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Outline

The Loewner framework for linear systems
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The Loewner matrix
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row array (wj,vj), j=1,---,4q,
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Given:
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The Loewner matrix

Given:
row array (wj,vj), j=1,---,4q,
column array (A\j,w;), i=1,--- kK,

the associated Loewner matrix is:

Vi —Wy
H1—Aq

Vq—W-I
g =X

If w; = a(x), v = a(y),

Vi —Wy
My — Ak

€Caxk
Vq—.Wk
Hg—Ak

are samples of g:
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The Loewner matrix

Given:
row array (wj,vj), j=1,---,4q,
column array (A\j,w;), i=1,--- kK,

the associated Loewner matrix is:

Vi—Wy Vi —Wy
H1—Aq My — Ak

L= : o : SCERE
Vg—Wyq o Vg —Wg
Kg—X1 Hg—Ak

If w; =g(\), v; = g(p;), are samples of g:

Main property. Let L be as above.

Then k,q > degg = rankL =degg.

Karel Lowner (1893 - 1968)

Ch. Loewner

e Born in Bohemia
e Studied in Prague under Georg Pick
e Emigrated to the US in 1939

e Seminal paper:
Uber monotone Matrixfunctionen,
Math. Zeitschrift (1934).
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Rational interpolation and the Loewner matrix

e Lagrange basis for space of polynomials of degree at most n.

Given X\, € C,i=1,--- ,n+1: \; # \;, | # j, define

qi(s) =My (= Ap), i=1,--- ., n+1.
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Rational interpolation and the Loewner matrix

e Lagrange basis for space of polynomials of degree at most n.

Given \; € C,i=1,--- ,n+1: \; # N, i # j, define

qi(s) =My (= Ap), i=1,--- ., n+1.

e For given constants o, w;, i = 1,--- ,n+ 1, consider

n+1

Za, 7A =0, aj #0.
i

e Solving for g we obtain

Zn+1 :—WI
g(s) = ﬁ = g(A) = w;.

i=1 s=x;

This is the barycentric Lagrange interpolation formula.

Reference: J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM
Review, vol. 46, pp. 501-517, 2004.



The free parameters «;, can be determined so that additional constraints are satisfied:
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for given (u),v)), i # pj-
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The free parameters «;, can be determined so that additional constraints are satisfied:
() =vj, j=1,---,r,

for given (uj, V), i # pj. For this to hold IL.ec = 0, where

V{—Wy o Vi—Wp, 4
H1—2q H1—Api1 ay,
L= : . ; ecrxnt) ¢ = ; e @,
Vr—Wy Vr—Wni1q o
oo n+1
r—Aq Hr—XAntt +

Reference on function approximation and ChebFun in this framework:
Y. Nakatsukasa, O. Sete, and L.N. Trefethen, The AAA algorithm for rational interpolation.
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Descriptor representation of interpolants and rational approximants

Given: right data: (\j;rj,w;), i=1,---  k, and left data: (uj;lj*,vj*), j=1,---,q.

Problem: Find rational p x m matrices H(s), such that:
HOV R =w;, £ H(w) = V],

where H();), H(p;) € CP*™, are for instance, S-parameters.
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Descriptor representation of interpolants and rational approximants

Given: right data: (\j;rj,w;), i=1,---  k, and left data: (uj;lj*,vj*), j=1,---,q.

Problem: Find rational p x m matrices H(s), such that:

HOOE =i, £7H() = v},

where H();), H(p;) € CP*™, are for instance, S-parameters.

Right data:
A1

A= 3, € Chxk
b W=[w; wy

R=[rrp ---

rk] c (Cm><k7

° Wk] S (CpXk,
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Descriptor representation of interpolants and rational approximants

Given: right data: (\j;rj,w;), i=1,---  k, and left data: (u/;fj*,vj*), j=1,---,q.

Problem: Find rational p x m matrices H(s), such that:
HOV R =w;, £ H(w) = V],

where H();), H(p;) € CP*™, are for instance, S-parameters.

Right data:
)\1 R:[r1 rp, --- rk]ECka7
A= g € Chxk
. Y W=[w; wp -+ W] e CPxk
Left data:
m £3 vi
M= €CI”9 L= : €CI*P V= : e caxm
lq £ Vg

A AJ. Mayo and A.C. Antoulas, A framework for the solution of the generalized realization
problem, Linear Algebra and Its Applications, vol. 425, pages 634-662 (2007).

6

26



Descriptor representation: the Loewner pencil

Data: H()\,-)r,- =W, ZIH('U‘I) =V;.



Descriptor representation: the Loewner pencil

Data: H()\,-)r,- =W, ZIH('U‘I) =V;.

The Loewner matrix L € CI%X js:

Vir —£1Wq L Vil —€1 Wi
H1— A He— Ak
L= : ] :
Vgr1—£gW1 Vgl —£qWk
b= Lg—Ak

L satisfies the Sylvester equation

LA - ML = VR — LW




Descriptor representation: the Loewner pencil

Data: H()\,-)r,- =W, ZIH('U‘I) =V;.

The Loewner matrix L € CI%X js:

Vir —£1Wq L Vil —€1 Wi
H1— A He— Ak
L= : :
Vgr1—£gW1 Vgl —£qWk
b= Lg—Ak

L satisfies the Sylvester equation

LA - ML = VR — LW

The shifted Loewner matrix L € C9%X js:

HqV1r — €4 W1 A Ba VT — L4 Wi A
H1— A B1— Ak

Lo =

1qVql1 —€qW1 A\ 1aqValk —LqWr Ak

Bg—A rg—Ak

L, satisfies the Sylvester equation

LoA — ML, = MVR — LWA




Descriptor representation: the Loewner pencil

Data: H()\,‘)I‘,' = W, ZIH(/J,]) =V;.

The Loewner matrix L € CI%X js:

Vil —£4Wy Vil — L1 Wi
H1— A 11— Ak
L= : :
Vgl —£qW1 Vark—LqWi
Hg—A Kg—Ak

L satisfies the Sylvester equation

LA - ML = VR — LW

The shifted Loewner matrix L € C9%X js:

HqV1r —£q W1 Aq
1=

Ba VT — L4 Wi A
B1— Ak

Ly =

1qVql1 —€qW1 A\ 1aqValk —LqWr Ak

Hg—A Hg— Ak

L, satisfies the Sylvester equation

LoA — ML, = MVR — LWA

A A.C. Antoulas, S. Lefteriu, and A.C lonita, A tutorial introduction to the Loewner framework
for model reduction, in Model Reduction and Approximation for Complex Systems, Edited by
P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, SIAM, Philadelphia (2017).
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Construction of Interpolants (Models)

e If the pencil (Lo, L) is regular, then

E=-L A=-L,, B=V, C=W

is a minimal interpolant of the data, i.e., H(s) interpolates the data:

H(s) = W(L, — sL)~'V
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Construction of Interpolants (Models)

e If the pencil (Lo, L) is regular, then

E=-L A=-L,, B=V, C=W

is a minimal interpolant of the data, i.e., H(s) interpolates the data:

| H(s) = W(L, —sL) V]

o Otherwise, if the numerical rank L. = k, compute the rank revealing SVD:

’ L= YEX* ~ Y E,X; ‘

Theorem. A realization [E, A, B, C], of an approximate interpolant is given as follows:

E=—Y;LXs, A=—Y;L,Xs, B=YV, C=WX,.
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Construction of Interpolants (Models)

e If the pencil (Lo, L) is regular, then

E=-L A=-L,, B=V, C=W

is a minimal interpolant of the data, i.e., H(s) interpolates the data:

[H(s) = W(L, —sL) V]|

o Otherwise, if the numerical rank L. = k, compute the rank revealing SVD:

’ L= YEX* ~ Y E,X; ‘

Theorem. A realization [E, A, B, C], of an approximate interpolant is given as follows:
E=-Y;LXx, A=-Y;LoXx, B=Y;V, C=WXg.

Remark. a If we have more data than necessary, we can consider (L,, L, V, W), asa
singular model of the data. Consequence: The original pencil (L, L) and the projected
pencil (A, E), have the same non-trivial eigenvalues.

A A.C. Antoulas, The Loewner framework and transfer functions of singular/rectangular
systems, Applied Mathematics Letters, vol 54, pages 36-47, 2016.
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Proof: the factorization of L, L., V, W
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Proof: the factorization of L, L., V, W

> Recall the Loewner pencil:

Vi — W; wiVi — A\jW;
L) = [#I,_ j]’ (Lo)ij = [ — /\j j} € cPk.
1

> Define:

Aj

R: generalized controllability matrix,

Hi = Aj

O: generalized observability matrix
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Proof: the factorization of L, L., V, W

> Recall the Loewner pencil:

Vi — W; wiVi — A\jW;
L)y = L;,_ j]’ (Lo = [ Sy j} € ok,
1

Aj Bi— A
> Define: ‘R: generalized controllability matrix, ©: generalized observability matrix
!

C(mE—-A)""
: E[ ( ME-A)"'B -~ (ME—-A)"B]=-L and

CluqE — A1

|

O
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Proof: the factorization of L, L., V, W

> Recall the Loewner pencil:

Vi — W; wiVi — A\jW;
@i = { ' ’], (La)hj__[llilj} € CIxk,

Bi = Aj Bi— A

> Define: ‘R: generalized controllability matrix, ©: generalized observability matrix

!
C(mE—-A)""
: E[ ( ME-A)"'B -~ (ME—-A)"B]=-L and
C(ugE — A)~! R
C(E—A)!
: A[ (ME-A)"B -+ (ME-A)"'B ] =-L,.
C(ugE — A)~" R

(@}

Also V=CR, W= OB.
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A simple example

Consider the system described by the transfer function

S

H(s) = ———.
(8) 2+ s+1
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The data are obtained by evaluating H at the right frequencies Ay = % A2 =1, and at the
left frequencies py — % uo = —1. The corresponding values are
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A simple example

Consider the system described by the transfer function

S

H(s) = ———.
(8) 2+ s+1

The data are obtained by evaluating H at the right frequencies Ay = % A2 =1, and at the
left frequencies py — % uo = —1. The corresponding values are

w=(2z $)v=(-2 —1)"

With R = [1 1] = L7, we construct the Loewner pencil (L., L), where:

4
-4 0
]L:|: :|’]LG:|: s :|
_4 1
7 3

It follows that since the pencil (L., L) is regular, there holds

~o NN
Wi Wi

s

H(s) =W(L, —sL)"'V= .
(8) =W(Ly — L)'V = 5
Hence, the measurements above yield a minimal descriptor realization of the system with

transfer function H(s).
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The question now is, what happens if we collect more data that necessary:
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The question now is, what happens if we collect more data that necessary:

AN=dag (3 1 2 2), M=dag( -} -1
2 2 2

In this case, the measurements are

w=(3 3§ & 3)v=(-5 -1

andwithR=[1 1 1 1] = L7, we obtain the Loewner pencil

—2).
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The question now is, what happens if we collect more data that necessary:

A=dag (1 1 % 2), M=diag ( -3 -1 -3 -2).

In this case, the measurements are

w=(3 3 % §)v=(-8 o -5 1)

andwithR=[1 1 1 1] = L7, we obtain the Loewner pencil

28

20 2 8 _4 4 2
21 3 57 21 21 57 21
5} 2 10 3 & _1 =4 1
7 3 19 7 7 3 19 7

L= ; Lo =
4 10 52 16 _4 _8 36 10
7 21 133 49 7 21 133 49
8 1 16 B _ 10 _1 _ 14 _ 4
21 3 57 21 21 3 57 21
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The question now is, what happens if we collect more data that necessary:

A=dag (1 1 % 2), M=diag ( -3 -1 -3 -2).

In this case, the measurements are

w=(3 3 % §)v=(-8 o -5 1)

andwithR=[1 1 1 1] = L7, we obtain the Loewner pencil

20 2 28 8 _4 0 4 2
21 3 57 21 21 57 21
5} 2 10 3 & 1 =4 _1
7 3 19 7 7 3 19 7
L= ; Lo =
4 10 52 16 _4 _8 36 10
7 21 133 49 7 21 133 49
8 1 16 5 _ 10 _1 _ 14 _ 4
21 3 57 21 21 3 57 21

Here the rank of LL is 2, and we can choose arbitrary X, Y € R**2, such that Y"X is
nonsingular:

-1 0

0 -1 r_ o 1 o0 —1

X=1 o oY =1 1 -1 1
—2 1

12/26



The projected quantities are
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The projected quantities are

constitute a minimal realization of H(s), in other words,

H(s) =W (]ﬁg — sﬂ>_1 V= ﬁ,

A.C. Antoulas, The Loewner framework and transfer functions of singular/rectangular
systems, Applied Mathematics Letters, 54: 36-47.
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There is a more natural way to achieve the same result involving no projections.
Instead it involves the Morre-Penrose or the Drazin inverse of

®(s) =L, —sL
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where X, A, Y have dimension g x n, n x n, n x k, respectively, n < g, k, and in addition
they all have full rank k for almost all s € C. The Moore-Penrose generalized inverse is:

MMP — y(YTY)= a1 (XTX)~"XT.
If in addition g = k and Y7 X is invertible, the Drazin generalized inverse is:
M2 = X(YTX)~ a1 (YTX) YT,

A simple example — continuation. The quantity needed is the polynomial matrix

_20s _ 4 _2s 4 _ 28s 2 _8s
21 21 3 57 57 21 1
_6s _ 4 _2 1 | _10s_ 4  _3 1
7 7 3 3 19 19 7 7
®(s) =L, —sL= =XA(s)Y'.
—4s _ 4 _10s _ B | _52s _ 36 _16s _ 10
7 7 21 21 133 133 49 49
8 _ 10 _s_ 1 | _16s _ 14 55 _ 4
21 21 g 8 57 57 1 21

Let the common range of the columns of L, L, be spanned by the columns of X and the
common range of the rows of the same matrices by the rows of Y:

o
-
N
Ral~
~I© Nj—=

M= N®w O —
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Then with A(s) = ®(1:2,1:2)(s), there holds ®(s)" = groeees -1

—28 (116101855 + 7274073) 14 (35586665 — 5604037
294 (2251825 + 281171)  (—147) (1924155 — 19668
3724 (546175 + 48189)  (—1862) (290465 — 17485

6076 (32301s — 391
—2058 (294945 + 15609
—26068 (57155 + 1523

14 (151688515 + 1670036)
—147 (4175975 + 261503)
—1862 (83663s + 30704)

)
)
)
)

98 (25271575 + 2123670)  —49 (12505535 — 876439)  —98 (17976695 + 409322)  —49 (3777710s + 1247231])
D_ 1 1
and ®(5)” = 7557355 Prer
—84(234677s + 152881) 294 (106525 — 13755) 588 (190795 — 641) 42 (3305455 + 29086)
126 (319565 + 42829) 147 (118855 +4)  —882(4184s + 2255) 63 (67611s + 42841)
684 (19079s + 17063) ~ —798 (4184s — 2171)  —4788 (18855 1 441)  —342 (316315 + 10550)
) )

42 (3305455 + 281368)  —147(22537s — 13751 —294 (31631s + 6124)  —21 (533378s + 157609

It follows that

Wao(s)"PV = Wa(s)PV = H(s)

16/26



Conclusions thus far

> Given data (£;,v;), (A, W;), construct the Loewner pencil (L., L).

17/26



Conclusions thus far

> Given data (£;,v;), (A, W;), construct the Loewner pencil (L., L).

The quadruple (W,L,L.,V), where the pencil (Ls,LL) may be singular,
is a natural model of the data. The construction involves no computation.

17/26



Conclusions thus far

> Given data (£;,v;), (A, W;), construct the Loewner pencil (L., L).

The quadruple (W,L,L.,V), where the pencil (Ls,LL) may be singular,
is a natural model of the data. The construction involves no computation.

» (L,,L) and the underlying (A, E) have the same non-trivial eigenvalues.

17/26



Conclusions thus far

> Given data (£;,v;), (A, W;), construct the Loewner pencil (L., L).

The quadruple (W,L,L.,V), where the pencil (Ls,LL) may be singular,
is a natural model of the data. The construction involves no computation.

» (L,,L) and the underlying (A, E) have the same non-trivial eigenvalues.

> The projection to a minimal realization can be chosen arbitrarily.

» We can define transfer functions for systems of the form Ex = AXx,
where A and E are rectangular!

17/26



Conclusions thus far

> Given data (£;,v;), (A, W;), construct the Loewner pencil (L., L).

The quadruple (W,L,L.,V), where the pencil (Ls,LL) may be singular,
is a natural model of the data. The construction involves no computation.

» (L,,L) and the underlying (A, E) have the same non-trivial eigenvalues.
> The projection to a minimal realization can be chosen arbitrarily.

» We can define transfer functions for systems of the form Ex = AXx,
where A and E are rectangular!

A A.C. Antoulas, S. Lefteriu, and A.C lonita, A tutorial introduction to the Loewner
framework for model reduction, in Model Reduction and Approximation for Complex
Systems, Edited by P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, SIAM,
Philadelphia (2017).
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The Loewner Algorithm

1. Consider given (frequency domain) measurements (s;, ¢;), i=1,...,N.
2. Partition the measurements into 2 disjoint sets

frequencies :  [sy,---,sn] = [A,oo- Mk [, pgl, K+g=N,

values :  [p1,--,on] = [wi,oo Wil [vi,oovg]l = W, VT
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The Loewner Algorithm

. Consider given (frequency domain) measurements (s;, ¢;), i=1,...,N.
. Partition the measurements into 2 disjoint sets
frequencies :  [s1,---,8n] = [A,ccoc LAk, [, spql, K+g=N,
values :  [¢1,---,on] = (Wi, wik], [vi,-oovg] = W, VT

. Construct the Loewner pencil:

j=1, 0k j=1, k

Vi — W BiVi — Ajw;
L= . L Le= =2 .
Hi 1/ i=1,... q = 2% =1, ,q

. It follows that the raw model is: (W, L, L., V).
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values :  [¢1,---,on] = (Wi, wik], [vi,-oovg] = W, VT

. Construct the Loewner pencil:

j=1,+ K j=1,+ K

Vi — W BiVi — Ajw;
L= p L= (= .
Hi 1) i=1,... q = 2% =1, ,q

. It follows that the raw model is: (W, L, L., V).

. Compute the rank revealing SVD: L ~ YZX* (X € R™¥").

. The reduced model (C,E, A, B) is obtained by projecting the raw model
(W,L, Lo, V):

C=WX, E=-Y*LX, A=—-Y*L,X, B=Y*V.
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The Loewner Algorithm

. Consider given (frequency domain) measurements (s;, ¢;), i=1,...,N.
. Partition the measurements into 2 disjoint sets
frequencies :  [s1,---,8n] = [A,ccoc LAk, [, spql, K+g=N,
values :  [¢1,---,on] = (Wi, wik], [vi,-oovg] = W, VT

. Construct the Loewner pencil:

j=1,+ K j=1,+ K

Vi — W BiVi — Ajw;
L= p L= (= .
Hi= 2 )iz, g = 2% =1, ,q

. It follows that the raw model is: (W, L, L., V).

. Compute the rank revealing SVD: L ~ YZX* (X € R™¥").

. The reduced model (C,E, A, B) is obtained by projecting the raw model
(W,L, Lo, V):

C=WX, E=-Y*LX, A=—-Y*L,X, B=Y*V.

. Reference: S. Lefteriu and A.C. Antoulas: A New Approach to Modeling Multiport
Systems from Frequency-Domain Data, IEEE Trans. CAD, 29: 14-27 (2010).
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Example: (discretized) Euler-Bernoulli beam

e System of order n = 348 (obtained after discretization) representing a clamped beam.

e \V = 60 frequency response measurements, Sx = jwy, With wy, € [—1,—-0.01] U [0.01, 1].
e Construct 30 x 30 Loewner pencil and Y, X € R39%'2 from the SVD.

e Project to get reduced model of order r = 12.

10*
1 0
10
10°
10
10° 10°
107
10% 107" 10° 10' 10% 0 10 20 30
10*
10f o N
4 5 )
10° ‘o
° 3
K
0 -5 °
10 .
EU - -
10% 107" 10° 10’ 102 -06 -05 -04 -03 -02 -01 0
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Example: (discretized) Euler-Bernoulli beam

e System of order n = 348 (obtained after discretization) representing a clamped beam.

e \V = 60 frequency response measurements, Sx = jwy, With wy, € [—1,—-0.01] U [0.01, 1].
e Construct 30 x 30 Loewner pencil and Y, X € R39%'2 from the SVD.
e Project to get reduced model of order r = 12.

10
4
10°
10°
10% 107" 10° 10’ 10°
10*
4
10°
10°
10 107" 10° 10’ 10°

-10f ©

-06 -05 -04 -03 -02

(1,1) Original and data

(1,2) Singular values of L.

(2,1) Original & reduced FR

(2,2) Poles original & reduced
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An Euler-Bernoulli beam: bypassing PDE discretization

Free End
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An Euler-Bernoulli beam: bypassing PDE discretization

gl V@D =0, 2% (0, 1) =0, Elw + g1 2wLt
E/A _

) =0,
Ix=ot
*w(L,t Aw(L,t

Cal 8)%3)7“([) ¥t = ngt )’

?w(x,t) 8 [ Iaz
Free End

w(x,t) 3w(
o2

X, t)
+ cqyl =0,
ax2 ax2 " ox2ot ]

where E, |, ¢y are constants. The transfer function is

~ sN(s) 2 qF
NS = EirsanmepE | M M= {El—i—cdls}

N(s) = cosh(L m(s))sin(Lm(s)) — sinh(L m(s))cos(Lm(s)) and

(8) =1+ cosh(Lm(s))cos(L m(s)).
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An Euler-Bernoulli beam: bypassing PDE discretization

3
w(0, 1) =0, 2% (0, 1) =0, E,5W7(2L,l)+cd/5W7(LJ)
BC .
8°w(L,t)
—£120LY
ax

2 0,

ax=ot
Bth ow(L,t

cyl é ) = u(t), y(t) = ([),

w(x,t)

ol Bw(x, t) 3
C, =
ox2 4 “ox2ot

where E, |, ¢y are constants. The transfer function is

?w(x,t) 8 82
o2 Tae |5
Free End &k X

~ sN(s) 2 qF
NS = EirsanmepE | M M= {El—i—cdls}

N(s) = cosh(L m(s))sin(Lm(s)) — sinh(L m(s))cos(Lm(s)) and

(8) =1+ cosh(Lm(s))cos(L m(s)).

Parameter values: E = 69, GPa = 6.9 - 101°N/m2 - Young’s modulus elasticity constant.
=1 .7.8.5%.10— 4

(1/12) - 7 - 8.5% - 10~ "' m* - moment of inertia, cy = 5 - 10~* - damping constant, L = 0.7m, b = 7cm,
h = 8.5mm - length, base, height of the rectangular cross section
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Plots

Reduction methods:

1. Modal truncation.
2. FEM followed by Loewner.
3. Loewner based on the transfer function.

Firror plots

Frequency response of the original beam model . . .
—Toewner reduced model
. —Modal reduced model
10
10°
B
10
10"
10" | |
i 10"
; . g
10 10 10 10 - 7 0 a
Frequency(Hz) 10 10 10 10
Frequency (112}
,  Singular values of the Loesmer matrices - Original beam model . Singular values of the Loewner matrices FE model
10 10 ,
[— Loewner ==Loewner
- | =—3-Loewne:
10° 1
5
10
10"
10" 107
e —
107 . -
50 100 150 200 250 300 350 400

50 100 150 200 250 300 350 400
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s1t

Reduced model from frequency response measurements (microstrip device)

1001 S-parameter measurements between 10-18 GHz (CST).
Data frequency response ||S; [, i,/ =1,2.

Data two singular values

‘Sigma plot: freqe [1,1.8J010, max value 1.0013

‘Singular values of augmented Loswner matrices

Singular values of 1001 x 1001 Loewner matrix

Singular-value fit of model k = 72

‘Sigma plot. Loewner model inred, k=72

S-parameter-error: € [10~°,10~ %]

"

Two singular values of model: w € [0, 10THz]

‘Sigma plot. Loowner modol i rod, k = 72

|
\
\
\
\

\

3

e
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Outline

Summary and references
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Summary: MOR in the Loewner framework

A Given is: measured or simulated data (DNS)

Examples [ Measurements
0. various examples n = small
| clamped beam n = 346
2, semi-conductor device no model
3. Euler-Bernoulli beam n=oo
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no model
n=oo

A Key tool: Loewner pencil (followed by a projection).

Types of systems

Linear (SISO and MIMO)
Linear parametrized
Linear switched systems
Bilinear

General quadratic bilinear

A Given data, we construct with no computation, a singular, high-order model
in descriptor form =- natural way to construct reduced models.

SVD of the Loewner pencil provides trade-off between
= | accuracy and complexity; resulting model complexity
n = (numerical) rank of Loewner matrix.

= can deal with nonlinear systems.

A Philosophy: \Collect data and extract desired information
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Some additional references

. A.C. Antoulas, Approximation of large-scale dynamical systems, Series in Design and
Control, DC-6, SIAM Philadelphia 2005 (reprinted 2008).

. A.C. Antoulas, C.A. Beattie and S. Gugercin, Data-driven model reduction methods
and applications, Series in Computational Science and Engineering, SIAM,
Philadelphia (in preparation) 2017.

. U. Baur, P. Benner, L. Feng, Model order reduction for linear and nonlinear systems: a
system-theoretic perspective, Arch. Computat. Methods Eng., 21: 331-358 (2014).

. G. Flagg and S. Gugercin, Multipoint Volterra Series Interpolation and H2 Optimal
Model Reduction of Bilinear Systems, SIAM Journal on Matrix Analysis and
Applications, Vol. 36, Issue: 2, 549-579 (2015).

. B. Kramer and S. Gugercin. ” The Eigensystem Realization Algorithm from
Tangentially Interpolated Data”. Mathematical and Computer Modelling of Dynamical
Systems, Vol. 22, pp. 282-306, 2016.

. B. Peherstorfer, S. Gugercin, and K. Willcox. "Data-driven Reduced Model

Construction with Time-domain Loewner Models.”Accepted to appear in SIAM Journal
on Scientific Computing, 2017.
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See also Sara Griindel’s talk tomorrow at 17h.
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