for as(Q,P), with s = 1−e−t

1+e−t , reduces to the Mehler formula for e−tL.
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Theorem 1 suggests the study of the family of operators

exp(−s(P2 + Q2)), Res > 0.

With
as(x) = exp(−s(|x |2 + |y |2))

we obtain

exp(−s(P2 + Q2))f (x) =

∫
Rd

Kas (x , y)f (y)dy

=
1

2d(2πs)d/2

∫
Rd

exp(− 1
8s (1− s)2(|x |2 + |y |2) + 1

4 ( 1
s − s)xy)f (y)dγ(y).

Note the symmetry in x and y .
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Consider the Gaussian measure in Rd with variance τ ,

γτ (dx) := (2πτ)−d/2 exp(−|x |2/2τ) dx .

Define, for Re s > 0,

r±(s) :=
1

2
Re (

1

s
± s).

Theorem 2. Let p, q ∈ [1,∞) and let α, β > 0. If 1− 2
αp + r+(s) > 0,

2
βq − 1 + r+(s) > 0, and

(∗) (r−(s))2 ≤
(
1− 2

αp
+ r+(s)

)( 2

βq
− 1 + r+(s)

)
,

then exp(−s(P2 + Q2)) is bounded from Lp(Rd , γα) to Lq(Rd , γβ).



The case ‘<’ in (∗) follows by a simple application of Hölder’s inequality!

To get the result with ‘≤’ in (∗), a Schur estimate is used instead:

Lemma. (Schur estimate) Let p, q, r ∈ [1,∞) be such that 1
r = 1− ( 1

p −
1
q ).

If K ∈ L1
loc(R2) and φ, ψ : R→ (0,∞) are integrable functions such that

sup
y∈Rd

(∫
Rd

|K (y , x)|r ψ
r/q(y)

φr/p(x)
dx
)1/r

=: C1 <∞,

and

sup
x∈Rd

(∫
Rd

|K (y , x)|r ψ
r/q(y)

φr/p(x)
dy
)1/r

=: C2 <∞

then

TK f (y) :=

∫
R
K (y , x)f (x)dx (f ∈ Cc(R))

defines a bounded operator TK from Lp(Rd , φ(x)dx) to Lq(Rd , ψ(x)dx)
with norm

‖TK‖Lp(Rd ,φ(x) dx)→Lq(Rd ,ψ(x) dx) ≤ C
1− r

q

1 C
r
q

2 .



Proposition. Theorem 2 implies Epperson’s Lp-Lq boundedness criterion.

Proof. Substitute z = x + iy and check that Epperson’s criterion implies
the positivity conditions of Theorem 2.

This involves only elementary (but quite miraculous) high-school algebra.

The crucial thing is to recognise (we used MAPLE) that

(q − 1)((1 − (x2 + y2))2 + 4y2)2 + (2 − p − q)(1 − (x2 + y2))2((1 + x)2 + y2)2

−(2 − p − q + pq)4y2((1 + x)2 + y2)2 + (p − 1)((1 + x)2 + y2)4︸ ︷︷ ︸
the positivity condition in Epperson’s criterion

factors as

[
4((1 + x)2 + y2)2]︸ ︷︷ ︸

≥0

×
[
(p − q)x(1 + x2 + y2) + (2p + 2q − 4)x2 − (pq − 2p − 2q + 4)y2]

.︸ ︷︷ ︸
the positivity condition in Theorem 2
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Corollary. For p ∈ (1,∞), the operator-valued function

s 7→ exp(−s(P2 + Q2))

is bounded and holomorphic on the sector Σφp .

Proof. For q = p and z = x + iy , Epperson’s Lp-Lq criterion reduces to

p2(
x2

x2 + y2
− 1) + 4p − 4 > 0,

which is equivalent to saying that s ∈ Σφp .

NB: s = 1−e−z

1+e−z maps the Epperson region Ep to Σφp !

Thus we recover that Ep is the Lp-domain of holomorphy of e−zL.
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For p = 1 the following is due to [Bakry, Bolley, Gentil 12] by very different
methods (they get contractivity):

Corollary. Let p ∈ [1, 2]. For all Re z > 0 the operator exp(−zL) maps
Lp(Rd , γ2/p) into L2(Rd , γ).

As a consequence, the semigroup generated by −L extends to an analytic
C0-semigroup on Lp(Rd , γ2/p) of angle 1

2π.

(Recall that −L extends to an analytic C0-semigroup on Lp(Rd , γ) of
non-trivial angle φp.)
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5. Work in progress

Much of this can be generalised to the setting of a Weyl pair (A,B) of two
densely defined linear operators on a Banach space X such that

(a) iA and iB generate bounded C0-groups on X

(b) e isAe itB = e iste itBe isA for all s, t ∈ R

Proposition. If (A,B) be a Weyl pair,

1. −(A2 + B2) + 1
2 generates an bounded analytic semigroup on X

(↔ OU operator in d = 1)

2. exp(i(uA + iB)) is unitary for all u, v ∈ R
(↔ Schrödinger representation)

Thus a Weyl calculus a 7→ a(A,B) can be defined.
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We recover the formula

e−tL = (1 + s) exp(−s(A2 + B2))

with s = 1−e−t

1+e−t .

Conjecturally (work in progress),

I A2 + B2 has a bounded H∞-calculus

I the Weyl calculus extends to functions a in suitable symbol classes

THANK YOU FOR YOUR ATTENTION!
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