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Data assimilation is a way of combining observa- We may rewrite the saddle point matrix as
tions with a numerical model, to create a better
timate of the t tate.
estimate of the true state | | 0 IR I o H
We propose an approach for implementing the T 0 n
: : .. .. I®LL,+C" M I ® H 0
weak four-dimensional variational data assimi- - -

lation method with a low-rank solution in order where we make the additional assumptions that
to achieve a reduction in storage space. We have Q. =Q, R, = R, H, = H, M, = M and the

o A state ri € R" at time t;, with number of observations py = p for each k. Here
Tri1 = My(zk) + 1. C' = tridiag(—1,0,0),
I 0

"E1QB+FE;®Q 0 IQI,+C QM

e A background estimate z° of the truth
with x§ = b + €0 E = . , and Fy =

o Observations yr = Hy(x;) + € € RP+. 0- 5

M. and Hy are (potentially non-linear) model The matrices C, Eq, Ep, I € RYTPXNFL whilst
and observation operators. We assume the er- B,Q,M, I, e R"*" H € RP*", and R € RP*P.
rors 1)y, €q, €. are Gaussian with zero mean and
covariances (Jr, B and R respectively. Weak
four dimensional variational data assimilation

(Weak 4D-Var) minimises the cost function Using the identity (B ®.A)vec (C) = vec (ACB) ,
we obtain the simultaneous matrix equations:
J(x) = llzo — 25|51 + D _lluk — Hr(zn)|3 - BAE) + Q\Ey+ X + M XC" =,
. =0 RU+ HX = d,
+Z‘|$k—/\4k($k—1)“é—1, A+ MUAC+HTU =0,
k=1 :
where A\, 0x, b, 1 and d are vectorised forms of the
which is a weighted least squares to the back- matrices A, X, b € R?*¥*1 and U, d € RP*N+1
ocround, observations, and the model trajectory. respectively. Let us now suppose the matrices

A, U, X have low-rank representations,

A=WpVE, U=WygVy, X =WxVsi.

Incremental 4D-Var is a form of Gauss-Newton
iteration. The 4D-Var cost function is approxi-
mated by a quadratic function of an increment

T
50 = [(620)7, (62O 0x50)7]

with dz(¥) = (D — 20 "and iterate (£).
At the minimum we have

| VJ(6z) = LTD ' (Léx —b) + H'R ' (Héz — d) = 0.

Taking M; € R™"*™ and H, € R"*P+  as the
linearisations of M and H; about w(@, we let

L = tridiag([— My, --- , —Mx], I,0),

D = diag(B,Q1, - ,QnN),
R = dlag(R()a 7RN)7 H = dlag(H()? 7HN)7
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Let A\ = D '(b— Léx) and p = R™1(d — Héx),
at the minimum we have

VJ=L"\+H 'y =0. (1)

| or 1,500 entries as opposed to 20, 000.

Additionally, we have _ g TR
DA+ Loz = b, (2) ‘ - =
Ry + Hox = d, (3)
and (1), (2) and (3) can be combined to give: M
p 0 L A b relaxed assumptions also. We have also found that
0 R H| |n|=|d|, (4)
_LT H! 0] [ox 0

which is solved for ox. assimilation problems. ArXiv e-prints, 1702.07278

Figure 1: RMSE for 1D A-D problem with partial, noisy observations, (r = 20) on left, (r = 5) on right. [

! We see the low-rank approach achieves similar results to the full-rank case, and importantly signifi- &S
cantly better than performing no assimilation on our initial guess.
These low-rank solutions result in storage reductions of 70 and 92.5% respectively, requiring 6, 000

Weak constraint 4D-Var is a very large optimisation problem, however we have shown that under
certain assumptions, low-rank solutions exist. Experimentally this appears to be the case under

low-rank approach acting like a regularisation. For more information and references, please see:
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We use GMRES despite the symmetric matrix
to experiment with constraint preconditioners.
To implement a low-rank version of GMRES,
we need:

Vector addition

Vectors in GMRES become vectorised matrices,
so Xp1 = [Ye1, Zri1l, Xio = [Yie, Zjeo| for
k=12, 3 gives addition, and £ = y + z is

_XllX,iTQ_ _YllYfg T lezg_
vec | | X21 X3 | | =vec | | Ya1Yas + Zo1Z5,
_X31Xg;_ _Y31Y3€ T Z31 ZgQ_

Matrix vector products come from the
simultaneous matrix equations, giving X;; after
multiplication by the saddle point matrix

X11 = |BX11,QX11, X31, M X341,
X192 = [E1 X2, B2 X2, X32, C X33,
RXo1, HX34),

X9 = | Xa22, X32),

X31 = [X11, M" Xq1, H" Xo1],
X2 = [X12,C" X2, Xo2].

Inner products

(w, fu(i)> — trace (WHV(Z)(V(Z))TWm)

a
||

_|_ tl‘ace (W21 V(Z) (V(Z)) WQQ)

+ trace (WSlV(Z)(V(Z)) ng) :

Truncating after concatenation steps, we obtain
a low-rank implementation of GMRES.

We consider the 1D advection-diffusion system, with a discretisation of n = 100, and N + 1 =
200 assimilation steps. We take partial, noisy observations in all 200 timesteps with p = 20, and

observations at every fifth component. The covariances are B; ; = 0.1 exp(_h_]'), Q = 10~*I g0,
R = 0.0115p, leading to a saddle point system of size 44, 000.

We compare the root mean squared error (RMSE) of our low-rank implementation, the full-rank case
(solving the saddle point system using backslash), and the background estimate with no assimilation.
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preconditioning may not be necessary, with the



