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Introduction

The analysis and design of complex systems relies
on the use of accurate predictive models

Challenges
» Dynamics dependent on subsystems and interconnection

> Large-scale interconnection complicates analysis and synthesis
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on the use of accurate predictive models

Challenges
» Dynamics dependent on subsystems and interconnection

> Large-scale interconnection complicates analysis and synthesis

Goal: Model reduction of large-scale networked systems
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» General methods, e.g., balancing, moment matching
[Moore, Glover, Antoulas, Astolfi, ...]

» Reduction of subsystems, i.e., structured reduction
[Monshizadeh et al., Sandberg & Murray]

» Clustering-based model reduction
[Ishizaki et al., Monshizadeh et al., van der Schaft, Cheng et al.]

This presentation
» Subsystems with higher-order dynamics
» Controllability/observability-based cluster selection
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Networks of interconnected dynamical systems
1. Subsystem dynamics

i xi=Ax;+ Bv;, z;=Cxj, x € Rn, Vi, zZj € R™
2. Interconnection topology with w;; >0
Vi = er":l,jyéi wij(zj — zi) + Z}L 8ijUj

3. External outputs y; = 37

j=1 h’JZJ
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Goal. Approximate the input-output behavior of 3 by a
clustering-based reduced-order system 3

Objectives
1. Preservation of synchronization

2. A priori bound on the reduction error
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Goal. Approximate the input-output behavior of 3 by a
clustering-based reduced-order system 3

Approach. Find neighboring subsystems that are
» hard to steer individually from the inputs

» hard to distinguish from the outputs
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Interconnection topology and Laplacian

Laplacian matrix of G

w12 — W12 0 0
[ = | ~wa wor +was 0 —wpy , 1-0
0 —wsy wzy 0

0 —wi 0wy




Incidence matrix of G, (for a given orientation)

1 0 0
-1 1 -1
0 -1 0
0 0 1

E =




Interconnection topology and Laplacian
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Lemma. Consider L and let E be an oriented incidence matrix of
the underlying undirected graph. Then,

L=FET
where F has the same structure as E, i.e.,

E:|:>|<e,'—ej>|<i|7 F:[*leel_vvjlej*]
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Assumption Al. The graph G with graph Laplacian L is such that
a. The underlying undirected graph is a tree

b. G contains a directed rooted spanning tree
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Edge Laplacian and edge dynamics

Xi Xj—Xj X

Lemma. Under Al, the edge Laplacian
Le=ETF
has all eigenvalues in the open right-half complex plane

Note. This follows from similarity of L and
00
Edge system in coordinates x. = (ET ® /)x
Ye: %=(9A-L®BC)xe + (ETG®B)u, ye=(He ® C)xe

LYAT)
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V(x) < v w;
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Passivity and synchronization
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Passivity [Willems]. A system X; is passive if there exists a
differentiable V : R” — R, V(0) =0, V > 0 such that

V(x) < v w;

Assumption A2. The systems X; are passive and V/(x;) = %XITQX,'

Theorem. Under A1 and A2, the subsystems of ¥ synchronize for

u=2~0,ie.,

lim (xi(t) — x;(t)) = 0.

t—o00

Equivalently, X, is asymptotically stable
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Edge controllability

Xi X=X X

Y. and X; are hard . . weakly controllable
to steer individually coordinate in X

Edge controllability gramian P, characterizes controllability
0
Xd P, 1xe = inf {/ lu(t)|? dt ’ u e L3((—00,0]) s.t. 0~ Xe}

Challenges
» P, dependent on subsystems and interconnection topology

» Role of individual edges not apparent from P
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Xi X=X X

Y. and X; are hard . . weakly controllable
to steer individually coordinate in X

Theorem. The edge controllability Gramian Pe can be bounded as
P.<xN°® Q!
if there exists MN° = diag{n§,...,75_1} = 0 such that

LN 4+ N°L; —ETGGTE =0

Lemma. 1 = 0 exists if wj; >0 < w;; >0
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N = diag{n,..., 75 1}, LM+N°LI —ETGGTE =0

Properties
» Gramian can be defined as 3 is asymptotically stable
> [1° only dependent on interconnection properties

» Measure of controllability for each individual edge

Edge observability follows similarly, i.e.,
M° = diag{x?,..., 72 1}, LIM°+MN°Le— FTHTHF =0

Assume ordering

(Le 1)/2: imP > (Le ):2+1,i+17r:g+17r?+1 >0, ie{l,...,ne—1}
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Reduced-order system through projection with (V & I)(W @ )T
$51:E=(I®A-L®BC)E+(G®B)u, y=(H® C)E
with L=wTLv, 6=wW'G, HA=HV

Lemma. Consider the reduced-order system 25_1. Then,

1. [ = FET with E an oriented incidence matrix
2. Assumptions Al and A2 hold for ) S
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Multi-step clustering
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b)) e
Vv, Wl Schur complement
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Theorem. Consider X and the one-step clustered 35 1. Then,
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Multi-step clustering '

xe = (ET ® Nx
b e
Vv, Wl Schur complement
. &= (ET® 1)
Y i-le

Theorem. Consider X and the one-step clustered 35 1. Then,
1. The edge controllability Gramian of $;_1 satisfies

'E)e < ﬁc®Q—1’ fe :diag{ﬂf,.‘.,ﬂ'f—,_z}
2. The edge observability Gramian of 3351 satisfies
@e < f1° ® Q, 1 = diag{n?,..., 75 5}

Allows for repeated one-step clusterings
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Theorem. The subsystems of f),; synchronize for u =0, i.e.,

lim (&(8) =&(1) =0, (i) eV xV

Theorem. For trajectories x(-) of 3 and £(-) of 3 for the same
input u(+) and x(0) =0, £(0) = 0, the output error is bounded as

1

ly — 92 <2 (L) /w577 | llull2

/

Il
x|

with || - ||2 the £5 signal norm
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Thermal model of a corridor of six rooms

» Subsystems: thermal dynamics within a room
Cl T]{ = Rmt (T2 ) ROth T]. + P
QT =RHT{ - T3)

» Edges: thermal resistances of walls, u; = [Py Tenv]'
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» Reduction from A=6to k = 3

Tenv
7_1
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Example: Results

Frequency response function from input P to output T}

107

FRF P, — T3
SI

10 : :
10™ 107 10° 10°
f [Hz]

Error bound: 2377, (Lgt),y/m5m? =11.4-1073
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Conclusions
» Clustering-based reduction procedure
» Edge controllability and observability properties

» Preservation of synchronization and error bound

Future work
» Extension to arbitrary network topology
» Extension to nonlinear networked systems

» Extension to non-identical subsystems

Potential approach: exploit theory of monotone systems
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