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Introduction
Data assimilation is a way of combining observa-
tions with a numerical model, to create a better
estimate of the true state.
We propose an approach for implementing the
weak four-dimensional variational data assimi-
lation method with a low-rank solution in order
to achieve a reduction in storage space. We have
• A state xk ∈ Rn at time tk, with
xk+1 =Mk(xk) + ηk.

• A background estimate xb of the truth x∗0
with x∗0 = xb + e0

• Observations yk = Hk(x∗k) + εk ∈ Rpk .

Mk and Hk are (potentially non-linear) model
and observation operators. We assume the er-
rors ηk, e0, εk are Gaussian with zero mean and
covariances Qk, B and Rk respectively. Weak
four dimensional variational data assimilation
(Weak 4D-Var) minimises the cost function
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which is a weighted least squares to the back-
ground, observations, and the model trajectory.

Incremental 4D-Var
Incremental 4D-Var is a form of Gauss-Newton
iteration. The 4D-Var cost function is approxi-
mated by a quadratic function of an increment

δx(`) =
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with δx(`) = x(`+1) − x(`), and iterate (`).
At the minimum we have

∇J̃(δx) = LTD−1(Lδx− b)+HTR−1(Hδx− d) = 0.

Taking Mk ∈ Rn×n and Hk ∈ Rn×pk , as the
linearisations ofMk and Hk about x(`), we let

L = tridiag([−M1, · · · ,−MN ], I, 0),

D = diag(B,Q1, · · · , QN ),

R = diag(R0, · · · , RN ), H = diag(H0, · · · , HN ),

b =
[
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T
1 , · · · , cTN
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,
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Saddle point formulation
Let λ = D−1(b − Lδx) and µ = R−1(d − Hδx),
at the minimum we have

∇J̃ = LTλ+ HTµ = 0. (1)
Additionally, we have

Dλ+ Lδx = b, (2)
Rµ+ Hδx = d, (3)

and (1), (2) and (3) can be combined to give:D 0 L
0 R H
LT HT 0

 λµ
δx

 =

bd
0

 , (4)

which is solved for δx.

Kronecker formulation
We may rewrite the saddle point matrix as E1 ⊗B + E2 ⊗Q 0 I ⊗ In + C ⊗M

0 I ⊗R I ⊗H
I ⊗ In + CT ⊗MT I ⊗HT 0

 ,
where we make the additional assumptions that
Qk = Q, Rk = R, Hk = H, Mk = M and the
number of observations pk = p for each k. Here
C = tridiag(−1, 0, 0),
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. . .
1

 .
The matrices C,E1, E2, I ∈ RN+1×N+1, whilst
B,Q,M, In ∈ Rn×n, H ∈ Rp×n, and R ∈ Rp×p.

Low-Rank GMRES
We use GMRES despite the symmetric matrix
to experiment with constraint preconditioners.
To implement a low-rank version of GMRES,
we need:
Vector addition
Vectors in GMRES become vectorised matrices,
so Xk1 = [Yk1, Zk1], Xk2 = [Yk2, Zk2] for
k = 1, 2, 3 gives addition, and x = y + z is

vec
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Matrix vector products come from the
simultaneous matrix equations, giving X̂ij after
multiplication by the saddle point matrix

X̂11 = [BX11, QX11, X31,MX31],

X̂12 = [E1X12, E2X12, X32, CX32],

X̂21 = [RX21, HX31],

X̂22 = [X22, X32],

X̂31 = [X11,M
TX11, H

TX21],

X̂32 = [X12, C
TX12, X22].

Inner products
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Truncating after concatenation steps, we obtain
a low-rank implementation of GMRES.

Conclusions
Weak constraint 4D-Var is a very large optimisation problem, however we have shown that under
certain assumptions, low-rank solutions exist. Experimentally this appears to be the case under
relaxed assumptions also. We have also found that preconditioning may not be necessary, with the
low-rank approach acting like a regularisation. For more information and references, please see:
[1] M. A. Freitag and D. L. H. Green. A low-rank approach to the solution of weak constraint variational data

assimilation problems. ArXiv e-prints, 1702.07278

Numerical experiments with 1D advection-diffusion
We consider the 1D advection-diffusion system, with a discretisation of n = 100, and N + 1 =
200 assimilation steps. We take partial, noisy observations in all 200 timesteps with p = 20, and
observations at every fifth component. The covariances are Bi,j = 0.1 exp(−|i−j|50 ), Q = 10−4I100,
R = 0.01I20, leading to a saddle point system of size 44, 000.
We compare the root mean squared error (RMSE) of our low-rank implementation, the full-rank case
(solving the saddle point system using backslash), and the background estimate with no assimilation.
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Figure 1: RMSE for 1D A-D problem with partial, noisy observations, (r = 20) on left, (r = 5) on right.

We see the low-rank approach achieves similar results to the full-rank case, and importantly signifi-
cantly better than performing no assimilation on our initial guess.
These low-rank solutions result in storage reductions of 70 and 92.5% respectively, requiring 6, 000
or 1, 500 entries as opposed to 20, 000.

Simultaneous Matrix Equations

Using the identity (BT⊗A)vec (C) = vec (ACB) ,
we obtain the simultaneous matrix equations:

BΛE1 +QΛE2 +X +MXCT = b,

RU +HX = d,

Λ +MT ΛC +HTU = 0.

where λ, δx, b, µ and d are vectorised forms of the
matrices Λ, X,b ∈ Rn×N+1 and U,d ∈ Rp×N+1

respectively. Let us now suppose the matrices
Λ, U,X have low-rank representations,

Λ = WΛV
T
Λ , U = WUV

T
U , X = WXV

T
X .


