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Introduction and outline of the talk

• reduced basis model order reduction, with a focus on applications in
computational fluid dynamics;

• tackle convection dominated problems;

• part 1: reduced order stabilization techniques for incompressible CFD:
• S. Ali, F. Ballarin, and G. Rozza. Stabilized reduced basis methods for
parametrized Stokes and Navier-Stokes equations. In preparation, 2017.

• part 2: certification of reduced basis for a Smagorinsky turbulence model:
• T. Chacón Rebollo, E. Delgado Ávila, M. Gómez Mármol, F. Ballarin, G.
Rozza. On a certified Smagorinsky reduced basis turbulence model.
Submitted, 2017.

• part 3: weighted reduced basis methods for uncertainty quantification:
• D. Torlo, F. Ballarin, and G. Rozza. Stabilized weighted reduced basis
methods for parametrized advection dominated problems with random
inputs. In preparation, 2017.
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Warm up: stabilization for parametrized advection dominated elliptic
problems

L(µ)y(µ) = −ε(µ)∆y(µ) + β(µ) · ∇y(µ) = f (µ) in Ω,
s.t. suitable boundary conditions on ∂Ω.
• (local) Péclet number PeK := ‖β(µ)‖hK

2ε(µ) � 1 for advection dominated
problems, being K a cell of the triangulation of Ω and hK its diameter.

• define bilinear and linear forms associated to the problem

a(y , v ; µ) =
∫

Ω
ε(µ)∇y(µ) · ∇v + β(µ) · ∇y(µ)v

F (v ; µ) =
∫

Ω
f (µ)v

• standard FE discretization may produce unphysical solutions → strongly
consistent stabilizations, e.g. SUPG

astab(y , v ; µ) = a(y , v ; µ) +
∑
K

δK

∫
K
L(µ)y hK

‖β(µ)‖LSS(µ)v ,

for LSS(µ) = β(µ) · ∇v .
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Warm up: “stabilized” reduced basis greedy algorithm
Sample Ξtrain ⊂ D
Pick arbitrary µ1 ∈ Ξtrain
Define S0 = ∅, V0 = ∅
for N = 1, . . . , Nmax

Perform a PDE solve to compute y(µN)
SN = SN−1 ∪ {µN}
VN = VN−1 ⊕ {y(µN)}
µN+1 = argmaxµ∈Ξtrain ∆N(µ)
if ∆N(µN+1) ≤ tol

break
end

end

where ∆N(µ) is a sharp, inexpensive a posteriori error bound for ‖y(µ)− yN(µ)‖V,
being yN(µ) the RB solution of dimension N.

J. S. Hesthaven, G. Rozza, B. Stamm. Certified Reduced Basis Methods for Parametrized Partial Differential Equations.

SpringerBriefs in Mathematics. Springer International Publishing, 2015
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RB online system: to stabilize or not to stabilize?

• offline stabilization by SUPG:

find y(µ) ∈ V s.t. astab(y(µ), v ; µ) = Fstab(v ; µ), ∀v ∈ V ,

being V a FE space.
• online:
• do stabilize also online, to guarantee consistency → Offline-Online
stabilized RB method

find yN(µ) ∈ VN,stab s.t. astab(yN(µ), vN ; µ) = Fstab(vN ; µ), ∀vN ∈ VN,stab

• do not stabilize online, to avoid assembly of all stabilization terms and
(possibly) gain in performance → Offline-only stabilized RB method

find yN(µ) ∈ VN s.t. a(yN(µ), vN ; µ) = F (vN ; µ), ∀vN ∈ VN

• note that VN,stab and VN may be different, because the greedy procedure
may pick different snapshots with vs without online stabilization.

P. Pacciarini and G. Rozza, Stabilized reduced basis method for parametrized advection–diffusion PDEs, Comput.

Methods Appl. Mech. Engrg., 274:1-18, 2014.
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Incompressible CFD

{
−ν∆u + u · ∇u +∇p = f in Ω,
div u = 0 in Ω

• Reynolds number Re := uL
ν
� 1 for advection dominated problems, being u

the magnitude of a characteristic velocity, L a characteristic length of Ω, ν
viscosity of fluid.

• we can adapt the previous greedy algorithm to this case. For the sake of
simplicity in Part 1 we will use an indicator based on the residual rather than a
proper error estimator ∆N(µ);

• requires careful treatment of the incompressibility constraint, as explained in
the next slide.
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The classical reduced order inf-sup stabilization

• inf-sup condition is not necessarily preserved by Galerkin projection in the
online phase.

• reduced velocity space enrichment by supremizer solutions,

VN = GS({u(µi)}Ni=1) ⊕ GS({Sµi
p(µi)}Ni=1),

QN = GS({p(µi)}Ni=1),

where Sµ : Q → V is the supremizer operator given by

(Sµq,w)V = b(q,w ; µ), ∀w ∈ V .

in order to fullfil an inf-sup condition at the reduced-order level too:

βN(µ) = inf
q
N
6=0

sup
vN 6=0

qT
N
BN(µ)vN

‖vN‖VN‖qN‖QN
≥ β̃N > 0 ∀µ ∈ D.

where BN(µ) is the reduced-order matrix associated to the divergence term.
(Rozza, Veroy. CMAME (2007), Rozza et al, Numerische Mathematik (2013). Ballarin et al.
IJNME (2015)), residual-based stabilization procedures (Caiazzo, Iliescu et al. JCP
(2014), Ali et al (2017)).
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Part 1: stabilization for incompressible CFD

{
−ν∆u + u · ∇u +∇p = f in Ω,
div u = 0 in Ω

• Reynolds number Re := uL
ν
� 1 for advection dominated problems, being u

the magnitude of a characteristic velocity, L a characteristic length of Ω, ν
viscosity of fluid.

• stabilization for:
• advection terms (Brezzi-Pitkaranta, Franca-Hughes, SUPG, Galerkin Least
Squares, Douglas Wang);

• velocity-pressure FE space pairs which are not inf-sup stable → same
motivation for which supremizers are added to the reduced velocity space;

• discuss Offline-Online stabilization vs Offline-only stabilization;
• discuss the interplay between inf-sup stabilization techniques and supremizer
enrichment of the reduced velocity space.

S. Ali, F. Ballarin, and G. Rozza. Stabilized reduced basis methods for parametrized Stokes and Navier-Stokes

equations. In preparation, 2017
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Lid-driven cavity flow test case
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Lid-driven cavity flow – Stokes

a: Velocity for P1/P1 b: Pressure for P1/P1

c: Velocity for P2/P2 d: Pressure for P2/P2
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Lid-driven cavity flow – Navier Stokes, low Reynolds

Cavity flow for Re ∈ [10, 500].

Error analysis for Re = 250:

a: SUPG and grad-div: velocity er-
ror

b: SUPG and grad-div: pressure er-
ror
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Lid-driven cavity flow – Navier Stokes, moderate Reynolds

Cavity flow for Re ∈ [2500, 3500].

Error analysis for Re = 3000:

a: SUPG and grad-div: velocity er-
ror

b: SUPG and grad-div: pressure er-
ror
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Part 1, conclusion:
stabilized RB methods can handle simple

test problems with high(er) Reynolds numbers

Part 2, what’s next:
step up our game, and provide

certified a posteriori error bounds
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Part 2: certified reduced basis for a Smagorinsky turbulence model

{
−div [(ν + νT (u))∇u] + u · ∇u +∇p = f in Ω
div u = 0 in Ω

where
νT (u) = C2

S

∑
K

h2K
∥∥∇u|K∥∥ 1K

being K a cell of the triangulation of Ω, hK its diameter, CS the Smagorinsky
constant
• Smagorinsky turbulence model → “physically based” stabilization technique
instead of general purpose SUPG in the previous Part; it’s the simplest Large
Eddy Simulation turbulence model;

• interested in Offline-Online stabilization → reduce the Smagorinsky
stabilization term, and provide error bounds for the full Smagorinsky model;

• Smagorinsky turbulence model provides stabilization for the convective term
but not for the inf-sup condition → will always use supremizers.

T. Chacón Rebollo, E. Delgado Ávila, M. Gómez Mármol, F. Ballarin, G. Rozza. On a certified Smagorinsky reduced

basis turbulence model. Submitted, 2017
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Parametrization and notation

• we consider one parameter µ s.t. ν = 1
µ
→ Reynolds number

• for the following analysis, we reformulate the problem as

find U(µ) = (u(µ), p(µ)) ∈ H1
0 (Ω)× L20(Ω) s.t.

A(U(µ),V ;µ) = F (V ) ∀V ∈ H1
0 (Ω)× L20(Ω)

• in particular

A(U,V ;µ) = 1
µ
A0(U,V ) + A1(U,V ) + A2(U,U,V ) + A3(U,U,V )

where

A0(U ,V ) =
∫

Ω∇u : ∇v dΩ
A1(U ,V ) = −

∫
Ω

[
div v p − div u q

]
dΩ

A2(Z ,U ,V ) =
∫

Ω(z · ∇u)v dΩ
A3(Z ,U ,V ) =

∫
Ω νT (z)∇u : ∇v dΩ

for U = (u, p), V = (v , q), Z = (z, ·)
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Well-posedness analysis of the Smagorinsky turbulence model
• based on Brezzi-Rappaz-Raviart theory;
• denote by ∂1A(U,V ;µ)(Z) the directional derivative of A(U,V ;µ), at U in
direction Z ;

• requires ∂1A(·,V ;µ)(Z) to be inf-sup stable and bounded;

Proposition [Chacón, Delgado, Gómez, B., Rozza (2017)]
∂1A(U, ·;µ)(·) is inf-sup stable and bounded under a small condition assumption
on boundary data and forcing terms.

Technical ingredients:
• a (sort of) energy norm needs to be introduced for the velocity, induced by the
inner product

(w , v)T =
∫

Ω

[
1
µ

+ νT

]
∇w : ∇v dΩ

being
νT = νT (u(µ))

and

µ = argmin
µ

{
C2
S

∑
K

h2K min
x∈K

[∥∥∇u|K∥∥ (x) 1K (x)
]}

• data need to be small with respect to the T -norm.
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A posteriori error estimation for RB Smagorinsky turbulence model
• RB residual: R(V ;µ) = F (V ;µ)− A(UN(µ),V ;µ), ∀V ∈ X = H1

0 (Ω)× L2(Ω);
• dual norm of R:

εN(µ) = ‖R(·;µ)‖X ′ ;
• inf-sup constant βN(µ) and continuity constant γN(µ) for ∂1A(UN(µ), ·;µ)(·);
• a posteriori error bound

∆N(µ) = βN(µ)
2ρT

[
1−

√
1− τN(µ)

]
where

τN(µ) = 4εN(µ)ρT
βN(µ)2

and ρT is an upper bound of the Lipschitz constant for ∂1A(·,V ;µ)(Z)

Theorem [Chacón, Delgado, Gómez, B., Rozza (2017)]
If βN(µ) > 0 and τN(µ) ≤ 1, then the following a posteriori error bound holds:

‖U(µ)− UN(µ)‖X ≤ ∆N(µ),

with effectivity
∆N(µ)

‖U(µ)− UN(µ)‖X
≤ 2γN(µ)

βN(µ) + τN(µ)
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Lid-driven cavity flow – EIM approximation of the Smagorinsky term

M
0 5 10 15 20 25

10
-4

10
-3

10
-2

10
-1

max
µ∈D

‖g(µ)− IM [g(µ)]‖∞
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Lid-driven cavity flow – Greedy convergence, Re ∈ [1000, 5100]

N
1 2 3 4 5 6 7 8 9 10 11 12

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

max
µ∈D

τN (µ)

max
µ∈D

∆N (µ)
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Lid-driven cavity flow – Error analysis, Re ∈ [1000, 5100]

Re
1000 1500 2000 2500 3000 3500 4000 4500 5000

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

∆N (µ)
‖Uh(µ)− UN (µ)‖X
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Lid-driven cavity flow – Speedup analysis

FE dof: 23003
EIM dof: 22, RB dof: 36

µ = 1610 µ = 2751 µ = 3886 µ = 4521
TFE 638.02s 1027.62s 1369.49s 1583.08s
Tonline 0.47s 0.47s 0.47s 0.49s
speedup 1349 2182 2899 3243
‖u − uN‖T 1.91 · 10−6 1.87 · 10−6 3.28 · 10−6 6.26 · 10−7
‖p − pN‖L2 1.18 · 10−7 3.65 · 10−7 3.78 · 10−7 8.34 · 10−8
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Part 3: parametrized stochastic partial differential equations

• Ω ⊂ Rd , d = 1, 2, 3, a domain;

• (A,F ,P) a complete probability space;
• µ : (A,F)→ (D,B), a random boldsymbol:
• D ⊂ Rp, a compact set in the parameter space;
• µ(ω) = (µ1(ω), . . . , µp(ω)) independent identically distributed and
absolutely continuous random variables;

• H1
0 (Ω) ⊂ V ⊂ H1(Ω);

• S(Ω) := L2(A)
⊗

V;
• u : Ω× A→ R, i.e. u ∈ S(Ω), a random field;
• elliptic PDE, e.g., advection–diffusion stochastic equation

−ε(µ(ω))∆u(µ(ω)) + β(µ(ω)) · ∇u(µ(ω)) = f (µ(ω)) in Ω,

s.t. suitable boundary conditions on ∂Ω.
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Weighted reduced basis methods: motivation

The introduction of a weight in the greedy algorithm reflects our desire of
minimizing the squared norm error of the reduced order approximation, i.e.

E
[
‖u − uN‖2V

]
=
∫
A
‖u(µ(ω))− uN(µ(ω))‖2V dP(ω) =

=
∫
D
‖u(µ)− uN(µ)‖2V ρ(µ) dµ,

being ρ : A→ R the probability density distribution of µ.
Thus,

E
[
‖u − uN‖2V

]
≤
∫
D

∆N(µ)2ρ(µ)dµ,

This motivates the choice of the weight

w(µ) =
√
ρ(µ)

and the introduction of the error bound

∆w
N(µ) := ∆N(µ)

√
ρ(µ).

P. Chen, A. Quarteroni, and G. Rozza. A weighted reduced basis method for elliptic partial differential equations with

random input data. SIAM Journal on Numerical Analysis, 51(6):3163–3185, 2013.
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Weighted reduced basis methods: the greedy algorithm
Properly sample Ξtrain ⊂ D
Pick arbitrary µ1 ∈ Ξtrain
Define S0 = ∅, V0 = ∅
for N = 1, . . . , Nmax

Perform a PDE solve to compute u(µN)
SN = SN−1 ∪ {µN}
VN = VN−1 ⊕ {u(µN)}
µN+1 = argmaxµ∈Ξtrain ∆w

N(µ)
if ∆w

N(µN+1) ≤ tol
break

end
end

P. Chen, A. Quarteroni, and G. Rozza. A weighted reduced basis method for elliptic partial differential equations with

random input data. SIAM Journal on Numerical Analysis, 51(6):3163–3185, 2013.
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Test case: Graetz problem


− 1
µ1

∆u(µ) + 4y(1− y)∂xu(µ) = 0 in Ωp(µ)
u(µ) = 0 on Γp,1(µ) ∪ Γp,2(µ) ∪ Γp,6(µ)
u(µ) = 1 on Γp,3(µ) ∪ Γp,5(µ)
1
µ1

∂u
∂n = 0 on Γp,4(µ).

µ1 ∼ 101+5·X1 where X1 ∼ Beta(4, 2), µ1 ∈ [101, 106]
µ2 ∼ 0.5 + 3.5X2 where X2 ∼ Beta(3, 4), µ2 ∈ [0.5, 4]

D. Torlo, F. Ballarin, and G. Rozza. Stabilized weighted reduced basis methods for parametrized advection dominated

problems with random inputs. Submitted, 2017
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Test case: stabilized RB vs stabilized weighted RB

0 5 10 15 20
Dimension of Reduced Basis Space

10-5

10-4

10-3

10-2

10-1

Er
ro

r

Errors of Graetz problem: different Greedy algorithms

Greedy, Uniform MC
Greedy, Beta MC
W Greedy, Uniform MC
W Greedy, Beta MC

• both weighting and correct sampling are necessary to obtain good results;
• weighted Greedy with sampling from distribution guarantees best results;
• weighted Greedy with uniform sampling is comparable to standard greedy with
sampling from distribution; both are better than Greedy with uniform
sampling.

25/ 30 F. Ballarin Some recent developments on ROMs in computational fluid dynamics



Test case: selective online stabilization

1 2 3 4 5 6
log10(µ1 )

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Er
ro

r

Error stabilization Offline and Online-Offline

Offline only stabilized
Offline-Online stabilized

• for low Péclet number (µ1 ≤ 102), Offline-Online stabilization and Offline only
stabilization produce very similar results. Thus, we would prefer the less
expensive Offline only stabilization procedure;

• in the regions where the density of µ is very small, even a large error would be
less relevant in terms of the probabilistic mean error;

• ⇒ enable the more expensive online stabilization only for parameters with high
density (which would affect more the mean error) or parameters with large
Péclet numbers (were the more expensive assembly is fully justified by the
convection dominated regime)
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Test case: selective online stabilization

1 2 3 4 5 6
log10(µ1)

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

Parameters Online stabilized and not stabilized
Online stabilized
Online non-stabilized

Threshold µ̃1 Error Percentage non-stabilized
101 7.9673 · 10−4 0%
101.5 8.0704 · 10−4 10%
102 10.0060 · 10−4 20%
102.5 18.2806 · 10−4 33%
103 33.4593 · 10−4 45%
106 0.021128 100%
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Test case: selective online stabilization

1 2 3 4 5 6
log10(µ1)

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

Parameters Online stabilized and not stabilized
Online stabilized
Online non-stabilized

Threshold ν̃ Threshold ρ̃ Error Percentage non-stabilized
0 0 7.9673 · 10−4 0%

0.001 0.02233 9.3222 · 10−4 15%
0.002 0.04423 9.6456 · 10−4 17%
0.005 0.09094 14.7861 · 10−4 21%
0.01 0.13877 15.9482 · 10−4 25%
0.02 0.21433 25.6017 · 10−4 30%
0.05 0.38244 49.1931 · 10−4 38%
0.1 0.89068 66.7488 · 10−4 45%
1 ∞ 0.021128 100%
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Conclusion

• reduced basis methods for problems in computational fluid dynamics;
• increase Reynolds number;

• part 1 on reduced order stabilization techniques:
• how to add online strongly consistent stabilization;
• interplay with supremizer enrichment of the velocity space;

• part 2 on certification of RB for the most simple LES turbulence model:
• rigorous a posteriori error bounds to be used during the greedy algorithm;
• deal with the nonlinear term introduced by the Smagorinsky turbulence
model (EIM);

• part 3 on weighted reduced basis methods for uncertainty quantification:
• need to weigh and sample from relevant distribution during the
construction stage;

• opportunity to selectively enable online stabilization based either on
probability density function or on the Péclet number.
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