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The controllability Gramian of a stable LTI system is defined as P =
∫ ∞

0 eAtBBTeAt dt. It can be characterized as the solution of the Lyapunov equation
AP + PAT + BBT = 0. We will show that solving the Lyapunov equation with the ADI method is equivalent to a particular integral approximation.

Approximating the Gramian via quadrature
The Gramian P is approximated via the midpoint rectangle method.
With h(t) := eAtB this results in
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T,

with t0 = 0 and quadrature weights ωi = ti − ti−1. To obtain the
approximation hj ≈ h(
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2 ), j = 1, . . . , N, the ODE ẋ = Ax,

x(0) = B is solved with j − 1 steps of the trapezoidal rule with step
sizes ω1, . . . , ωj−1, followed by one backward Euler step with step size
1
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With one final backward Euler step this leads to
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xj−1 = (−1)j−1RjTj−1Sj−1 · · · T1S1B.

Approximating the Gramian via CF-ADI
In the Cholesky factor ADI method [1] the solution of the Lyapunov
equation is approximated by the low-rank factorization

P ≈ [z1, z2, . . . , zN][z1, z2, . . . , zN]
T.

With the so called ADI parameters p1, . . . , pN ∈ C− the CF-ADI it-
eration is defined as follows:
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After j steps the iteration leads to
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It’s equivalent
With pi ∈ R− and the choice

ωi =
2
−pi

the iteration matrices Ti = T̃i, Si = S̃i and
Ri = R̃i coincide. Thus we have√

ωjhj = (−1)j−1zj

and the approximation to the Gramian P is
the same for both methods.
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