Model Reduction via Interpolation

Thanos Antoulas

ECE Department, Rice University & MPI-Magdeburg

Christopher Beattie

Department of Mathematics, Virginia Tech.

Serkan Gugercin

Department of Mathematics, Virginia Tech.

LMS Durham Symposium on Model Order Reduction, 7 - 17 August 2017, Durham, UK

Outline

Lecture 1: (Beattie)

- a. Linear (time-invariant, nonparametric) case: $\left\{ \begin{array}{l} \mathbf{E}\,\dot{\mathbf{x}}(t) = \mathbf{A}\,\mathbf{x}(t) + \mathbf{B}\,\mathbf{u}(t), \\ \mathbf{y}(t) = \mathbf{C}\,\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) \end{array} \right.$
 - Rational Krylov subspaces
 - Tangential interpolation
- b. The Loewner Framework: Nonintrusive model reduction directly from observations of system response without access to **E**, **A**, **B**, **C**.
- c. Reducing structured dynamical systems

Lecture 2: (Beattie)

- Optimal model reduction by interpolation and IRKA
- More on structure-preserving model reduction

Lecture 3: (Antoulas)

- Data-driven interpolatory methods for nonlinear systems
- Chef's surprize

Linear Dynamical Systems

$$S: \qquad \mathbf{u}(t) \longrightarrow \boxed{ \begin{array}{c} \mathbf{E} \dot{\mathbf{x}}(t) = \mathbf{A} \, \mathbf{x}(t) + \mathbf{B} \, \mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C} \, \mathbf{x}(t) + \mathbf{D} \, \mathbf{u}(t) \end{array} } \longrightarrow \mathbf{y}(t)$$

- A, $\mathbf{E} \in \mathbb{R}^{n \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times m}$, $\mathbf{C} \in \mathbb{R}^{q \times n}$ and $\mathbf{D} \in \mathbb{R}^{q \times m}$
- $\mathbf{x}(t) \in \mathbb{R}^n$: states, $\mathbf{u}(t) \in \mathbb{R}^m$: Input, $\mathbf{y}(t) \in \mathbb{R}^q$: Output
- We will assume $\lambda_i(\mathbf{A}, \mathbf{E}) \in \mathbb{C}_-$ for $i = 1, 2, \dots, n$
- State-space dimension, n, is quite large, $n \approx \mathcal{O}(10^4, 10^7)$ or higher
- What is important is the mapping " $u \mapsto y$ ", NOT full information on state evolution: $\mathbf{x}(t)$
 - \implies Remove unimportant states having small impact on $\mathbf{y}(t)$

$$S_r : \mathbf{u}(t) \longrightarrow \begin{bmatrix} \mathbf{E}_r \, \dot{\mathbf{x}}_r(t) = \mathbf{A}_r \, \mathbf{x}_r(t) + \mathbf{B}_r \, \mathbf{u}(t) \\ \mathbf{y}_r(t) = \mathbf{C}_r \, \mathbf{x}_r(t) + \mathbf{D}_r \, \mathbf{u}(t) \end{bmatrix} \longrightarrow \mathbf{y}_r(t) \approx \mathbf{y}(t)$$

where $\mathbf{A}_r, \mathbf{E}_r \in \mathbb{R}^{r \times r}$, $\mathbf{B}_r \in \mathbb{R}^{r \times m}$, $\mathbf{C}_r \in \mathbb{R}^{q \times r}$, and $\mathbf{D}_r \in \mathbb{R}^{q \times m}$ such that

- r-dimensional state space with $r \ll n$;
- $\|\mathbf{y} \mathbf{y}_r\|$ is *small* wrt an appropriate norm;
- important structural properties of S are preserved;
- the procedure is computationally efficient.
- "Project dynamics" onto an r-dimensional subspace;
- Eliminate states that:
 - are insensitive to variations in $\mathbf{u}(t)$: "Hard to reach"
 - have little influence on y(t): "Hard to observe"
- S_r then used as a surrogate for the original model.

$$S_r : \mathbf{u}(t) \longrightarrow \begin{bmatrix} \mathbf{E}_r \, \dot{\mathbf{x}}_r(t) = \mathbf{A}_r \, \mathbf{x}_r(t) + \mathbf{B}_r \, \mathbf{u}(t) \\ \mathbf{y}_r(t) = \mathbf{C}_r \, \mathbf{x}_r(t) + \mathbf{D}_r \, \mathbf{u}(t) \end{bmatrix} \longrightarrow \mathbf{y}_r(t) \approx \mathbf{y}(t)$$

where $\mathbf{A}_r, \mathbf{E}_r \in \mathbb{R}^{r \times r}$, $\mathbf{B}_r \in \mathbb{R}^{r \times m}$, $\mathbf{C}_r \in \mathbb{R}^{q \times r}$, and $\mathbf{D}_r \in \mathbb{R}^{q \times m}$ such that

- r-dimensional state space with $r \ll n$;
- $\|\mathbf{y} \mathbf{y}_r\|$ is *small* wrt an appropriate norm;
- important structural properties of S are preserved;
- the procedure is computationally efficient.
- "Project dynamics" onto an r-dimensional subspace;
- Eliminate states that:
 - are insensitive to variations in $\mathbf{u}(t)$: "Hard to reach"
 - have little influence on y(t): "Hard to observe"
- S_r then used as a surrogate for the original model.

Model Reduction via Projection

Choose

- $V_r = \text{Range}(V_r)$: the r-dimensional right modeling subspace (trial subspace) where $\mathbf{V}_r \in \mathbb{R}^{n \times r}$, and
- $W_r = \text{Range}(W_r)$, the r-dimensional left modeling subspace (test subspace) where $\mathbf{W}_r \in \mathbb{R}^{n \times r}$
- Approximate $\underline{\mathbf{x}(t)} \approx \underline{\mathbf{V}_r} \underline{\mathbf{x}_r(t)}$ by forcing $\mathbf{x}_r(t)$ to satisfy

$$\mathbf{W}_r^T (\mathbf{E} \mathbf{V}_r \dot{\mathbf{x}}_r - \mathbf{A} \mathbf{V}_r \mathbf{x}_r - \mathbf{B} \mathbf{u}) = \mathbf{0}$$
 (Petrov-Galerkin)

Leads to a reduced order model:

$$\mathbf{E}_r = \underbrace{\mathbf{W}_r^T \mathbf{E} \mathbf{V}_r}_{r \times r}, \quad \mathbf{A}_r = \underbrace{\mathbf{W}_r^T \mathbf{A} \mathbf{V}_r}_{r \times r}, \quad \mathbf{B}_r = \underbrace{\mathbf{W}_r^T \mathbf{B}}_{r \times m}, \quad \mathbf{C}_r = \underbrace{\mathbf{C} \mathbf{V}_r}_{q \times r}, \quad \mathbf{D}_r = \underbrace{\mathbf{D}}_{q \times m}$$

Figure: Projection-based Model Reduction

- Basis independence Only $V_r = \text{Ran}(V_r)$ and $W_r = \text{Ran}(W_r)$ matters.
- Once V_r and W_r are selected, S_r is fully determined.

Transfer Functions and the Frequency Domain

•
$$S:$$
 $\mathbf{u}(t) \mapsto \mathbf{y}(t) = (S\mathbf{u})(t) = \int_{-\infty}^{t} h(t-\tau)\mathbf{u}(\tau)d\tau.$

•
$$\mathbf{H}(s) = (\mathcal{L}h)(s) = \int_0^\infty h(\tau)e^{-s\tau}d\tau = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}.$$

- $\mathbf{H}(s)$ is called the transfer function of S.
- $\mathbf{H}(s)$: matrix-valued $(q \times p)$ rational function in $s \in \mathbb{C}$.
- Consider the simple n = m = q = 2 example with $\mathbf{D} = \mathbf{0}$,

$$\mathbf{E} = \mathbf{I}_2, \ \mathbf{A} = \left[\begin{array}{cc} -3 & -2 \\ 1 & 0 \end{array} \right], \ \mathbf{B} = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right], \ \mathbf{C} = \left[\begin{array}{cc} 0 & 1 \\ 1 & -1 \end{array} \right],$$

•
$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B} = \frac{1}{s^2 + 3s + 2} \begin{bmatrix} 1 & s + 4 \\ s - 1 & -6 \end{bmatrix}$$

• Let $\hat{\mathbf{z}}(\omega) = \mathcal{F}(\mathbf{z}(t))$

Full response:
$$\hat{\mathbf{y}}(\omega) = \mathbf{H}(\imath\omega)\hat{\mathbf{u}}(\omega)$$

Reduced order response: $\hat{\mathbf{y}}_r(\omega) = \mathbf{H}_r(\imath\omega)\hat{\mathbf{u}}(\omega)$

with transfer functions:

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$
 and $\mathbf{H}_r(s) = \mathbf{C}_r(s\mathbf{E}_r - \mathbf{A}_r)^{-1}\mathbf{B}_r + \mathbf{D}_r$

•
$$\mathbf{H}(s) = \frac{\alpha_0 s^n + \alpha_1 s^{n-1} + \alpha_2 s^{n-2} + \dots + \alpha_n}{s^n + \beta_1 s^{n-1} + \beta_2 s^{n-2} + \dots + \beta_n}$$
 (Assuming SISO)

•
$$\mathbf{H}_r(s) = \frac{\gamma_0 s^r + \gamma_1 s^{r-1} + \gamma_2 s^{r-2} + \dots + \gamma_r}{s^r + \eta_1 s^{r-1} + \eta_2 s^{r-2} + \dots + \eta_r}$$
 (Assuming SISO)

Model Reduction = Rational Approximation

 \bullet $\,\mathcal{L}^2$ - \mathcal{L}^2 induced norm associated with $\mathcal{S}:\mathbf{u}\to\mathbf{y}$

$$\|\mathcal{S}\|_{\mathcal{H}_{\infty}} = \sup_{\mathbf{u} \neq 0} \frac{\|\mathbf{y}\|_2}{\|\mathbf{u}\|_2} = \sup_{\mathbf{u} \neq 0} \frac{\|\mathcal{S}\mathbf{u}\|_2}{\|\mathbf{u}\|_2} = \sup_{w \in \mathbb{R}} \|\mathbf{H}(\imath w)\|_2$$

• $\|\mathcal{S} - \mathcal{S}_r\|_{\mathcal{H}_{\infty}}$ is worst-case output error $\|\mathbf{y}(t) - \mathbf{y}_r(t)\|_2$ with $\|\mathbf{u}\|_2 = 1$.

$$\|\mathbf{y} - \mathbf{y}_r\|_2 \le \|\mathcal{S} - \mathcal{S}_r\|_{\mathcal{H}_{\infty}} \|\mathbf{u}\|_2, \quad t \ge 0.$$

Suppose $\|\mathbf{u}\|_2 = 1$,

$$\begin{split} \int_{0}^{\infty} \|\mathbf{y}(t) - \mathbf{y}_{r}(t)\|_{2}^{2} dt &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \|\widehat{\mathbf{y}}(\iota\omega) - \widehat{\mathbf{y}}_{r}(\iota\omega)\|_{2}^{2} d\omega \\ &\leq \frac{1}{2\pi} \int_{-\infty}^{\infty} \|\mathbf{H}(\iota\omega) - \mathbf{H}_{r}(\iota\omega)\|_{2}^{2} \|\widehat{\mathbf{u}}(\iota\omega)\|_{2}^{2} d\omega \\ &\leq \sup_{\omega} \|\mathbf{H}(\iota\omega) - \mathbf{H}_{r}(\iota\omega)\|_{2}^{2} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \|\widehat{\mathbf{u}}(\iota\omega)\|_{2}^{2} d\omega\right)^{1/2} \\ &\leq \sup_{\omega} \|\mathbf{H}(\iota\omega) - \mathbf{H}_{r}(\iota\omega)\|_{2}^{2} \stackrel{\text{def}}{=} \|\mathcal{S} - \mathcal{S}_{r}\|_{\mathcal{H}_{\infty}}^{2} \end{split}$$

Error measures: \mathcal{H}_2 Norm

• \mathcal{L}_2 norm of $\mathbf{h}(t)$ in time domain.

$$\|\mathcal{S}\|_{\mathcal{H}_{2}} = \left(\int_{0}^{\infty} \|h(t)\|_{2}^{2} dt\right)^{\frac{1}{2}} = \left(\frac{1}{2\pi} \int_{-\infty}^{+\infty} \|\mathbf{H}(i\omega)\|_{F}^{2} d\omega\right)^{\frac{1}{2}}$$

• \mathcal{L}_2 - \mathcal{L}_{∞} induced norm of S for MISO and SIMO systems:

$$\|\mathcal{S}\|_{\mathcal{H}_2} = \sup_{\mathbf{u}
eq 0} rac{\|\mathbf{y}\|_{\infty}}{\|\mathbf{u}\|_2} \quad ext{for MISO and SIMO systems}$$

• In the general case of MIMO systems:

$$\|\mathbf{y} - \mathbf{y}_r\|_{L_{\infty}} \leq \|\mathcal{S} - \mathcal{S}_r\|_{\mathcal{H}_2} \|\mathbf{u}\|_{L_2}$$

Computing the \mathcal{H}_2 norm:

- In order for $\|S\|_{\mathcal{H}_2} < \infty$, it's necessary that $\mathbf{D} = \mathbf{0}$.
- Given $\mathbf{H}(s) = \mathbf{C}(s\mathbf{E} \mathbf{A})^{-1}\mathbf{B}$, let **P** be the unique solution to

$$\mathbf{A}\mathbf{P}\mathbf{E}^T + \mathbf{E}\mathbf{P}\mathbf{A}^T + \mathbf{B}\mathbf{B}^T = \mathbf{0}.$$

Then.

$$\|\mathcal{S}\|_{\mathcal{H}_2} = \sqrt{\text{Tr}(\mathbf{C}\,\mathbf{P}\,\mathbf{C}^T)}$$

- Directly follows from definition of \mathcal{H}_2 norm + residue thm.
- Matlab commands: norm (S, 2), normh2 (S), h2norm (S),

- System response described graphically in the frequency domain.
- Amplitude Bode Plot: Plot $\|\mathbf{H}(\imath\omega)\|_2$ vs $\omega \in \mathbb{R}$.
- For the dynamical system on Slide 8:

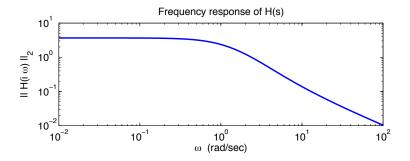


Figure: Frequency Response of $\mathbf{H}(s)$

Interpolatory Model Reduction

• Seek a reduced model S_r whose transfer function $\mathbf{H}_r(s)$ is a rational interpolant to $\mathbf{H}(s)$ in selected directions.

Tangential Interpolation Problem:

left interpolation points:

$$\{\mu_i\}_{i=1}^r \subset \mathbb{C},$$

with corresponding left tangent directions:

$$\{\tilde{\mathbf{c}}_i\}_{i=1}^r \subset \mathbb{C}^q$$
,

right interpolation points:

$$\{\sigma_i\}_{i=1}^r \subset \mathbb{C}$$

with corresponding right tangent directions:

$$\{\tilde{\mathsf{b}}_i\}_{i=1}^r\subset\mathbb{C}^m.$$

Find \mathbf{E}_r , \mathbf{A}_r , \mathbf{B}_r , \mathbf{C}_r , and \mathbf{D}_r (hence $\mathbf{H}_r(s)$) such that

$$\tilde{\mathbf{c}}_i^T \mathbf{H}_r(\mu_i) = \tilde{\mathbf{c}}_i^T \mathbf{H}(\mu_i)$$

for $i = 1, \dots, r$,

and

and

$$\mathbf{H}_r(\sigma_j)\tilde{\mathbf{b}}_j = \mathbf{H}(\sigma_j)\tilde{\mathbf{b}}_j,$$

for $j = 1, \dots, r$,

- We are *not* requiring $\mathbf{H}_r(s)$ to (fully) interpolate $\mathbf{H}(s)$ at $s = \sigma$ i.e., we are not requiring full matrix interpolation: $\mathbf{H}(\sigma) = \mathbf{H}_r(\sigma)$ (this would result in $q \times m$ interpolation conditions at every interpolation point, $s = \sigma$).
- Instead, we are requiring $\mathbf{H}_r(s)$ to match $\mathbf{H}(s)$ at $s = \sigma$ only along a direction, b: $\mathbf{H}(\sigma)\mathbf{b} = \mathbf{H}_r(\sigma)\mathbf{b}$.
- This results in only m interpolation conditions at every interpolation point, $s = \sigma$.
- Later, we will see that this type of interpolation, tangential interpolation, is necessary for optimal model reduction.

- How to enforce tangential interpolation via projection?
- First case: $\mathbf{D} = \mathbf{D}_r$ (so wlog take $\mathbf{D} = \mathbf{D}_r = 0$).

Theorem

Let σ , $\mu \in \mathbb{C}$ be such that $s \mathbf{E} - \mathbf{A}$ and $s \mathbf{E}_r - \mathbf{A}_r$ are invertible for $s = \sigma$, μ . Assume $b \in \mathbb{C}^m$ and $c \in \mathbb{C}^q$ are nontrivial vectors.

- (a) if $(\sigma \mathbf{E} \mathbf{A})^{-1} \mathbf{B} \mathbf{b} \in \mathsf{Ran}(\mathbf{V}_r)$, then $\mathbf{H}(\sigma) \mathbf{b} = \mathbf{H}_r(\sigma) \mathbf{b}$;
- (b) if $\left(\mathbf{c}^T \mathbf{C} \left(\mu \mathbf{E} \mathbf{A}\right)^{-1}\right)^T \in \mathsf{Ran}(\mathbf{W}_r)$, then $\mathbf{c}^T \mathbf{H}(\mu) = \mathbf{c}^T \mathbf{H}_r(\mu)$;
- (c) and if both (a) and (b) hold, and $\sigma = \mu$, then $c^T \mathbf{H}'(\sigma) b = c^T \mathbf{H}'_r(\sigma) b$ as well.

[Skelton et. al., 87], [Grimme, 97], [Gallivan et. al., 05]

Consequences:

• Given $\{\sigma_i\}_{i=1}^r, \{\mu_j\}_{i=1}^r, \{b_i\}_{i=1}^r \in \mathbb{C}^m, \text{ and } \{c_i\}_{i=1}^r \in \mathbb{C}^q, \text{ set }$

$$\begin{aligned} \mathbf{V}_r &= \left[(\sigma_1 \mathbf{E} - \mathbf{A})^{-1} \mathbf{B} \mathbf{b}_1, \ \cdots, \ (\sigma_r \mathbf{E} - \mathbf{A})^{-1} \mathbf{B} \mathbf{b}_r \right] \in \mathbb{C}^{n \times r} \text{ and } \\ \mathbf{W}_r &= \left[(\mu_1 \, \mathbf{E} - \mathbf{A}^T)^{-1} \mathbf{C}^T \mathbf{c}_1 \ \cdots, \ (\mu_r \, \mathbf{E} - \mathbf{A}^T)^{-1} \mathbf{C}^T \mathbf{c}_r \ \right] \in \mathbb{C}^{n \times r} \end{aligned}$$

• Obtain $\mathbf{H}_r(s)$ via projection as before

$$\mathbf{E}_r = \mathbf{W}_r^T \mathbf{E} \mathbf{V}_r \quad \mathbf{A}_r = \mathbf{W}_r^T \mathbf{A} \mathbf{V}_r, \quad \mathbf{B}_r = \mathbf{W}_r^T \mathbf{B}, \quad \mathbf{C}_r = \mathbf{C} \mathbf{V}_r, \quad \mathbf{D}_r = \mathbf{D}$$

Then

$$\mathbf{H}(\sigma_i)\mathbf{b}_i = \mathbf{H}_r(\sigma_i)\mathbf{b}_i, \quad \text{for } i = 1, \dots, r,$$

$$\mathbf{c}_j^T \mathbf{H}(\mu_j) = \mathbf{c}_j^T \mathbf{H}_r(\mu_j), \quad \text{for } j = 1, \dots, r,$$

$$\mathbf{c}_k^T \mathbf{H}'(\sigma_k)\mathbf{b}_k = \mathbf{c}_k^T \mathbf{H}'_r(\sigma_k)\mathbf{b}_k \quad \text{if } \sigma_k = \mu_k$$

bitangential Hermite interpolation where $\sigma_k = \mu_k$

(?!) <u>©</u>

Reduction from n=2 to r=1

• Recall the simple example n = m = q = 2 case with $\mathbf{D} = \mathbf{0}$,

$$\mathbf{E} = \mathbf{I}_2, \ \mathbf{A} = \left[\begin{array}{cc} -3 & -2 \\ 1 & 0 \end{array} \right], \ \mathbf{B} = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right], \ \mathbf{C} = \left[\begin{array}{cc} 0 & 1 \\ 1 & -1 \end{array} \right],$$

•
$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B} = \frac{1}{s^2 + 3s + 2} \begin{bmatrix} 1 & s + 4 \\ s - 1 & -6 \end{bmatrix}$$

• Let
$$\sigma_1=\mu_1=0$$
, $\mathsf{b}_1=\left[\begin{array}{c}1\\-1\end{array}\right]$, and $\mathsf{c}_1=\left[\begin{array}{c}1\\2\end{array}\right]$,

•
$$\mathbf{V}_r = (\sigma_1 \mathbf{E} - \mathbf{A})^{-1} \mathbf{B} \mathbf{b}_1 = \begin{bmatrix} 1 \\ -1.5 \end{bmatrix}$$

•
$$\mathbf{W}_r = (\sigma_1 \mathbf{E} - \mathbf{A})^{-T} \mathbf{C}^T \mathbf{c}_1 = \begin{bmatrix} -0.5 \\ -3.5 \end{bmatrix}$$

•
$$\mathbf{E}_r = \mathbf{W}_r^T \mathbf{E} \mathbf{V}_r = 4.75$$
, $\mathbf{A}_r = \mathbf{W}_r^T \mathbf{A} \mathbf{V}_r = -3.5$,

•
$$\mathbf{B}_r = \mathbf{W}_r^T \mathbf{B} = \begin{bmatrix} -0.5 & -4 \end{bmatrix}, \quad \mathbf{C}_r = \mathbf{C} \mathbf{V}_r = \begin{bmatrix} -1.5 \\ 2.5 \end{bmatrix},$$

•
$$\mathbf{H}_r(s) = \mathbf{C}_r(s\mathbf{E}_r - \mathbf{A}_r)^{-1}\mathbf{B}_r = \frac{1}{s + 0.7368} \begin{bmatrix} 0.1579 & 1.2630 \\ -0.2632 & -2.105 \end{bmatrix}$$

$$\bullet \ \mathbf{H}(\sigma_1)\mathbf{b}_1 = \mathbf{H}_r(\sigma_1)\mathbf{b}_1 = \left[\begin{array}{c} -1.5 \\ 2.5 \end{array} \right] \qquad \checkmark$$

•
$$\mathbf{c}_1^T \mathbf{H}(\sigma_1) = \mathbf{c}_1^T \mathbf{H}_r(\sigma_1) = [-0.5 \ -4]$$

•
$$\mathbf{c}_1^T \mathbf{H}'(\sigma_1) \mathbf{b}_1 = \mathbf{c}_1^T \mathbf{H}'_r(\sigma_1) \mathbf{b}_1 = 4.75$$

• Recall $V_r = \text{Ran}(V_r)$ and $W_r = \text{Ran}(W_r)$. Define

$$\mathbf{\mathcal{P}}_r(z) = \mathbf{V}_r(z\mathbf{E}_r - \mathbf{A}_r)^{-1}\mathbf{W}_r^T(z\mathbf{E} - \mathbf{A})$$
 and $\mathbf{\mathcal{Q}}_r(z) = (z\mathbf{E} - \mathbf{A})\mathbf{V}_r(z\mathbf{E}_r - \mathbf{A}_r)^{-1}\mathbf{W}_r^T = (z\mathbf{E} - \mathbf{A})\mathbf{\mathcal{P}}_r(z)(z\mathbf{E} - \mathbf{A})^{-1}$

- $\mathcal{P}_r^2(z) = \mathcal{P}_r(z)$ with $\mathcal{V}_r = \text{Ran}(\mathcal{P}_r(z)) = \text{Ker}(\mathbf{I} \mathcal{P}_r(z))$
- $\mathbf{Q}_r^2(z) = \mathbf{Q}_r(z)$ with $\mathcal{W}_r^{\perp} = \text{Ker}(\mathbf{Q}_r(z)) = \text{Ran}(\mathbf{I} \mathbf{Q}_r(z))$

$$\mathbf{H}(z) - \mathbf{H}_r(z) = \mathbf{C}(z\mathbf{E} - \mathbf{A})^{-1} \left(\mathbf{I} - \mathbf{Q}_r(z) \right) (z\mathbf{E} - \mathbf{A}) \left(\mathbf{I} - \mathbf{P}_r(z) \right) (z\mathbf{I} - \mathbf{A})^{-1} \mathbf{B}$$

- Evaluate at $z = \sigma_i$ and postmultiply by \mathbf{b}_i : $\mathbf{H}(\sigma_i)\mathbf{b}_i = \mathbf{H}_r(\sigma_i)\mathbf{b}_i$
- Evaluate at $z = \sigma_i$ and premultiply by \mathbf{c}^T : $\mathbf{c}_i^T \mathbf{H}(\sigma_i) = \mathbf{c}_i^T \mathbf{H}_r(\sigma_i)$
- Evaluate at $z = \sigma + \varepsilon$, premultiply by \mathbf{c}^T and postmultiply by \mathbf{b} :

$$\mathbf{c}_i^T \mathbf{H}(\sigma_i + \varepsilon) \mathbf{b}_i - \mathbf{c}_i^T \mathbf{H}_r(\sigma_i + \varepsilon) \mathbf{b}_i = \mathcal{O}(\varepsilon^2).$$

Since
$$\mathbf{c}_i^T \mathbf{H}(\sigma_i) \mathbf{b}_i = \mathbf{c}_i^T \mathbf{H}_r(\sigma_i) \mathbf{b}_i$$
 ,

$$\frac{1}{\varepsilon} \left(\mathbf{c}_i^T \mathbf{H}(\sigma_i + \varepsilon) \mathbf{b}_i - \mathbf{c}_i^T \mathbf{H}(\sigma_i) \mathbf{b}_i \right) - \frac{1}{\varepsilon} \left(\mathbf{c}_i^T \mathbf{H}_r(\sigma_i + \varepsilon) \mathbf{b}_i - \mathbf{c}_i^T \mathbf{H}_r(\sigma_i) \mathbf{b}_i \right) \to 0, \text{ as } \varepsilon \to 0.$$

Higher-order Interpolation

Theorem

Let $\sigma \in \mathbb{C}$ be such that both $\sigma \mathbf{E} - \mathbf{A}$ and $\sigma \mathbf{E}_r - \mathbf{A}_r$ are invertible. If $b \in \mathbb{C}^m$ and $c \in \mathbb{C}^q$ are fixed nontrivial vectors then

(a) if
$$\left((\sigma \mathbf{E} - \mathbf{A})^{-1} \mathbf{E}\right)^{j-1} (\sigma \mathbf{E} - \mathbf{A})^{-1} \mathbf{B} \mathbf{b} \in \mathsf{Ran}(\mathbf{V}_r) \text{ for } j = 1,.,N$$

then $\mathbf{H}^{(\ell)}(\sigma) \mathbf{b} = \mathbf{H}_r^{(\ell)}(\sigma) \mathbf{b} \text{ for } \ell = 0,1,\ldots,N-1$
(b) if $\left((\mu \mathbf{E} - \mathbf{A})^{-T} \mathbf{E}^T\right)^{j-1} (\mu \mathbf{E} - \mathbf{A})^{-T} \mathbf{C}^T \mathbf{c} \in \mathsf{Ran}(\mathbf{W}_r) \text{ for } j = 1,.,M,$

then
$$\mathbf{c}^T \mathbf{H}^{(\ell)}(\mu) = \mathbf{c}^T \mathbf{H}_r^{(\ell)}(\mu) \mathbf{b}$$
 for $\ell = 0, 1, \dots, M-1$;

(c) if both (a) and (b) hold, and if
$$\sigma = \mu$$
, then $c^T \mathbf{H}^{(\ell)}(\sigma) b = c^T \mathbf{H}^{(\ell)}_r(\sigma) b$, for $\ell = 1, \dots, M + N + 1$

The proof follows similarly.

Constructing interpolants with $\mathbf{D}_r \neq \mathbf{D}$

• For optimal \mathcal{H}_{∞} approximants, typically $\lim_{s \to \infty} \mathbf{H}_r(s) \neq \lim_{s \to \infty} \mathbf{H}(s)$

Theorem ([B/Gugercin,09] [Mayo/Antoulas,07])

Given $\{\mu_i\}_{i=1}^r \cup \{\sigma_j\}_{j=1}^r$,, $\{c_i\}_{i=1}^r \subset \mathbb{C}^q$ and $\{b_j\}_{j=1}^r \subset \mathbb{C}^m$, let $V_r \in \mathbb{C}^{n \times r}$ and $\mathbf{W}_r \in \mathbb{C}^{n \times r}$ be as before. Define B and C as

$$\widetilde{\mathbf{B}} = [\mathbf{b}_1, \, \mathbf{b}_2, \, ..., \, \mathbf{b}_r]$$
 and $\widetilde{\mathbf{C}}^T = [\mathbf{c}_1, \, \mathbf{c}_2, \, \ldots, \, \mathbf{c}_r]^T$

For any $\mathbf{D}_r \in \mathbb{C}^{p \times m}$, define

$$\mathbf{E}_r(s) = \mathbf{W}_r^T \mathbf{E} \mathbf{V}_r, \quad \mathbf{A}_r = \mathbf{W}_r^T \mathbf{A} \mathbf{V}_r + \widetilde{\mathbf{C}}^T \mathbf{D}_r \widetilde{\mathbf{B}},$$

$$\mathbf{B}_r = \mathbf{W}_r^T \mathbf{B} - \widetilde{\mathbf{C}}^T \mathbf{D}_r, \quad \text{and} \quad \mathbf{C}_r = \mathbf{C} \mathbf{V}_r - \mathbf{D}_r \widetilde{\mathbf{B}}.$$

Then with
$$\mathbf{H}_r(s) = \mathbf{C}_r(s\mathbf{E}_r - \mathbf{A}_r)^{-1}\mathbf{B}_r + \mathbf{D}_r$$
, we have

$$\mathbf{H}(\sigma_i)\mathbf{b}_i = \mathbf{H}_r(\sigma_i)\mathbf{b}_i$$
 and $\mathbf{c}_i^T\mathbf{H}(\mu_i) = \mathbf{c}_i^T\mathbf{H}_r(\mu_i)$ for $i = 1, ..., r$.

LinSys Intrplt StrcMOR H2Opt DD-IRKA TangIntrplt IntrpltProj Loewner

Interpolation from Data: Loewner Framework

- In some applications, dynamics are not available; but an abundant amount of input/output measurements are available.
- The goal: Construct a reduced-order model directly from data.

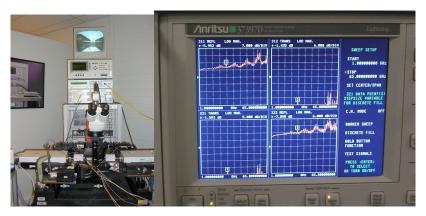


Figure: Vector Network Analyzer. (Data: A.C. Antoulas)

Consider the following example ([Antoulas, 2005])

$$\frac{\partial T}{\partial t}(z,t) = \frac{\partial^2 T}{\partial z^2}(z,t), \quad t \ge 0, \quad z \in [0,1]$$

with the boundary conditions $\frac{\partial T}{\partial t}(0,t) = 0$ and $\frac{\partial T}{\partial z}(1,t) = u(t)$

- u(t): supplied heat, v(t) = T(0,t)
- Transfer function: $\mathbf{H}(s) = \frac{Y(s)}{U(s)} = \frac{1}{\sqrt{s} \sinh \sqrt{s}} \neq \mathbf{C}(s\mathbf{E} \mathbf{A})^{-1}\mathbf{B}$
- New goal: Given the ability to evaluate H(s):

$$\begin{array}{c|c}
\mathbf{\mathcal{H}}(s) & \overset{?}{\approx} & \mathbf{E}_r \dot{\mathbf{x}} = \mathbf{A}_r \mathbf{x}_r(t) + \mathbf{B}_r \mathbf{u}(t) \\
\mathbf{y}_r(t) = \mathbf{C}_r \mathbf{x}_r(t)
\end{array}$$

• Given a set of input-output response measurements on $\mathbf{H}(s)$:

$$\begin{array}{ll} \textit{left driving frequencies:} & \textit{right driving frequencies:} \\ \{\mu_i\}_{i=1}^r \subset \mathbb{C}, & \{\sigma_i\}_{i=1}^r \subset \mathbb{C} \\ \textit{using left input directions:} & \textit{and using right input directions:} \\ \{\tilde{\mathsf{c}}_i\}_{i=1}^r \subset \mathbb{C}^q, & \{\tilde{\mathsf{b}}_i\}_{i=1}^r \subset \mathbb{C}^m \\ \textit{producing left responses:} & \textit{producing right responses:} \\ \{\tilde{\mathsf{z}}_i\}_{i=1}^r \subset \mathbb{C}^m, & \{\tilde{\mathsf{y}}_i\}_{i=1}^r \subset \mathbb{C}^q \\ \end{array}$$

 Find a reduced model by determining (reduced) system matrices \mathbf{E}_r , \mathbf{A}_r , \mathbf{B}_r , \mathbf{C}_r , and \mathbf{D}_r such that the associated transfer function, $\mathbf{H}_r(s)$ is a tangential interpolant to the given data:

$$\tilde{\mathbf{c}}_i^T \mathbf{H}_r(\mu_i) = \tilde{\mathbf{z}}_i^T$$
 and $\mathbf{H}_r(\sigma_j)\tilde{\mathbf{b}}_j = \tilde{\mathbf{y}}_j,$ for $i = 1, \dots, r,$

Main Ingredients

The Loewner matrix:

$$\mathbb{L} = \begin{bmatrix} \frac{\tilde{\mathbf{z}}_1^T \tilde{\mathbf{b}}_1 - \tilde{\mathbf{c}}_1^T \tilde{\mathbf{y}}_1}{\mu_1 - \sigma_1} & \cdots & \frac{\tilde{\mathbf{z}}_1^T \tilde{\mathbf{b}}_r - \tilde{\mathbf{c}}_1^T \tilde{\mathbf{y}}_r}{\mu_1 - \sigma_r} \\ \vdots & \ddots & \vdots \\ \frac{\tilde{\mathbf{z}}_q^T \tilde{\mathbf{b}}_1 - \tilde{\mathbf{c}}_q^T \tilde{\mathbf{y}}_1}{\mu_q - \sigma_1} & \cdots & \frac{\tilde{\mathbf{z}}_q^T \tilde{\mathbf{b}}_r - \tilde{\mathbf{c}}_q^T \tilde{\mathbf{y}}_r}{\mu_q - \sigma_r} \end{bmatrix} \in \mathbb{C}^{q \times r}.$$

• Suppose $\mathbf{H}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B}$:

$$\mathbb{L}_{ij} = \frac{\tilde{\mathbf{z}}_i^T \tilde{\mathbf{b}}_j - \tilde{\mathbf{c}}_i^T \tilde{\mathbf{y}}_j}{\mu_i - \sigma_j} = \frac{\tilde{\mathbf{c}}_i^T [\mathbf{H}(\mu_i) - \mathbf{H}(\sigma_j)] \tilde{\mathbf{b}}_j}{\mu_i - \sigma_j}$$

What does L represent?

$$\widetilde{\mathsf{B}} = \left[\begin{array}{cccc} \vdots & \vdots & & \vdots \\ \widetilde{\mathsf{b}}_1 & \widetilde{\mathsf{b}}_2 & \dots & \widetilde{\mathsf{b}}_r \\ \vdots & \vdots & & \vdots \end{array} \right]$$

$$\widetilde{\mathsf{B}} = \left[\begin{array}{ccc} \vdots & \vdots & & \vdots \\ \widetilde{\mathsf{b}}_1 & \widetilde{\mathsf{b}}_2 & \dots & \widetilde{\mathsf{b}}_r \\ \vdots & \vdots & & \vdots \end{array} \right] \qquad \widetilde{\mathsf{Y}} = \left[\begin{array}{ccc} \vdots & \vdots & & \vdots \\ \widetilde{\mathsf{y}}_1 & \widetilde{\mathsf{y}}_2 & \dots & \widetilde{\mathsf{y}}_r \\ \vdots & \vdots & & \vdots \end{array} \right]$$

$$\widetilde{\mathbf{Z}}^T = \begin{bmatrix} \dots & \widetilde{\mathbf{z}}_1^T & \dots \\ \dots & \widetilde{\mathbf{z}}_2^T & \dots \\ & \vdots & \\ \dots & \widetilde{\mathbf{z}}_q^T & \dots \end{bmatrix} \qquad \widetilde{\mathbf{C}}^T = \begin{bmatrix} \dots & \widetilde{\mathbf{c}}_1^T & \dots \\ \dots & \widetilde{\mathbf{c}}_2^T & \dots \\ & \vdots & \\ \dots & \widetilde{\mathbf{c}}_q^T & \dots \end{bmatrix}$$

$$\widetilde{\mathbf{C}}^T = egin{bmatrix} \dots & \mathbf{C}_1^t & \dots \\ \dots & \widetilde{\mathbf{C}}_2^T & \dots \\ & \vdots \\ \dots & \widetilde{\mathbf{C}}_a^T & \dots \end{bmatrix}$$

Theorem (Mayo/Antoulas,2007)

The Loewner matrix \mathbb{L} satisfies the Sylvester equation

$$\mathbb{L}\Sigma - M\mathbb{L} = \widetilde{\mathsf{C}}^T\widetilde{\mathsf{Y}} - \widetilde{\mathsf{Z}}^T\widetilde{\mathsf{B}},$$

where
$$\Sigma = diag(\sigma_1, \ldots, \sigma_r) \in \mathbb{C}^{r \times r}$$
, and $M = diag(\mu_1, \ldots, \mu_q) \in \mathbb{C}^{q \times q}$.

Proof by direct substitution.

The shifted Loewner matrix:

$$\mathbb{M} = \begin{bmatrix} \frac{\mu_1 \tilde{\mathbf{z}}_1^T \tilde{\mathbf{b}}_1 - \sigma_1 \tilde{\mathbf{c}}_1^T \tilde{\mathbf{y}}_1}{\mu_1 - \sigma_1} & \cdots & \frac{\mu_1 \tilde{\mathbf{z}}_1^T \tilde{\mathbf{b}}_r - \sigma_r \tilde{\mathbf{c}}_1^T \tilde{\mathbf{y}}_r}{\mu_1 - \sigma_r} \\ \vdots & \ddots & \vdots \\ \frac{\mu_q \tilde{\mathbf{z}}_q^T \tilde{\mathbf{b}}_1 - \sigma_1 \tilde{\mathbf{c}}_q^T \tilde{\mathbf{y}}_1}{\mu_q - \sigma_1} & \cdots & \frac{\mu_q \tilde{\mathbf{z}}_q^T \tilde{\mathbf{b}}_r - \sigma_r \tilde{\mathbf{c}}_q^T \tilde{\mathbf{y}}_r}{\mu_q - \sigma_r} \end{bmatrix} \in \mathbb{C}^{q \times r}$$

• If $H(s) = C(sE - A)^{-1}B$

$$\mathbb{M}_{ij} = \frac{\tilde{\mathbf{c}}_i^T [\mu_i \mathbf{H}(\mu_i) - \sigma_j \mathbf{H}(\sigma_j)] \tilde{\mathbf{b}}_j}{\mu_i - \sigma_j}$$

What does M represent?

Theorem (Mayo/Antoulas,2007)

M satisfies the Sylvester equation

$$\mathbb{M}\Sigma - M\mathbb{M} = \widetilde{\mathsf{C}}^T \widetilde{\mathsf{Y}} \Sigma - M \widetilde{\mathsf{Z}}^T \widetilde{\mathsf{B}}.$$

Proof by direct substitution.

Theorem (Mayo/Antoulas,2007)

Assume that $\mu_i \neq \sigma_i$ for all i, j = 1, ..., r. Suppose that $\mathbb{M} - s \mathbb{L}$ is invertible for all $s \in \{\sigma_i\} \cup \{\mu_i\}$. Then, with

$$\mathbf{E}_r = -\mathbb{L}, \quad \mathbf{A}_r = -\mathbb{M}, \quad \mathbf{B}_r = \widetilde{\mathbf{Z}}^T, \quad \mathbf{C}_r = \widetilde{\mathbf{Y}}, \quad \mathbf{D}_r = 0,$$

$$\mathbf{H}_r(s) = \mathbf{C}_r(s\mathbf{E}_r - \mathbf{A}_r)^{-1}\mathbf{B}_r = \widetilde{\mathbf{Z}}^T(\mathbb{M} - s\,\mathbb{L})^{-1}\widetilde{\mathbf{Y}}$$

interpolates the data and furthermore is a minimal realization.

Sketch of the proof

- Assume $\mathbf{H}(s) = \mathbf{C}(s\mathbf{E} \mathbf{A})^{-1}\mathbf{B}$ (convenient but not necessary).
- $\mathbf{H}(\mu_i) \mathbf{H}(\sigma_i) = (\sigma_i \mu_i) \mathbf{C}(\mu_i \mathbf{E} \mathbf{A})^{-1} \mathbf{E}(\sigma_i \mathbf{E} \mathbf{A})^{-1} \mathbf{B}$. $\Longrightarrow \mathbb{L} = -\mathbf{W}_r^T \mathbf{E} \mathbf{V}_r$ (resolvent identity!)
- $\mu_i \mathbf{H}(\mu_i) \sigma_i \mathbf{H}(\sigma_i) = (\sigma_i \mu_i) \mathbf{C}(\mu_i \mathbf{E} \mathbf{A})^{-1} \mathbf{A} (\sigma_i \mathbf{E} \mathbf{A})^{-1} \mathbf{B}$. $\Longrightarrow \mathbb{M} = -\mathbf{W}_r^T \mathbf{A} \mathbf{V}_r$ (resolvent identity!)
- Also $\widetilde{\mathbf{Z}}^T = \mathbf{W}_r^T \mathbf{B}$ and $\widetilde{\mathbf{Y}} = \mathbf{C} \mathbf{V}_r$ by definition.
 - \Rightarrow $\mathbf{H}_r(s) = \widetilde{\mathbf{Y}}(\mathbb{M} s \mathbb{L})^{-1} \widetilde{\mathbf{Z}}^T$ is a tangential interpolant to $\mathbf{H}(s)$.
- Proof without assuming $\mathbf{H}(s) = \mathbf{C}(s\mathbf{E} \mathbf{A})^{-1}\mathbf{B}$ uses the Sylvester equations.

Rank deficient case

Assume

$$\operatorname{rank}\left(s\mathbb{L}-\mathbb{M}\right)=\operatorname{rank}\left[\mathbb{L}\ \mathbb{M}\right]=\operatorname{rank}\left[\begin{array}{c}\mathbb{L}\\\mathbb{M}\end{array}\right]\geq\rho,\ \text{for all}\ s\in\{\sigma_i\}\cup\{\mu_j\}.$$

• Compute the SVD: $s\mathbb{L} - \mathbb{M} = \mathbf{Y}\Theta\mathbf{X}^*$, for some $s \in \{\sigma_i\} \cup \{\mu_i\}$

Theorem (Mayo/Antoulas,2007)

A realization $[\mathbf{E}_{\rho}, \mathbf{A}_{\rho}, \mathbf{B}_{\rho}, \mathbf{C}_{\rho}]$, of a minimal solution is given as follows:

$$\mathbf{E}_{\rho} = -\mathbf{Y}_{\rho}^{*} \mathbb{L} \mathbf{X}_{\rho}, \ \mathbf{A}_{\rho} = -\mathbf{Y}_{\rho}^{*} \mathbb{M} \mathbf{X}_{\rho}, \ \mathbf{B}_{\rho} = \mathbf{Y}_{\rho}^{*} \widetilde{\mathbf{Y}}, \ \mathbf{C}_{\rho} = \widetilde{\mathbf{Z}}^{T} \mathbf{X}_{\rho}.$$

• Depending on whether ρ is the exact or approximate rank, either an interpolant or an approximate interpolant, respectively.

All that is required is the ability of computing $\mathbf{H}(s)$ at any $s \in \mathbb{C}$; for example, $\mathbf{H}(s) = \frac{1}{\sqrt{s} \sinh \sqrt{s}}$ can be handled easily.

- Once data is collected, only a minimal amount of computation is necessary.
- For Hermite interpolation, choose $\sigma_i = \mu_i$ and then modify

$$\mathbb{L}_{ii} = \tilde{\mathsf{c}}_i \mathbf{H}'(\sigma_i) \tilde{\mathsf{b}}_i$$
 and $\mathbb{M}_{ii} = \tilde{\mathsf{c}}_i [s\mathbf{H}(s)]'_{s=\sigma_i} \tilde{\mathsf{b}}_i$

Structure-preserving model reduction

$$\mathbf{u}(t) \longrightarrow \begin{bmatrix} \mathbf{A}_0 \frac{d^{\ell} \mathbf{x}}{dt^{\ell}} + \mathbf{A}_1 \frac{d^{\ell-1} \mathbf{x}}{dt^{\ell-1}} + \dots + \mathbf{A}_{\ell} \mathbf{x} = \mathbf{B}_0 \frac{d^{\ell} \mathbf{u}}{dt^{\ell}} + \dots + \mathbf{B}_{k} \mathbf{u} \\ \mathbf{y}(t) = \mathbf{C}_0 \frac{d^{\ell} \mathbf{x}}{dt^{\ell}} + \dots + \mathbf{C}_{\ell} \mathbf{x}(t) \end{bmatrix} \longrightarrow \mathbf{y}(t)$$

- "Every linear ODE may be reduced to an equivalent first order system" Might not be the best approach ...
- For example

$$\mathbf{C}(s^2\mathbf{M} + s\mathbf{D} + \mathbf{K})^{-1}\mathbf{B} = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B}$$

where

$$\boldsymbol{\mathcal{E}} = \left[\begin{array}{cc} \boldsymbol{I} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{M} \end{array} \right], \; \boldsymbol{\mathcal{A}} = \left[\begin{array}{cc} \boldsymbol{0} & \boldsymbol{I} \\ -\boldsymbol{K} & -\boldsymbol{D} \end{array} \right], \; \boldsymbol{\mathcal{B}} = \left[\begin{array}{cc} \boldsymbol{0} \\ \boldsymbol{B} \end{array} \right], \; \boldsymbol{\mathcal{C}} = \left[\begin{array}{cc} \boldsymbol{C} & \boldsymbol{0} \end{array} \right]$$

Disadvantages???

 Refined goal: Want to develop model reduction methods that can reduce selected state variables (i.e., on selected subspaces) while leaving other state variables untouched; maintain structural relationships among the variables.

"Structure-preserving model reduction"

- For the second-order systems, see: [Craig Jr.,1981], [Chahlaoui et.al, 2005], [Bai,2002], [Su/Craig,(1991)], [Meyer/Srinivasan,1996],
- We will be investigating a much more general framework.

Example 1: Incompressible viscoelastic vibration

$$\begin{split} \partial_{tt} \mathbf{w}(x,t) &- \eta \, \Delta \mathbf{w}(x,t) - \int_0^t \, \rho(t-\tau) \, \Delta \mathbf{w}(x,\tau) \, d\tau + \nabla \varpi(x,t) = \mathbf{b}(x) \cdot \mathbf{u}(t), \\ \nabla \cdot \mathbf{w}(x,t) &= 0 \quad \text{which determines} \quad \mathbf{y}(t) = \left[\varpi(x_1,t), \, \ldots, \, \varpi(x_p,t)\right]^T \end{split}$$

- [Leitman and Fisher, 1973]
- $\mathbf{w}(x,t)$ is the displacement field; $\varpi(x,t)$ is the pressure field; $\rho(\tau)$ is a "relaxation function"

Example 1: Incompressible viscoelastic vibration

$$\begin{split} & \partial_{tt} \mathbf{w}(x,t) - \eta \, \Delta \mathbf{w}(x,t) - \int_0^t \, \rho(t-\tau) \, \Delta \mathbf{w}(x,\tau) \, d\tau + \nabla \varpi(x,t) = \mathbf{b}(x) \cdot \mathbf{u}(t), \\ & \nabla \cdot \mathbf{w}(x,t) = 0 \quad \text{which determines} \quad \mathbf{y}(t) = \left[\varpi(x_1,t), \, \ldots, \, \varpi(x_p,t)\right]^T \end{split}$$

- [Leitman and Fisher, 1973]
- $\mathbf{w}(x,t)$ is the displacement field; $\varpi(x,t)$ is the pressure field; $\rho(\tau)$ is a "relaxation function"

$$\mathbf{M} \ddot{\mathbf{x}}(t) + \eta \mathbf{K} \mathbf{x}(t) + \int_0^t \rho(t - \tau) \mathbf{K} \mathbf{x}(\tau) d\tau + \mathbf{D} \boldsymbol{\varpi}(t) = \mathbf{B} \mathbf{u}(t),$$
$$\mathbf{D}^T \mathbf{x}(t) = \mathbf{0}, \quad \text{which determines} \quad \mathbf{y}(t) = \mathbf{C} \boldsymbol{\varpi}(t)$$

- $\mathbf{x} \in \mathbb{R}^{n_1}$ discretization of \mathbf{w} ; $\boldsymbol{\varpi} \in \mathbb{R}^{n_2}$ discretization of $\boldsymbol{\varpi}$.
- M and K are real, symmetric, positive-definite matrices, $\mathbf{B} \in \mathbb{R}^{n_1 \times m}$. $\mathbf{C} \in \mathbb{R}^{p \times n_2}$. and $\mathbf{D} \in \mathbb{R}^{n_1 \times n_2}$.

Example 1: Incompressible viscoelastic vibration

Transfer function (need not be a rational function!):

$$\mathcal{H}(s) = \begin{bmatrix} \mathbf{0} \ \mathbf{C} \end{bmatrix} \begin{bmatrix} s^2 \mathbf{M} + (\widehat{\rho}(s) + \eta) \mathbf{K} & \mathbf{D} \\ \mathbf{D}^T & \mathbf{0} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{B} \\ \mathbf{0} \end{bmatrix}$$

Want a reduced order model that replicates input-output response

$$\begin{split} \mathbf{M}_r \ddot{\mathbf{x}}(t) \, + \, \eta \, \mathbf{K}_r \, \mathbf{x}_r(t) \, + \, \int_0^t \, \rho(t-\tau) \, \mathbf{K}_r \, \mathbf{x}_r(\tau) \, d\tau + \mathbf{D}_r \, \boldsymbol{\varpi}_r(t) = \mathbf{B}_r \, \mathbf{u}(t), \\ \mathbf{D}_r^T \, \mathbf{x}_r(t) = \mathbf{0}, \qquad \text{which determines} \quad \mathbf{y}_r(t) = \mathbf{C}_r \, \boldsymbol{\varpi}_r(t) \end{split}$$

with symmetric positive semidefinite \mathbf{M}_r , $\mathbf{K}_r \in \mathbb{R}^{r \times r}$, $\mathbf{B}_r \in \mathbb{R}^{r \times m}$, $\mathbf{C}_r \in \mathbb{R}^{p \times r}$, and $\mathbf{D}_r \in \mathbb{R}^{r \times r}$.

Because of the memory term, both reduced and original systems have

Example 1: Incompressible viscoelastic vibration

Transfer function (need not be a rational function!):

$$\mathcal{H}(s) = \begin{bmatrix} \mathbf{0} \ \mathbf{C} \end{bmatrix} \begin{bmatrix} s^2 \mathbf{M} + (\widehat{\rho}(s) + \eta) \mathbf{K} & \mathbf{D} \\ \mathbf{D}^T & \mathbf{0} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{B} \\ \mathbf{0} \end{bmatrix}$$

 Want a reduced order model that replicates input-output response with high fideliety yet retains "viscoelasticity":

$$\mathbf{M}_r \ddot{\mathbf{x}}(t) + \eta \mathbf{K}_r \mathbf{x}_r(t) + \int_0^t \rho(t - \tau) \mathbf{K}_r \mathbf{x}_r(\tau) d\tau + \mathbf{D}_r \boldsymbol{\varpi}_r(t) = \mathbf{B}_r \mathbf{u}(t),$$

$$\mathbf{D}_r^T \mathbf{x}_r(t) = \mathbf{0}, \quad \text{which determines} \quad \mathbf{y}_r(t) = \mathbf{C}_r \boldsymbol{\varpi}_r(t)$$

with symmetric positive semidefinite \mathbf{M}_r , $\mathbf{K}_r \in \mathbb{R}^{r \times r}$, $\mathbf{B}_r \in \mathbb{R}^{r \times m}$, $\mathbf{C}_r \in \mathbb{R}^{p \times r}$, and $\mathbf{D}_r \in \mathbb{R}^{r \times r}$.

Because of the memory term, both reduced and original systems have

Example 1: Incompressible viscoelastic vibration

Transfer function (need not be a rational function!):

$$\mathcal{H}(s) = \begin{bmatrix} \mathbf{0} \ \mathbf{C} \end{bmatrix} \begin{bmatrix} s^2 \mathbf{M} + (\widehat{\rho}(s) + \eta) \mathbf{K} & \mathbf{D} \\ \mathbf{D}^T & \mathbf{0} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{B} \\ \mathbf{0} \end{bmatrix}$$

 Want a reduced order model that replicates input-output response with high fideliety yet retains "viscoelasticity":

$$\mathbf{M}_r \ddot{\mathbf{x}}(t) + \eta \mathbf{K}_r \mathbf{x}_r(t) + \int_0^t \rho(t - \tau) \mathbf{K}_r \mathbf{x}_r(\tau) d\tau + \mathbf{D}_r \boldsymbol{\varpi}_r(t) = \mathbf{B}_r \mathbf{u}(t),$$

$$\mathbf{D}_r^T \mathbf{x}_r(t) = \mathbf{0}, \quad \text{which determines} \quad \mathbf{y}_r(t) = \mathbf{C}_r \boldsymbol{\varpi}_r(t)$$

with symmetric positive semidefinite \mathbf{M}_r , $\mathbf{K}_r \in \mathbb{R}^{r \times r}$, $\mathbf{B}_r \in \mathbb{R}^{r \times m}$, $\mathbf{C}_r \in \mathbb{R}^{p \times r}$, and $\mathbf{D}_r \in \mathbb{R}^{r \times r}$.

 Because of the memory term, both reduced and original systems have infinite-order.

Example 2: Delay Differential System

 Many complex processes exhibit some sort of delayed response in their input, output, or internal dynamics.

Often related to ancillary processes that create a time lag from processing, communication, material transport, or inertial effects occuring at a finer scale than is explicitly modeled.

$$\dot{\mathbf{x}}(t) = \mathbf{A}_1 \mathbf{x}(t) + \mathbf{A}_2 \mathbf{x}(t - \tau) + \mathbf{B} \mathbf{u}(t), \qquad \mathbf{y}(t) = \mathbf{C} \mathbf{x}(t)$$

$$\mathcal{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - e^{-\tau s} \mathbf{A}_2)^{-1} \mathbf{B}.$$

- Delay systems are also infinite-order. The dynamic effects of even
- Find a reduced order model retaining the same delay structure:

$$\dot{\mathbf{x}}_r(t) = \mathbf{A}_{1r}\mathbf{x}_r(t) + \mathbf{A}_{2r}\mathbf{x}_r(t-\tau) + \mathbf{B}_r\mathbf{u}(t), \qquad \mathbf{y}_r(t) = \mathbf{C}_r\mathbf{x}_r(t)$$

$$\mathcal{H}_r(s) = \mathbf{C}_r(s\mathbf{I} - \mathbf{A}_{1r} - e^{-\tau s}\mathbf{A}_{2r})^{-1}\mathbf{B}_r$$

Example 2: Delay Differential System

 Many complex processes exhibit some sort of delayed response in their input, output, or internal dynamics.

Often related to ancillary processes that create a time lag from processing, communication, material transport, or inertial effects occuring at a finer scale than is explicitly modeled.

$$\dot{\mathbf{x}}(t) = \mathbf{A}_1 \mathbf{x}(t) + \mathbf{A}_2 \mathbf{x}(t - \tau) + \mathbf{B} \mathbf{u}(t), \qquad \mathbf{y}(t) = \mathbf{C} \mathbf{x}(t)$$

$$\mathcal{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - e^{-\tau s} \mathbf{A}_2)^{-1} \mathbf{B}.$$

- Delay systems are also infinite-order. The dynamic effects of even a small delay can be profound.
- Find a reduced order model retaining the same delay structure:

$$\dot{\mathbf{x}}_r(t) = \mathbf{A}_{1r}\mathbf{x}_r(t) + \mathbf{A}_{2r}\mathbf{x}_r(t-\tau) + \mathbf{B}_r\mathbf{u}(t), \qquad \mathbf{y}_r(t) = \mathbf{C}_r\mathbf{x}_r(t)$$

$$\mathcal{H}_r(s) = \mathbf{C}_r(s\mathbf{I} - \mathbf{A}_{1r} - e^{-\tau s}\mathbf{A}_{2r})^{-1}\mathbf{B}_r$$

Example 2: Delay Differential System

 Many complex processes exhibit some sort of delayed response in their input, output, or internal dynamics.

Often related to ancillary processes that create a time lag from processing, communication, material transport, or inertial effects occuring at a finer scale than is explicitly modeled.

$$\dot{\mathbf{x}}(t) = \mathbf{A}_1 \mathbf{x}(t) + \mathbf{A}_2 \mathbf{x}(t - \tau) + \mathbf{B} \mathbf{u}(t), \quad \mathbf{y}(t) = \mathbf{C} \mathbf{x}(t)$$

$$\mathcal{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - e^{-\tau s} \mathbf{A}_2)^{-1} \mathbf{B}.$$

- Delay systems are also infinite-order. The dynamic effects of even a small delay can be profound.
- Find a reduced order model retaining the same delay structure:

$$\dot{\mathbf{x}}_r(t) = \mathbf{A}_{1r}\mathbf{x}_r(t) + \mathbf{A}_{2r}\mathbf{x}_r(t-\tau) + \mathbf{B}_r\mathbf{u}(t), \qquad \mathbf{y}_r(t) = \mathbf{C}_r\mathbf{x}_r(t)$$

$$\mathcal{H}_r(s) = \mathbf{C}_r(s\mathbf{I} - \mathbf{A}_{1r} - e^{-\tau s}\mathbf{A}_{2r})^{-1}\mathbf{B}_r$$

$$\mathbf{u}(t) \longrightarrow \boxed{\mathbf{\mathcal{H}}(s) = \mathbf{\mathcal{C}}(s)\mathbf{\mathcal{K}}(s)^{-1}\mathbf{\mathcal{B}}(s)} \longrightarrow \mathbf{y}(t)$$

- $\mathfrak{C}(s) \in \mathbb{C}^{q \times n}$ and $\mathfrak{B}(s) \in \mathbb{C}^{n \times m}$ are analytic in the right half plane;
- $\mathcal{K}(s) \in \mathbb{C}^{n \times n}$ is analytic and full rank throughout the right half plane with $n \approx 10^4 - 10^7$ or higher.
- "Internal state" $\mathbf{x}(t)$ is not itself important.
- How much state space detail is needed to replicate the map " $\mathbf{u} \mapsto \mathbf{v}$ "?

$$\mathcal{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s) \longrightarrow \mathcal{H}_r(s) = \mathcal{C}_r(s)\mathcal{K}_r(s)^{-1}\mathcal{B}_r(s)$$

A General Projection Framework

- Select $\mathbf{V}_r \in \mathbb{R}^{n \times r}$ and $\mathbf{W}_r \in \mathbb{R}^{n \times r}$.
- The the reduced model $\mathcal{H}_r(s) = \mathcal{C}_r(s)\mathcal{K}_r(s)^{-1}\mathcal{B}_r(s)$ is

$$\mathfrak{K}_r(s) = \mathbf{W}_r^T \mathfrak{K}(s) \mathbf{V}_r, \quad \mathfrak{B}_r(s) = \mathbf{W}_r^T \mathfrak{B}(s), \quad \mathfrak{C}_r(s) = \mathfrak{C}(s) \mathbf{V}_r.$$

$$\mathbf{u}(t) \longrightarrow \mathbf{\mathcal{H}}_r(s) = \mathbf{\mathcal{C}}_r(s)\mathbf{\mathcal{K}}_r(s)^{-1}\mathbf{\mathcal{B}}_r(s) \longrightarrow \mathbf{y}_r(t) \approx \mathbf{y}(t)$$

- The generic case: $\mathcal{K}(s) = s\mathbf{E} \mathbf{A}$, $\mathcal{B}(s) = \mathbf{B}$, $\mathcal{C}(s) = \mathbf{C}$,
- We choose $\mathcal{V}_r \in \mathbb{R}^{n \times r}$ and $\mathcal{W}_r \in \mathbb{R}^{n \times r}$ to enforce (tangential) interpolation.

Model Reduction by Tangential Interpolation

• For selected points $\{\sigma_1, \sigma_2, ... \sigma_r\}$ in \mathbb{C} ; and vectors $\{b_1, ...b_r\} \in \mathbb{C}^m$ and $\{c_1, ...c_r\} \in \mathbb{C}^q$, find $\mathcal{H}_r(s)$ so that

$$\mathbf{c}_{i}^{T} \mathbf{\mathcal{H}}(\sigma_{i}) = \mathbf{c}_{i}^{T} \mathbf{\mathcal{H}}_{r}(\sigma_{i})$$

$$\mathbf{\mathcal{H}}(\sigma_{i}) \mathbf{b}_{i} = \mathbf{\mathcal{H}}_{r}(\sigma_{i}) \mathbf{b}_{i}, \text{ and }$$

$$\mathbf{c}_{i}^{T} \mathbf{\mathcal{H}}'(\sigma_{i}) \mathbf{b}_{i} = \mathbf{\mathcal{H}}_{r}(\sigma_{i}) \mathbf{b}_{i}$$

for
$$i = 1, 2, ..., r$$
.

- Interpolation points: $\sigma_k \in \mathbb{C}$.
- Tangential directions: $c_k \in \mathbb{C}^q$, and $b_k \in \mathbb{C}^m$.
- Can be extended to higher-order interpolation.

General setting for interpolation

Theorem (B/Gugercin,09)

Suppose that $\mathfrak{B}(s)$, $\mathfrak{C}(s)$, and $\mathfrak{K}(s)$ are analytic at a point $\sigma \in \mathbb{C}$ and both $\mathfrak{K}(\sigma)$ and $\mathfrak{K}_r(\sigma) = \mathbf{W}_r^T \mathfrak{K}(\sigma) \mathbf{V}_r$ have full rank. Suppose $b \in \mathbb{C}^p$ and $c \in \mathbb{C}^q$ are arbitrary nontrivial vectors.

- If $\mathfrak{K}(\sigma)^{-1}\mathfrak{B}(\sigma)b \in \mathsf{Ran}(\mathbf{V}_r)$ then $\mathfrak{H}(\sigma)b = \mathfrak{H}_r(\sigma)b$.
- If $(\mathbf{c}^T \mathbf{C}(\sigma) \mathbf{K}(\sigma)^{-1})^T \in \mathbf{Ran}(\mathbf{W}_r)$ then $\mathbf{c}^T \mathbf{H}(\sigma) = \mathbf{c}^T \mathbf{H}_r(\sigma)$
- If $\mathfrak{K}(\sigma)^{-1}\mathfrak{B}(\sigma)\mathfrak{b} \in \mathsf{Ran}(\mathbf{V}_r)$ and $(\mathfrak{c}^T\mathfrak{C}(\sigma)\mathfrak{K}(\sigma)^{-1})^T \in \mathsf{Ran}(\mathbf{W}_r)$ then $c^T \mathcal{H}'(\sigma) b = c^T \mathcal{H}'(\sigma) b$
- Once again, tangential interpolation via projection
- Proof follows similar to the generic first-order case.
- Flexibility of interpolation framework

• Given distinct (complex) frequencies $\{\sigma_1, \sigma_2, \dots, \sigma_r\} \subset \mathbb{C}$, left tangent directions $\{c_1, \dots, c_r\}$, and right tangent directions $\{b_1, \dots, b_r\}$:

$$\mathbf{\mathcal{V}}_r = \left[\mathbf{\mathcal{K}}(\sigma_1)^{-1} \mathbf{\mathcal{B}}(\sigma_1) \mathbf{b}_1, \cdots, \mathbf{\mathcal{K}}(\sigma_r)^{-1} \mathbf{\mathcal{B}}(\sigma_r) \mathbf{b}_r \right]$$
$$\mathbf{\mathcal{W}}_r^T = \left[\begin{array}{c} \mathbf{c}_1^T \mathbf{\mathcal{C}}(\sigma_1) \mathbf{\mathcal{K}}(\sigma_1)^{-1} \\ \vdots \\ \mathbf{c}_r^T \mathbf{\mathcal{C}}(\sigma_r) \mathbf{\mathcal{K}}(\sigma_r)^{-1} \end{array} \right]$$

• Guarantees that $\mathfrak{H}(\sigma_j)\mathbf{b}_j = \mathfrak{H}_r(\sigma_j)\mathbf{b}_j$, $\mathbf{c}_j^T \mathfrak{H}(\sigma_j) = \mathbf{c}_j^T \mathfrak{H}_r(\sigma_j)$, $\mathbf{c}_j^T \mathfrak{H}'(\sigma_j)\mathbf{b}_j = \mathbf{c}_j^T \mathfrak{H}'_r(\sigma_j)\mathbf{b}_j$ for $j = 1, 2, \dots, r$.

Interpolation Proof:

• Recall $V_r = \text{Ran}(\mathbf{V}_r)$ and $W_r = \text{Ran}(\mathbf{W}_r)$. Define

$$\begin{split} & \mathcal{P}_r(z) = \mathbf{V}_r \mathbf{\mathcal{K}}_r(z)^{-1} \mathbf{W}_r^T \mathbf{\mathcal{K}}_r(z) \quad \text{ and } \\ & \mathbf{\Omega}_r(z) = \mathbf{\mathcal{K}}(z) \mathbf{V}_r \mathbf{\mathcal{K}}_r(z)^{-1} \mathbf{W}_r^T = \mathbf{\mathcal{K}}(z) \mathcal{P}_r(z) \mathbf{\mathcal{K}}(z)^{-1} \end{split}$$

- $\mathcal{P}_r^2(z) = \mathcal{P}_r(z)$ with $\mathcal{V}_r = \text{Ran}(\mathcal{P}_r(z)) = \text{Ker}(\mathbf{I} \mathcal{P}_r(z))$
- $\Omega_r^2(z) = \Omega_r(z)$ with $W_r^{\perp} = \text{Ker}(\Omega_r(z)) = \text{Ran}(\mathbf{I} \Omega_r(z))$ $\mathcal{H}(z) - \mathcal{H}_r(z) = \mathbf{C}\mathcal{K}(z)^{-1} \left(\mathbf{I} - \mathbf{Q}_r(z)\right) \mathcal{K}(z) \left(\mathbf{I} - \mathbf{P}_r(z)\right) (z\mathbf{I} - \mathbf{A})^{-1} \mathbf{B}$
- Evaluate at $z = \sigma_i$ and postmultiply by \mathbf{b}_i : $\mathcal{H}(\sigma_i)\mathbf{b}_i = \mathcal{H}_r(\sigma_i)\mathbf{b}_i$
- Evaluate at $z = \sigma_i$ and premultiply by \mathbf{c}^T : $\mathbf{c}_i^T \mathcal{H}(\sigma_i) = \mathbf{c}_i^T \mathcal{H}_r(\sigma_i)$
- For Hermite condition, expand around $\sigma + \epsilon$ as before.

• $\mathcal{D}_{\sigma}^{\ell}f:\ell^{th}$ derivative of f(s) at $s=\sigma$. And $\mathcal{D}_{\sigma}^{0}f=f(\sigma)$.

Theorem (B/Gugercin,09)

Given is $\Re(s) = \Re(s)\Re(s)^{-1}\Re(s)$. Suppose that $\Re(s)$, $\Re(s)$, and $\Re(s)$ are analytic at a point $\sigma \in \mathbb{C}$ and both $\mathfrak{K}(\sigma)$ and $\mathfrak{K}_r(\sigma) = \mathbf{W}_r^T \mathfrak{K}(\sigma) \mathbf{V}_r$ have full rank. Let nonnegative integers M and N be given as well as nontrivial vectors, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^q$.

- (a) If $\mathcal{D}_{\sigma}^{i}[\mathfrak{K}(s)^{-1}\mathfrak{B}(s)]b \in Ran(\mathcal{V}_{r})$ for $i=0,\ldots,N$ then $\mathcal{H}^{(\ell)}(\sigma)b = \mathcal{H}^{(\ell)}_r(\sigma)b$ for $\ell = 0, \ldots, N$.
- (b) If $(\mathbf{c}^T \mathcal{D}^j_{\sigma} [\mathfrak{C}(s) \mathfrak{K}(s)^{-1}])^T \in \mathsf{Ran}(\mathcal{W}_r) \text{ for } j = 0, \dots, M$ then $c^T \mathcal{H}^{(\ell)}(\sigma) = c^T \mathcal{H}^{(\ell)}_r(\sigma)$ for $\ell = 0, ..., M$.
- (c) If $\mathcal{D}_{\sigma}^{i}[\mathfrak{K}(s)^{-1}\mathfrak{B}(s)]b \in Ran(\mathcal{V}_{r})$ for $i = 0, \ldots, N$ and $(\mathbf{c}^T \mathcal{D}_{\sigma}^j [\mathcal{C}(s) \mathcal{K}(s)^{-1}])^T \in \mathsf{Ran}(\mathcal{W}_r) \text{ for } j = 0, \dots, M$ then $c^T \mathcal{H}^{(\ell)}(\sigma) b = c^T \mathcal{H}^{(\ell)}_r(\sigma) b$ for $\ell = 0, ..., M + N + 1$.

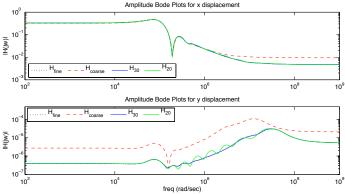
Viscoelastic Example

- A simple variation of the previous model:
- $\Omega = [0,1] \times [0,1]$: a volume filled with a viscoelastic material with boundary separated into a top edge ("lid"), $\partial \Omega_1$, and the complement, $\partial \Omega_0$ (bottom, left, and right edges).
- Excitation through shearing forces caused by transverse displacement of the lid, u(t).
- Output: displacement $\mathbf{w}(\hat{x}, t)$, at a fixed point $\hat{x} = (0.5, 0.5)$.

$$\partial_{tt}\mathbf{w}(x,t) - \eta_0 \, \Delta\mathbf{w}(x,t) \, - \, \eta_1 \partial_t \int_0^t \, \frac{\Delta\mathbf{w}(x,\tau)}{(t-\tau)^\alpha} \, d\tau \, + \, \nabla\varpi(x,t) = 0 \ \, \text{for} \, \, x \in \Omega$$

$$abla \cdot \mathbf{w}(x,t) = 0 \text{ for } x \in \Omega,$$

 $\mathbf{w}(x,t) = 0 \text{ for } x \in \partial \Omega_0,$ $\mathbf{w}(x,t) = u(t) \text{ for } x \in \partial \Omega_1$



$$\mathcal{H}_{\text{fine}}$$
: $n_x = 51,842$ and $n_p = 6,651$ \mathcal{H}_{30} : $n_x = n_p = 30$ $\mathcal{H}_{\text{coarse}}$: $n_x = 13,122$ $n_p = 1,681$ \mathcal{H}_{20} : $n_x = n_p = 20$

- \mathcal{H}_{30} , \mathcal{H}_{20} : reduced interpolatory viscoelastic models.
- \mathcal{H}_{30} almost exactly replicates $\mathcal{H}_{\text{fine}}$ and outperforms $\mathcal{H}_{\text{coarse}}$
- Since input is a boundary displacement (as opposed to a boundary force), $\mathfrak{B}(s) = s^2 \mathbf{m} + \rho(s) \mathbf{k}$,

Computational Delay Examples

 Many physical processes exhibit some sort of delayed response in their input, output, or internal dynamics.

$$\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}_{1}\mathbf{x}(t) + \mathbf{A}_{2}\mathbf{x}(t-\tau) + \mathbf{B}\,\mathbf{u}(t), \qquad \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

$$\mathbf{\mathcal{H}}(s) = \underbrace{\mathbf{C}}_{\mathbf{C}(s)}\underbrace{(s\mathbf{E} - \mathbf{A}_{1} - e^{-\tau s}\mathbf{A}_{2})}_{\mathbf{\mathcal{K}}(s)}^{-1}\underbrace{\mathbf{B}}_{\mathbf{B}(s)}.$$

• Find a reduced order model retaining the same delay structure:

$$\mathbf{E}_{r}\dot{\mathbf{x}}_{r}(t) = \mathbf{A}_{1r}\mathbf{x}_{r}(t) + \mathbf{A}_{2r}\mathbf{x}_{r}(t-\tau) + \mathbf{B}_{r}\mathbf{u}(t), \qquad \mathbf{y}_{r}(t) = \mathbf{C}_{r}\mathbf{x}_{r}(t)$$

$$\mathbf{\mathcal{H}}_{r}(s) = \underbrace{\mathbf{C}_{r}}_{\mathbf{C}_{r}(s)}\underbrace{(s\mathbf{E}_{r} - \mathbf{A}_{1r} - e^{-\tau s}\mathbf{A}_{2r})}_{\mathbf{\mathcal{K}}_{r}(s)}^{-1}\underbrace{\mathbf{B}_{r}}_{\mathbf{B}_{r}(s)}.$$

Compare approaches:

Direct (generalized) interpolation:

$$\mathcal{H}_r(s) = \mathbf{e}^T \mathcal{V}_r \left(s \mathcal{W}_r^T \mathbf{E} \mathcal{V}_r - \mathcal{W}_r^T \mathbf{A}_1 \mathcal{V}_r - \mathcal{W}_r^T \mathbf{A}_2 \mathcal{V}_r e^{-s\tau} \right)^{-1} \mathcal{W}_r^T \mathbf{e}.$$

Approximate delay term with rational function:

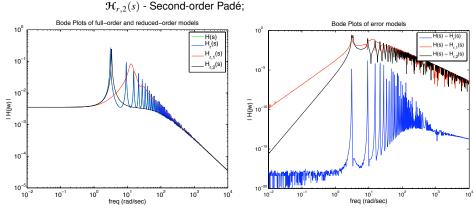
$$e^{- au s}pprox rac{p_\ell(- au s)}{p_\ell(au s)}$$

- Pass to $(\ell+1)^{st}$ order ODE system: $\mathbf{D}(s)\,\widehat{x}(s) = p_{\ell}(\tau s)\,\mathbf{e}\,\widehat{u}(s)$ with $\mathbf{D}(s) = (s\mathbf{E} - \mathbf{A}_0) p_{\ell}(\tau s) - \mathbf{A}_1 p_{\ell}(-\tau s).$
- Model reduction on linearization: first order system of dimension $(\ell+1)*n. (\rightarrow Loss of structure!)$

LinSys Intrplt StrcMOR H2Opt DD-IRKA Ex2 Projection Interp Thm

Second Example: Delay System

 $\mathcal{H}_r(s)$ - Generalized interpolation; $\mathcal{H}_{r,1}(s)$ - First-order Padé;



Original system dim: n = 500. Reduced system dim: r = 10. Interpolation points: ± 1.0 E-3 \imath , ± 3.1 6E-1 \imath , ± 5.0 \imath , 3.16E+1 \imath , ± 1.0 E+3 \imath

	\mathcal{H}_{∞} error		
ac ac	90		
$\mathcal{H}-\mathcal{H}_r$	2.42×10^{-4}		
$\mathcal{H} - \mathcal{H}_{r,1}$	2.65×10^{-1}		
$\mathcal{H}-\mathcal{H}_{r,2}$	2.61×10^{-1}		

- Consider $\mathcal{H}_{p,70}(s)$.
- $\|\mathcal{H}(s) \mathcal{H}_{p,70}(s)\|_{\mathcal{H}_{\infty}} = 1.57 \times 10^{-3}$.
- Reducing $\mathcal{H}_{p,70}(s)$ requires solving linear systems of order $(500 \times 70) \times (500 \times 70)$.
- Preserving the delay structure is crucial.
- Multiple delays could also be handled similarly.

$\mathbf{u}(t) \longrightarrow \mathbf{A}_0 \frac{d^{\ell} \mathbf{x}}{dt^{\ell}} + \mathbf{A}_1 \frac{d^{\ell-1} \mathbf{x}}{dt^{\ell-1}} + \dots + \mathbf{A}_{\ell} \mathbf{x} = \mathbf{B}_0 \frac{d^{\ell} \mathbf{u}}{dt^{\ell}} + \dots + \mathbf{B}_{k} \mathbf{u}$ $\mathbf{y}(t) = \mathbf{C}_0 \frac{d^{q} \mathbf{x}}{dt^{q}} + \dots + \mathbf{C}_{q} \mathbf{x}(t)$

- Perform reduction directly in the original coordinates without linearization while enforcing interpolation
- Perfectly fits the framework:

$$\mathfrak{K}(s) = \sum_{i=0}^{\ell} s^{\ell-i} \mathbf{A}_i, \quad \mathfrak{B}(s) = \sum_{i=0}^{k} s^{k-i} \mathbf{B}_i, \quad \mathfrak{C}(s) = \sum_{i=0}^{q} s^{q-i} \mathbf{C}_i$$

Construct \mathcal{V}_r and \mathcal{W}_r as in the Theorem. Then

$$\mathbf{\mathcal{K}}_r(s) = \sum_{i=0}^{\ell} s^{\ell-i} \mathbf{\mathcal{W}}_r^T \mathbf{A}_i \mathbf{\mathcal{V}}_r, \quad \mathbf{\mathcal{B}}(s) = \sum_{i=0}^{k} s^{k-i} \mathbf{\mathcal{W}}_r^T \mathbf{B}_i, \quad \mathbf{\mathcal{C}}(s) = \sum_{i=0}^{q} s^{q-i} \mathbf{C}_i \mathbf{\mathcal{V}}_r$$

LinSys Intrplt StrcMOR H2Opt DD-IRKA

Checkpoint - Where are we?

- Basic framework for interpolatory model reduction:
 - Rational Krylov spaces are natural projecting (test/trial) subspaces for canonical first-order realizations of SISO systems — but not for general (coprime) realizations or MIMO systems (tangential interpolation).
- Data-driven Interpolation the Loewner framework
 - Reduced models are obtained directly from response measurements
- Importance of maintaining ancillary system structure
 - Structure-preserving interpolatory model reduction approaches (coprime realizations)
- Open questions (so far)
 - Where do we interpolate ? ... and in what directions ? $(\mathcal{H}_2$ -optimal methods)
 - Extensions / Applications ? (e.g., DAEs, portHamiltonian/passive) systems, bilinear/quadratic systems, parameterized systems, time-domain data-driven interpolation,...)

Checkpoint - Where are we?

- Basic framework for interpolatory model reduction:
 - Rational Krylov spaces are natural projecting (test/trial) subspaces for canonical first-order realizations of SISO systems — but not for general (coprime) realizations or MIMO systems (tangential interpolation).
- Data-driven Interpolation the Loewner framework
 - Reduced models are obtained directly from response measurements
- Open questions (so far)
 - Where do we interpolate ? ... and in what directions ? $(\mathcal{H}_2\text{-optimal methods})$
 - Extensions / Applications ? (e.g., DAEs, portHamiltonian/passive systems, bilinear/quadratic systems, parameterized systems, time-domain data-driven interpolation,...)

LinSys Intrplt StrcMOR H2Opt DD-IRKA H2space H2Cond IRKA SmallExmpl ConfRoom SSM

\mathcal{H}_2 Space

• \mathcal{H}_2 : Set of matrix-valued functions, $\mathbf{H}(z)$, with components that are analytic for z in the open right half plane, Re(z) > 0, such that

$$\sup_{x>0}\int_{-\infty}^{\infty}\|\mathbf{H}(x+\imath y)\|_F^2\ dy<\infty.$$

- \mathcal{H}_2 is a Hilbert space and transfer functions associated with stable finite dimensional dynamical systems are elements of \mathcal{H}_2 .
- For stable G(s) and H(s) with the same m and q

$$\langle \mathbf{G}, \ \mathbf{H} \rangle_{\mathcal{H}_2} \stackrel{\mathsf{def}}{=} \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathsf{Tr} \Big(\overline{\mathbf{G}(\imath \omega)} \mathbf{H} (\imath \omega)^T \Big) \ d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathsf{Tr} \Big(\mathbf{G} (-\imath \omega) \mathbf{H} (\imath \omega)^T \Big) \ d\omega$$

with a norm defined as

$$\|\mathbf{G}\|_{\mathcal{H}_2} \stackrel{\mathsf{def}}{=} \left(\frac{1}{2\pi} \int_{-\infty}^{+\infty} \|\mathbf{G}(\imath\omega)\|_F^2 d\omega\right)^{1/2}.$$

For matrix-valued meromorphic functions, F(s),

$$\mathrm{res}[\mathbf{F}(s),\lambda] = \lim_{s \to \lambda} (s-\lambda) \mathbf{F}(s) \ \ \text{has rank-1 if} \ \lambda \ \text{is a simple pole}$$

- We assume simple poles; the theory applies to the general case.
- Pole-residue expansion of F(s) of dimension-r:

$$\mathbf{F}(s) = \sum_{i=1}^{r} \frac{1}{s - \lambda_i} \mathbf{c}_i \mathbf{b}_i^T,$$

where

$$\lambda_i \in \mathbb{C}_-, \ \mathbf{c}_i \in \mathbb{C}^q, \ \text{and} \ \mathbf{b}_i \in \mathbb{C}^m \ \text{for} \ i = 1, \dots, r.$$

Lemma

Suppose that $\mathbf{G}(s)$ and $\mathbf{H}(s) = \sum_{i=1}^{m} \frac{1}{s-u_i} \mathbf{c}_i \mathbf{b}_i^T$ are real, stable and suppose that $\mathbf{H}(s)$ has simple poles at $\mu_1, \mu_2, \dots \mu_m$. Then

$$\langle \mathbf{G}, \mathbf{H} \rangle_{\mathcal{H}_2} = \sum_{k=1}^m \mathbf{c}_k^T \mathbf{G}(-\mu_k) \mathbf{b}_k$$

and
$$\|\mathbf{H}\|_{\mathcal{H}_2} = \left(\sum_{k=1}^m \mathbf{c}_k^T \mathbf{H}(-\mu_k) \mathbf{b}_k\right)^{1/2}$$
.

Proof: Application of the residue theorem:

$$\langle \mathbf{G}, \, \mathbf{H} \rangle_{\mathcal{H}_2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathsf{Tr} \big(\mathbf{G} (-\imath \omega) \mathbf{H} (\imath \omega)^T \big) \, d\omega = \lim_{R \to \infty} \frac{1}{2\pi \imath} \int_{\Gamma_R} \mathsf{Tr} \big(\mathbf{G} (-s) \mathbf{H} (s)^T \big) \, ds$$

where

$$\Gamma_R = \{z \, | z = \imath \omega ext{ with } \omega \in [-R,R] \,\} \cup \left\{z \, \left| z = R \, e^{\imath heta} ext{ with } heta \in [rac{\pi}{2},rac{3\pi}{2}] \,
ight\}.$$

LinSys Intrplt StrcMOR H2Opt DD-IRKA

H2space H2Cond IRKA SmallExmpl ConfRoom SSM

Pole-residue based \mathcal{H}_2 error expression

Theorem

Given a full-order real system, $\mathbf{H}(s)$ and a reduced model, $\mathbf{H}_r(s)$, having the form $\mathbf{H}_r(s) = \sum_{i=1}^r \frac{1}{s-\hat{\lambda}_i} \mathbf{c}_i \mathbf{b}_i^T$ (\mathbf{H}_r has simple poles at $\hat{\lambda}_1, \hat{\lambda}_2, \dots \hat{\lambda}_r$ and rank-1 residues $c_1 b_1^T, \dots, c_r b_r^T$.), the \mathcal{H}_2 norm of the error system is given by

$$\|\mathbf{H} - \mathbf{H}_r\|_{\mathcal{H}_2}^2 = \|\mathbf{H}\|_{\mathcal{H}_2}^2 - 2\sum_{k=1}^r \mathbf{c}_k^T \mathbf{H}(-\hat{\lambda}_k) \mathbf{b}_k + \sum_{k,\ell=1}^r \frac{\mathbf{c}_k^T \mathbf{c}_\ell \, \mathbf{b}_\ell^T \mathbf{b}_k}{-\hat{\lambda}_k - \hat{\lambda}_\ell}$$

- SISO Case: [Krajewski et al.,1995], [Gugercin/Antoulas,2003]
- MIMO Case: [B./Gugercin,2008],
- Can be used in developing descent-type \mathcal{H}_2 optimal model reduction algorithms [B./Gugercin,2009]

LinSys Intrplt StrcMOR H2Opt DD-IRKA

Problem

Given $\mathbf{H}(s)$, find $\mathbf{H}_r(s)$ of order r which solves: $\|\mathbf{H}-\mathbf{G}_r\|_{\mathcal{H}_2}$. min $degree(\mathbf{G}_r) = r$

- ullet The goal is to minimize $\max_{t\geq 0} \|\mathbf{y}(t)-\mathbf{y}_r(t)\|_{\infty}$ for all possible unit energy inputs.
- Non-convex optimization problem. Finding a global minimum is, at best, a formidable task.
- [Wilson,1970], [Hyland/Bernstein,1985]: Sylvester-equation based optimality conditions
- Wilson [1970]: Solution is obtained by projection. Is it interpolatory projection?

Interpolatory \mathcal{H}_2 optimality conditions

Theorem ([Gugercin/Antoulas/B.,08])

Given $\mathbf{H}(s)$, let $\mathbf{H}_r(s) = \sum_{i=1}^r \frac{1}{s-\hat{\lambda}_i} \hat{\mathbf{c}}_i \hat{\mathbf{b}}_i^T$ be the best stable r^{th} order approximation of \mathbf{H} with respect to the \mathcal{H}_2 norm. Assume \mathbf{H}_r has simple poles at $\hat{\lambda}_1, \, \hat{\lambda}_2, \, \dots \, \hat{\lambda}_r$. Then

$$\begin{aligned} \mathbf{H}(-\hat{\lambda}_k)\hat{\mathbf{b}}_k &= \mathbf{H}_r(-\hat{\lambda}_k)\hat{\mathbf{b}}_k, \quad \hat{\mathbf{c}}_k^T\mathbf{H}(-\hat{\lambda}_k) = \hat{\mathbf{c}}_k^T\mathbf{H}_r(-\hat{\lambda}_k), \\ \text{and} \quad \hat{\mathbf{c}}_k^T\mathbf{H}'(-\hat{\lambda}_k)\hat{\mathbf{b}}_k &= \hat{\mathbf{c}}_k^T\mathbf{H}'_r(-\hat{\lambda}_k)\hat{\mathbf{b}}_k \quad \text{ for } k = 1, 2, ..., r. \end{aligned}$$

Interpolatory \mathcal{H}_2 optimality conditions

Theorem ([Gugercin/Antoulas/B.,08])

Given $\mathbf{H}(s)$, let $\mathbf{H}_r(s) = \sum_{i=1}^r \frac{1}{s-\hat{\lambda}_i} \hat{\mathbf{c}}_i \hat{\mathbf{b}}_i^T$ be the best stable r^{th} order approximation of **H** with respect to the \mathcal{H}_2 norm. Assume **H**_r has simple poles at $\hat{\lambda}_1, \hat{\lambda}_2, \dots \hat{\lambda}_r$. Then

$$\begin{split} \mathbf{H}(-\hat{\lambda}_k)\hat{\mathbf{b}}_k &= \mathbf{H}_r(-\hat{\lambda}_k)\hat{\mathbf{b}}_k, \quad \hat{\mathbf{c}}_k^T\mathbf{H}(-\hat{\lambda}_k) = \hat{\mathbf{c}}_k^T\mathbf{H}_r(-\hat{\lambda}_k), \\ \text{and} \quad \hat{\mathbf{c}}_k^T\mathbf{H}'(-\hat{\lambda}_k)\hat{\mathbf{b}}_k &= \hat{\mathbf{c}}_k^T\mathbf{H}'_r(-\hat{\lambda}_k)\hat{\mathbf{b}}_k \quad \text{ for } k = 1, \, 2, \, ..., \, r. \end{split}$$

- Tangential Hermite interpolation for \mathcal{H}_2 optimality
- Optimal interpolation points : $\sigma_i = -\hat{\lambda}_i$
- The SISO conditions: [Meier /Luenberger,67]
- Other MIMO works: [van Dooren et al..08], [Bunse-Gernster et al.,09]

• Let $\widetilde{\mathbf{H}}_r(s)$ be a stable *r*-th order dynamical system. Then,

$$\begin{split} \|\mathbf{H} - \mathbf{H}_r\|_{\mathcal{H}_2}^2 &\leq \quad \|\mathbf{H} - \widetilde{\mathbf{H}}_r\|_{\mathcal{H}_2}^2 = \|\mathbf{H} - \mathbf{H}_r + \mathbf{H}_r - \widetilde{\mathbf{H}}_r\|_{\mathcal{H}_2}^2 \\ &= \|\mathbf{H} - \mathbf{H}_r\|_{\mathcal{H}_2}^2 + 2 \, \Re e \, \langle \mathbf{H} - \mathbf{H}_r, \mathbf{H}_r - \widetilde{\mathbf{H}}_r \rangle_{\mathcal{H}_2} + \|\mathbf{H}_r - \widetilde{\mathbf{H}}_r\|_{\mathcal{H}_2}^2 \\ \text{so that} \qquad 0 &\leq 2 \, \Re e \, \langle \mathbf{H} - \mathbf{H}_r, \mathbf{H}_r - \widetilde{\mathbf{H}}_r \rangle_{\mathcal{H}_2} + \|\mathbf{H}_r - \widetilde{\mathbf{H}}_r\|_{\mathcal{H}_2}^2 \end{split}$$

• Choose $\widetilde{\mathbf{H}}_r(s)$ so that $\mathbf{H}_r(s) - \widetilde{\mathbf{H}}_r(s) = \frac{\varepsilon e^{i\theta}}{s - \hat{\lambda}_s} \xi \mathbf{b}_\ell^T$, $\xi \in \mathbb{C}^q$: arbitrary

$$\implies \langle \mathbf{H} - \mathbf{H}_r, \mathbf{H}_r - \widetilde{\mathbf{H}}_r \rangle_{\mathcal{H}_2} = -\varepsilon \, |\boldsymbol{\xi}^T \Big(\mathbf{H}(-\hat{\lambda}_\ell) - \mathbf{H}_r(-\hat{\lambda}_\ell) \Big) \, \mathbf{b}_\ell |.$$

$$\implies 0 \le |\boldsymbol{\xi}^T \Big(\mathbf{H}(-\hat{\lambda}_\ell) - \mathbf{H}_r(-\hat{\lambda}_\ell) \Big) \, \mathbf{b}_\ell | \le \varepsilon \frac{\|\mathbf{b}_\ell\|_2^2}{-2\Re e(\hat{\lambda}_\ell)}$$

$$\implies \boldsymbol{\xi}^T \Big(\mathbf{H}(-\hat{\lambda}_\ell) - \mathbf{H}_r(-\hat{\lambda}_\ell) \Big) \, \mathbf{b}_\ell = 0$$

$$\implies \Big(\mathbf{H}(-\hat{\lambda}_\ell) - \mathbf{H}_r(-\hat{\lambda}_\ell) \Big) \, \mathbf{b}_\ell = 0.$$

- A similar arguments leads to left-tangential conditions.
- For the Hermite condition, choose $\mathbf{H}_r(s)$ so that

$$\mathbf{H}_r(s) - \widetilde{\mathbf{H}}_r(s) = \left(\frac{1}{s - \hat{\lambda}_{\ell}} - \frac{1}{s - \mu}\right) \mathbf{c}_{\ell} \mathbf{b}_{\ell}^T.$$

After various manipulations

$$0 \leq -2\varepsilon |\mathbf{c}_{\ell}^T \Big(\mathbf{H}'(-\hat{\lambda}_{\ell}) - \mathbf{H}_r'(-\hat{\lambda}_{\ell})\Big) \, \mathbf{b}_{\ell}| + \mathcal{O}(\varepsilon^2).$$

- As $\varepsilon \to 0$, we obtain $|\mathbf{c}_\ell^T \left(\mathbf{H}'(-\hat{\lambda}_\ell) \mathbf{H}'_r(-\hat{\lambda}_\ell) \right) \mathbf{b}_\ell| = 0$.
- $\hat{\lambda}_i, \hat{b}_i, \hat{c}_i$ NOT known a priori \Longrightarrow Need iterative steps

An Iterative Rational Krylov Algorithm (IRKA):

Algorithm (Gugercin/Antoulas/B. [2008])

- **1** Choose $\{\sigma_1, \ldots, \sigma_r\}$, $\{\hat{b}_1, \ldots, \hat{b}_r\}$ and $\{\hat{c}_1, \ldots, \hat{c}_r\}$
- $\mathbf{V}_r = \left| (\sigma_1 \mathbf{E} \mathbf{A})^{-1} \mathbf{B} \hat{\mathbf{b}}_1 \cdots (\sigma_r \mathbf{E} \mathbf{A})^{-1} \mathbf{B} \hat{\mathbf{b}}_r \right|$ $\mathbf{W}_r = [(\sigma_1 \mathbf{E} - \mathbf{A}^T)^{-1} \mathbf{C}^T \hat{\mathbf{c}}_1 \cdots (\sigma_r \mathbf{E} - \mathbf{A}^T)^{-1} \mathbf{C}^T \hat{\mathbf{c}}_r].$
- while (not converged)
 - $\mathbf{O} \mathbf{A}_r = \mathbf{W}_r^T \mathbf{A} \mathbf{V}_r, \mathbf{E}_r = \mathbf{W}_r^T \mathbf{E} \mathbf{V}_r, \mathbf{B}_r = \mathbf{W}_r^T \mathbf{B}, \text{ and } \mathbf{C}_r = \mathbf{C} \mathbf{V}_r$
 - $\text{\textbf{2} Compute } \mathbf{H}_r(s) = \sum_{i=1}^r \frac{\hat{\mathbf{c}}_i \hat{\mathbf{b}}_i^T}{s \hat{\lambda}_i}, \text{ and set } \{\sigma_i\} \longleftarrow \{-\hat{\lambda}_i\},$

 - $\mathbf{W}_r = \left[(\boldsymbol{\sigma}_1 \mathbf{E} \mathbf{A}^T)^{-1} \mathbf{C}^T \hat{\mathbf{c}}_1 \cdots (\boldsymbol{\sigma}_r \mathbf{E} \mathbf{A}^T)^{-1} \mathbf{C}^T \hat{\mathbf{c}}_r \right].$
- $\mathbf{A}_r = \mathbf{W}_r^T \mathbf{A} \mathbf{V}_r, \mathbf{E}_r = \mathbf{W}_r^T \mathbf{E} \mathbf{V}_r, \mathbf{B}_r = \mathbf{W}_r^T \mathbf{B}, \mathbf{C}_r = \mathbf{C} \mathbf{V}_r, \mathbf{D}_r = \mathbf{D}.$

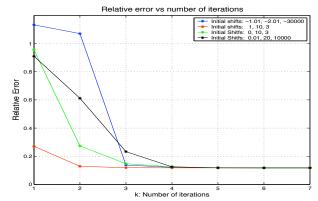
- In its simplest form, IRKA is a fixed point iteration.
- IRKA is not a descent method and global convergence is not quaranteed despite overwhelming numerical evidence.
- Newton formulation is possible [Gugercin/Antoulas/B.,08]
- Guaranteed convergence: State-space symmetric systems [Flagg/B./Gugercin,2012]
- Globally convergent descent version: [B./Gugercin (2009)]
- Implementation with iterative solves:
 - w/ Krylov subspace recycling [Ahuja/deSturler/Gugercin/Chang (2010)]
 - w/ general iterative system solves [B/Gugercin/Wyatt (2010)]
 - w/ preconditioned multishift BiCG [Ahmad/Szyld/vanGijzen(2016)]

Small order benchmark examples

Model	r	IRKA	GFM	OPM
FOM-1	1	4.2683×10^{-1}	4.2709×10^{-1}	4.2683×10^{-1}
FOM-1	2	3.9290×10^{-2}	3.9299×10^{-2}	3.9290×10^{-2}
FOM-1	3	1.3047×10^{-3}	1.3107×10^{-3}	1.3047×10^{-3}
FOM-2	3	1.171×10^{-1}	1.171×10^{-1}	Divergent
FOM-2	4	8.199×10^{-3}	8.199×10^{-3}	8.199×10^{-3}
FOM-2	5	2.132×10^{-3}	2.132×10^{-3}	Divergent
FOM-2	6	5.817×10^{-5}	5.817×10^{-5}	5.817×10^{-5}
FOM-3	1	4.818×10^{-1}	4.818×10^{-1}	4.818×10^{-1}
FOM-3	2	2.443×10^{-1}	2.443×10^{-1}	Divergent
FOM-3	3	5.74×10^{-2}	5.98×10^{-2}	5.74×10^{-2}
FOM-4	1	9.85×10^{-2}	9.85×10^{-2}	9.85×10^{-2}

- **GFM**: Gradient Flow Method of Yan and Lam [1999]
- **OPM**: Optimal Projection Method of Hyland and Bernstein [1985]
- FOM-1: n = 4, FOM-2: n = 7, FOM-3: n = 4, FOM-4: n = 2,

- FOM-3: $\mathbf{H}(s) = \frac{s^2 + 15s + 50}{s^4 + 5s^3 + 22s^2 + 79s + 50}$
- $\mathbf{H}_3(s) = \frac{2.155s^2 + 3.343s + 33.8}{(s+6.2217)(s+0.61774+\jmath1.5628)(s+0.61774+\jmath1.5628)}$
- \circ $S_1 = \{-1.01, -2.01, -30000\}, S_2 = \{0, 10, 3\},$ $S_3 = \{1, 10, 3\}, \text{ and } S_4 = \{0.01, 20, 10000\}$

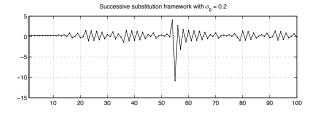


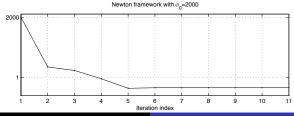
LinSys Intrplt StrcMOR H2Opt DD-IRKA H2space H2Cond IRKA SmallExmpl ConfRoom SSM

Successive substitution vs Newton Framework

•
$$\mathbf{H}(s) = \frac{-s^2 + (7/4)s + (5/4)}{s^3 + 2s^2 + (17/16)s + (15/32)}, \ \mathbf{H}_{opt}(s) = \frac{0.97197}{s + 0.27272}$$

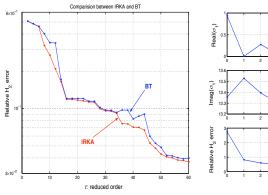
•
$$\frac{\partial \tilde{\lambda}}{\partial \sigma} \approx 1.3728 > 1$$

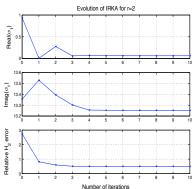




ISS 12a Module

- n = 1412. Reduce to r = 2:2:60
- Compare with balanced truncation





Indoor-air environment in a conference room

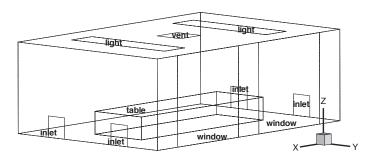


Figure: Geometry for our Indoor-air Simulation

- Four inlets, one return vent
- Thermal loads: two windows, two overhead lights and occupants
- FLUENT to simulate the indoor-air velocity, temperature and moisture.

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla P + \frac{1}{\text{Re}} \Delta \mathbf{v} + \frac{\text{Gr}}{\text{Re}^2} T \hat{k}$$

$$\nabla \cdot \mathbf{v} = 0$$

$$\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T = \frac{1}{\text{RePr}} \Delta T + Bu,$$

$$\frac{\partial S}{\partial t} + \mathbf{v} \cdot \nabla S = \frac{1}{Pe} \Delta S,$$

- v: the velocity vector, P: the pressure, T: the temperature, S: the moisture concentration.
- Adiabatic boundary conditions on all surfaces except the inlets. windows and lights.
- FLUENT simulations with varying inlet temperature, occupant loads, as well as solar and lighting loads $\Rightarrow \overline{\mathbf{v}}$ was computed.

LinSys Intrplt StrcMOR H2Opt DD-IRKA

Finite Element Model of Convection/Diffusion

 A finite element model for thermal energy transfer with frozen velocity field $\overline{\mathbf{v}}$,

$$\frac{\partial T}{\partial t} + \overline{\mathbf{v}} \cdot \nabla T = \frac{1}{\text{RePr}} \Delta T + Bu,$$

leading to

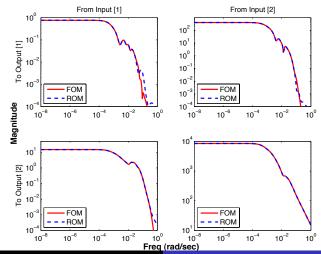
$$\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \quad \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t),$$

with n = 202140, m = 2 inputs

- the temperature of the inflow air at all four vents, and
- a disturbance caused by occupancy around the conference table, and p=2 outputs
 - the temperature at a sensor location on the max x wall,
- the average temperature in an occupied volume around the table,

Revisit the conference room example

- Recall n = 202140, m = 2 and p = 2
- Reduced the order to r = 30 using IRKA.



- The (2,2) block is associated with the dominant subsystem.
- Relative \mathcal{H}_{∞} errors in each subsystem by IRKA

	From Input [1]	From Input [2]
To Output [1]	6.62×10^{-3}	1.82×10^{-5}
To Output [2]	4.86×10^{-4}	5.40×10^{-7}

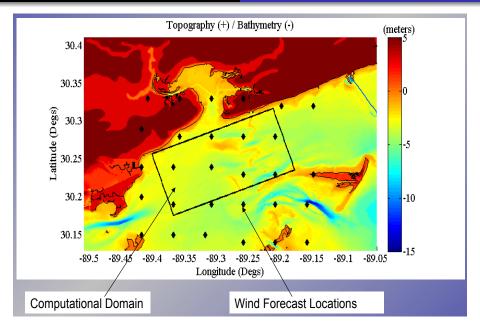
Does IRKA pay off? How about some ad hoc selections:

	From Input [1]	From Input [2]
To Output [1]	9.19×10^{-2}	8.38×10^{-2}
To Output [2]	5.90×10^{-2}	2.22×10^{-2}

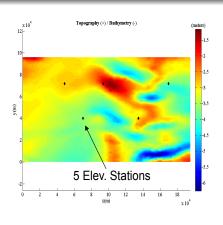
 One can keep trying different ad hoc selections but this is exactly what we want to avoid.

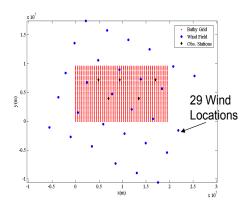
Storm Surge Modeling of Bay St. Louis, MS, USA

• Data: Chris Massey, US Army Corps of Eng. Res. & Dev. Ctr.



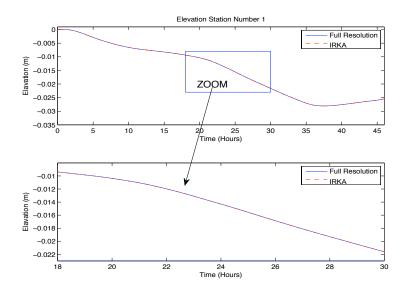
- 29 wind-forecast locations
- Surface elevation measurements at five measurement stations.
- A model of the form $\begin{cases} \mathbf{E} \dot{\mathbf{x}} = \mathbf{A} \mathbf{x}(t) + \mathbf{B} \mathbf{u}(t), \\ \mathbf{y} = \mathbf{C} \mathbf{x}(t) \end{cases}$ results from linearization of Shallow Water Equations with n = 5808
- Reduced-order model to predict surface elevation given the wind-forecast data.



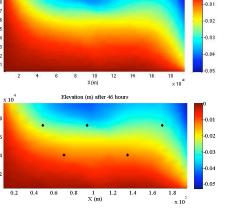


- Recall the model: $\begin{cases} \mathbf{E} \dot{\mathbf{x}} = \mathbf{A} \mathbf{x}(t) + \mathbf{B} \mathbf{u}(t), \\ \mathbf{y} = \mathbf{C} \mathbf{x}(t) \end{cases}$ with n = 5808, m = 58 and $\ell = 5$.
- Reduce the order to r = 30 with IRKA and compare with half-resolution discretization.

Elevation Station 1

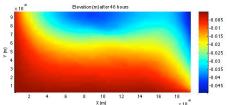


Surface elevation after 46 hours



Elevation (m) after 46 hours

× 10

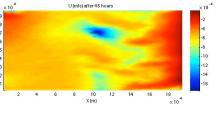


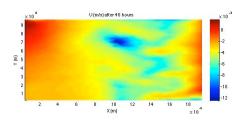
(1,1) plot: Full-resolution

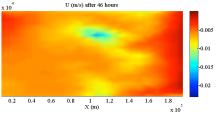
(1.2) plot: r=30 IRKA reduction

(2,1) plot: Half-resolution

U Component of Velocity after 46 Hours





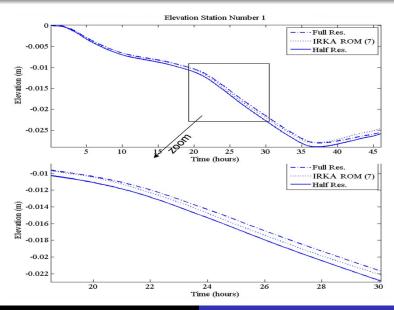


(1,1) plot: Full-resolution

(1.2) plot: r=30 IRKA reduction

(2,1) plot: Half-resolution

How about r = 7



IRKA in other settings and application

- Cellular neurophysiology: [Kellems, Roos, Xiao, Cox (2009)].
- Bilinear Systems: [Benner/Breiten (2011)], [Flagg/Gugercin (2012)]

$$\dot{\mathbf{y}}(t) = \mathbf{A}\mathbf{y}(t) + \sum_{k=1}^{n_d} \mathbf{N}_k \mathbf{u}_k(t) \mathbf{y}(t) + \mathbf{B}\mathbf{u}(t), \quad \mathbf{m}(t) = \mathbf{C} \mathbf{y}(t)$$

- Inverse Problems: [Druskin/Simoncini/Zaslavsky (2011)]
- \mathcal{H}_{∞} -model reduction: [Flagg/B/Gugercin (2011)]
- Energy-efficient building design: [Borggard/Cliff/Gugercin (2012)]
- Aerospace Applications [Poussat-Vassal (2011)].
- Structural Models [Bonin et.al (2010)], [Wyatt, (2012)], [Polyuga et.al. (2012)]

Data-Driven IRKA: Freedom in $\mathbf{H}(S)$

Recall the optimality conditions.

Theorem ([Gugercin/Antoulas/B,08])

Given $\mathbf{H}(s)$, let $\mathbf{H}_r(s) = \sum_{i=1}^r \frac{1}{s-\hat{\lambda}_i} \hat{\mathbf{c}}_i \hat{\mathbf{b}}_i^T$ be the best stable r^{th} order approximation of \mathbf{H} with respect to the \mathcal{H}_2 norm. Assume \mathbf{H}_r has simple poles at $\hat{\lambda}_1, \hat{\lambda}_2, \ldots \hat{\lambda}_r$. Then

$$\begin{split} \mathbf{H}(-\hat{\lambda}_k) \hat{\mathbf{b}}_k &= \mathbf{H}_r(-\hat{\lambda}_k) \hat{\mathbf{b}}_k, \quad \hat{\mathbf{c}}_k^T \mathbf{H}(-\hat{\lambda}_k) = \hat{\mathbf{c}}_k^T \mathbf{H}_r(-\hat{\lambda}_k), \\ \text{and} \quad \hat{\mathbf{c}}_k^T \mathbf{H}'(-\hat{\lambda}_k) \hat{\mathbf{b}}_k &= \hat{\mathbf{c}}_k^T \mathbf{H}'_r(-\hat{\lambda}_k) \hat{\mathbf{b}}_k \quad \text{ for } k = 1, \ 2, \ ..., \ r. \end{split}$$

- No assumption that $\mathbf{H}(s)$ needs to be rational, only that $\mathbf{H}_r(s)$ is.
- The conditions are valid for general non-rational $\mathbf{H}(s)$.
- IRKA iteratively corrects Hermite interpolants.

Recall (regular) IRKA:

Algorithm (Gugercin/Antoulas/B [2008])

- **1** Choose $\{\sigma_1, \ldots, \sigma_r\}$, $\{\hat{b}_1, \ldots, \hat{b}_r\}$ and $\{\hat{c}_1, \ldots, \hat{c}_r\}$
- $\mathbf{v}_r = \left[(\sigma_1 \mathbf{E} \mathbf{A})^{-1} \mathbf{B} \hat{\mathbf{b}}_1 \cdots (\sigma_r \mathbf{E} \mathbf{A})^{-1} \mathbf{B} \hat{\mathbf{b}}_r \right]$ $\mathbf{W}_r = \left[(\sigma_1 \mathbf{E} - \mathbf{A}^T)^{-1} \mathbf{C}^T \hat{\mathbf{c}}_1 \cdots (\sigma_r \mathbf{E} - \mathbf{A}^T)^{-1} \mathbf{C}^T \hat{\mathbf{c}}_r \right].$
- while (not converged)
 - $\mathbf{0} \ \mathbf{A}_r = \mathbf{W}_r^T \mathbf{A} \mathbf{V}_r, \mathbf{E}_r = \mathbf{W}_r^T \mathbf{E} \mathbf{V}_r, \mathbf{B}_r = \mathbf{W}_r^T \mathbf{B}, \text{ and } \mathbf{C}_r = \mathbf{C} \mathbf{V}_r$
 - $\text{ Compute } \mathbf{H}_r(s) = \sum_{i=1}^r \frac{\hat{\mathbf{c}}_i \hat{\mathbf{b}}_i^T}{s \hat{\lambda}_i}, \text{ and set } \{\sigma_i\} \longleftarrow \{-\hat{\lambda}_i\},$
 - $\mathbf{S} \quad \mathbf{V}_r = \left| (\sigma_1 \mathbf{E} \mathbf{A})^{-1} \mathbf{B} \hat{\mathbf{b}}_1 \cdots (\sigma_r \mathbf{E} \mathbf{A})^{-1} \mathbf{B} \hat{\mathbf{b}}_r \right|$
 - $\mathbf{W}_r = \left[(\sigma_1 \mathbf{E} \mathbf{A}^T)^{-1} \mathbf{C}^T \hat{\mathbf{c}}_1 \cdots (\sigma_r \mathbf{E} \mathbf{A}^T)^{-1} \mathbf{C}^T \hat{\mathbf{c}}_r \right].$
- $\mathbf{A}_r = \mathbf{W}_r^T \mathbf{A} \mathbf{V}_r, \mathbf{E}_r = \mathbf{W}_r^T \mathbf{E} \mathbf{V}_r, \mathbf{B}_r = \mathbf{W}_r^T \mathbf{B}, \mathbf{C}_r = \mathbf{C} \mathbf{V}_r, \mathbf{D}_r = \mathbf{D}.$
 - Replace Hermite interpolation via projection with Loewner

Realization Independent IRKA (TF-IRKA)

Algorithm (Realization Independent IRKA B/Gugercin, 2012)

- Choose initial σ_i , $\{\tilde{c}_i\}$, and $\{\tilde{b}_i\}$ for i = 1, ..., r.
- Evaluate $\mathfrak{H}(\sigma_i)$ and $\mathfrak{H}'(\sigma_i)$ for $i=1,\ldots,r$.
- while not converged
 - Construct $\mathbf{E}_r = -\mathbb{L}$, $\mathbf{A}_r = -\mathbb{M}$, $\mathbf{B}_r = \mathbf{Z}^T$ and $\mathbf{C}_r = \mathbf{Y}$
 - 2 Construct $\mathbf{H}_r(s) = \mathbf{C}_r(s\mathbf{E}_r \mathbf{A}_r)^{-1}\mathbf{B}_r = \widetilde{\mathbf{Z}}^T(\mathbb{M} s\mathbb{L})^{-1}\widetilde{\mathbf{Y}} = \sum_{i=1}^r \frac{\mathbf{c}_i \mathbf{b}_i^r}{\mathbf{c}_i}$
 - $\sigma_i \longleftarrow -\lambda_i$, $\tilde{c}_i \longleftarrow c_i$, and $b_i \longleftarrow b_i$ for $i = 1, \ldots, r$
 - **4** Evaluate $\mathcal{H}(\sigma_i)$ and $\mathcal{H}'(\sigma_i)$ for $i = 1, \ldots, r$.
- Construct $\mathbf{H}_r(s) = \mathbf{C}_r(s\mathbf{E}_r \mathbf{A}_r)^{-1}\mathbf{B}_r = \widetilde{\mathbf{Z}}^T(\mathbb{M} s\mathbb{L})^{-1}\widetilde{\mathbf{Y}}$
- Allows infinite order transfer functions!! e.g., $\mathcal{H}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A}_0 - e^{-\tau_1 s} \mathbf{A}_1 - e^{-\tau_2 s} \mathbf{A}_2)^{-1} \mathbf{B}$

Revisit: One-dimensional heat equation

$$\bullet \ \tfrac{\partial T}{\partial t}(z,t) = \tfrac{\partial^2 T}{\partial z^2}(z,t), \ \ \tfrac{\partial T}{\partial t}(0,t) = 0, \\ \tfrac{\partial T}{\partial z}(1,t) = u(t), \text{ and } y(t) = T(0,t)$$

$$\bullet \ \mathcal{H}(s) = \frac{1}{\sqrt{s} \sinh \sqrt{s}}$$

- Apply TF-IRKA. Cost: Evaluate $\mathcal{H}(s)$ and $\mathcal{H}'(s)$!!!
- Optimal points upon convergence: $\sigma_1 = 20.9418$, $\sigma_2 = 10.8944$.

$$\mathcal{H}_r(s) = \frac{-0.9469s - 37.84}{s^2 + 31.84s + 228.1} + \frac{1}{s}$$

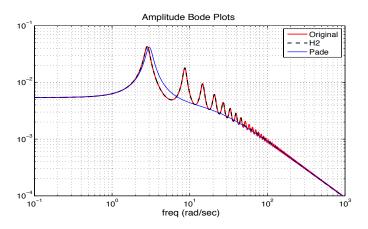
- $\|\mathcal{H} \mathcal{H}_r\|_{\mathcal{H}_2} = 5.84 \times 10^{-3}$, $\|\mathcal{H} \mathcal{H}_r\|_{\mathcal{H}_{\infty}} = 9.61 \times 10^{-4}$
- Balanced truncation of the discretized model:
 - n = 1000: $\|\mathcal{H} \mathcal{H}_r\|_{\mathcal{H}_2} = 5.91 \times 10^{-3}$, $\|\mathcal{H} \mathcal{H}_r\|_{\mathcal{H}_\infty} = 1.01 \times 10^{-3}$

$\bullet \mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}_1\mathbf{x}(t) + \mathbf{A}_2\mathbf{x}(t-\tau) + \mathbf{B}\mathbf{u}(t), \qquad \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$

- **E**, **A**₁, **A**₂ $\in \mathbb{R}^{1000 \times 1000}$, **B**, **C**^T $\in \mathbb{R}^{1000}$
- $\mathbf{H}(s) = \mathbf{C}(s\mathbf{E} \mathbf{A}_1 e^{-\tau s}\mathbf{A}_2)^{-1}\mathbf{B}$.
- $\bullet \mathbf{H}'(s) = -\mathbf{C}(s\mathbf{E} \mathbf{A}_1 e^{-\tau s}\mathbf{A}_2)^{-1}(\mathbf{E} + \tau e^{-\tau s}\mathbf{A}_2)(s\mathbf{E} \mathbf{A}_1 e^{-\tau s}\mathbf{A}_2)^{-1}\mathbf{B}.$
- Obtain an order r=20 optimal \mathcal{H}_2 rational approximation directly using $\mathbf{H}(s)$ and $\mathbf{H}'(s)$
- $\mathbf{H}_r(s)$ exactly interpolates $\mathbf{H}(s)$. This will not be the case if $e^{-\tau s}$ is approximated by a rational function.
- Moreover, the rational approximation of $e^{-\tau s}$ increases the order drastically.
- Multiple state-delays, delays in the input/output mappings are welcome.

LinSys Intrplt StrcMOR H2Opt DD-IRKA H2cond TF-IRKA Heat DelayExmpl Ex2 Projection Inter-

Delay Example



- Relative \mathcal{H}_{∞} errors: \mathcal{H}_2 -model: 8.63×10^{-3} Pade approx: 5.40×10^{-1}
- Pade Model has dimension N = 3000 !!!

Structure-preserving model reduction

$$\mathbf{u}(t) \longrightarrow \begin{bmatrix} \mathbf{A}_0 \frac{d^{\ell} \mathbf{x}}{dt^{\ell}} + \mathbf{A}_1 \frac{d^{\ell-1} \mathbf{x}}{dt^{\ell-1}} + \dots + \mathbf{A}_{\ell} \mathbf{x} = \mathbf{B}_0 \frac{d^{k} \mathbf{u}}{dt^{k}} + \dots + \mathbf{B}_{k} \mathbf{u} \\ \mathbf{y}(t) = \mathbf{C}_0 \frac{d^{d} \mathbf{x}}{dt^{d}} + \dots + \mathbf{C}_{d} \mathbf{x}(t) \end{bmatrix} \longrightarrow \mathbf{y}(t)$$

- "Every linear ODE may be reduced to an equivalent first order system" Might not be the best approach ...
- For example

$$\mathbf{C}(s^2\mathbf{M} + s\mathbf{D} + \mathbf{K})^{-1}\mathbf{B} = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B}$$

where

$$\boldsymbol{\mathcal{E}} = \left[\begin{array}{cc} \boldsymbol{I} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{M} \end{array} \right], \; \boldsymbol{\mathcal{A}} = \left[\begin{array}{cc} \boldsymbol{0} & \boldsymbol{I} \\ -\boldsymbol{K} & -\boldsymbol{D} \end{array} \right], \; \boldsymbol{\mathcal{B}} = \left[\begin{array}{cc} \boldsymbol{0} \\ \boldsymbol{B} \end{array} \right], \; \boldsymbol{\mathcal{C}} = \left[\begin{array}{cc} \boldsymbol{C} & \boldsymbol{0} \end{array} \right]$$

Disadvantages???

 Refined goal: Want to develop model reduction methods that can reduce selected state variables (i.e., on selected subspaces) while leaving other state variables untouched; maintain structural relationships among the variables.

"Structure-preserving model reduction"

- For the second-order systems, see: [Craig Jr.,1981], [Chahlaoui et.al, 2005], [Bai,2002], [Su/Craig,(1991)], [Meyer/Srinivasan,1996],
- We will be investigating a much more general framework.

$$\partial_{tt} \mathbf{w}(x,t) - \eta \, \Delta \mathbf{w}(x,t) - \int_0^t \rho(t-\tau) \, \Delta \mathbf{w}(x,\tau) \, d\tau + \nabla \varpi(x,t) = \mathbf{b}(x) \cdot \mathbf{u}(t),$$

$$\nabla \cdot \mathbf{w}(x,t) = 0 \quad \text{which determines} \quad \mathbf{y}(t) = [\varpi(x_1,t), \dots, \varpi(x_n,t)]^T$$

- [Leitman and Fisher, 1973]
- $\mathbf{w}(x,t)$ is the displacement field; $\varpi(x,t)$ is the pressure field; $\rho(\tau)$ is a "relaxation function"

Example 1: Incompressible viscoelastic vibration

$$\begin{split} & \partial_{tt} \mathbf{w}(x,t) - \eta \, \Delta \mathbf{w}(x,t) - \int_{0}^{t} \, \rho(t-\tau) \, \Delta \mathbf{w}(x,\tau) \, d\tau + \nabla \varpi(x,t) = \mathbf{b}(x) \cdot \mathbf{u}(t), \\ & \nabla \cdot \mathbf{w}(x,t) = 0 \quad \text{which determines} \quad \mathbf{y}(t) = \left[\varpi(x_{1},t), \, \ldots, \, \varpi(x_{p},t)\right]^{T} \end{split}$$

- [Leitman and Fisher, 1973]
- $\mathbf{w}(x,t)$ is the displacement field; $\varpi(x,t)$ is the pressure field; $\rho(\tau)$ is a "relaxation function"

$$\mathbf{M}\ddot{\mathbf{x}}(t) + \eta \mathbf{K} \mathbf{x}(t) + \int_0^t \rho(t - \tau) \mathbf{K} \mathbf{x}(\tau) d\tau + \mathbf{D} \boldsymbol{\varpi}(t) = \mathbf{B} \mathbf{u}(t),$$
$$\mathbf{D}^T \mathbf{x}(t) = \mathbf{0}, \quad \text{which determines} \quad \mathbf{y}(t) = \mathbf{C} \boldsymbol{\varpi}(t)$$

- $\mathbf{x} \in \mathbb{R}^{n_1}$ discretization of \mathbf{w} ; $\boldsymbol{\varpi} \in \mathbb{R}^{n_2}$ discretization of $\boldsymbol{\varpi}$.
- M and K are real, symmetric, positive-definite matrices, $\mathbf{B} \in \mathbb{R}^{n_1 \times m}$. $\mathbf{C} \in \mathbb{R}^{p \times n_2}$. and $\mathbf{D} \in \mathbb{R}^{n_1 \times n_2}$.

Transfer function (need not be a rational function!):

$$\mathcal{H}(s) = \begin{bmatrix} \mathbf{0} \ \mathbf{C} \end{bmatrix} \begin{bmatrix} s^2 \mathbf{M} + (\widehat{\rho}(s) + \eta) \mathbf{K} & \mathbf{D} \\ \mathbf{D}^T & \mathbf{0} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{B} \\ \mathbf{0} \end{bmatrix}$$

Want a reduced order model that replicates input-output response

$$\begin{aligned} \mathbf{M}_r \ddot{\mathbf{x}}(t) \, + \, \eta \, \mathbf{K}_r \, \mathbf{x}_r(t) \, + \, \int_0^t \, \rho(t-\tau) \, \mathbf{K}_r \, \mathbf{x}_r(\tau) \, d\tau + \mathbf{D}_r \, \boldsymbol{\varpi}_r(t) = \mathbf{B}_r \, \mathbf{u}(t), \\ \mathbf{D}_r^T \, \mathbf{x}_r(t) = \mathbf{0}, \qquad \text{which determines} \quad \mathbf{y}_r(t) = \mathbf{C}_r \, \boldsymbol{\varpi}_r(t) \end{aligned}$$

with symmetric positive semidefinite \mathbf{M}_r , $\mathbf{K}_r \in \mathbb{R}^{r \times r}$, $\mathbf{B}_r \in \mathbb{R}^{r \times m}$, $\mathbf{C}_r \in \mathbb{R}^{p \times r}$, and $\mathbf{D}_r \in \mathbb{R}^{r \times r}$.

Because of the memory term, both reduced and original systems have

Transfer function (need not be a rational function!):

$$\mathcal{H}(s) = \begin{bmatrix} \mathbf{0} \ \mathbf{C} \end{bmatrix} \begin{bmatrix} s^2 \mathbf{M} + (\widehat{\rho}(s) + \eta) \mathbf{K} & \mathbf{D} \\ \mathbf{D}^T & \mathbf{0} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{B} \\ \mathbf{0} \end{bmatrix}$$

 Want a reduced order model that replicates input-output response with high fideliety yet retains "viscoelasticity":

$$\mathbf{M}_r \ddot{\mathbf{x}}(t) + \eta \mathbf{K}_r \mathbf{x}_r(t) + \int_0^t \rho(t - \tau) \mathbf{K}_r \mathbf{x}_r(\tau) d\tau + \mathbf{D}_r \boldsymbol{\varpi}_r(t) = \mathbf{B}_r \mathbf{u}(t),$$

$$\mathbf{D}_r^T \mathbf{x}_r(t) = \mathbf{0}, \quad \text{which determines} \quad \mathbf{y}_r(t) = \mathbf{C}_r \boldsymbol{\varpi}_r(t)$$

with symmetric positive semidefinite \mathbf{M}_r , $\mathbf{K}_r \in \mathbb{R}^{r \times r}$, $\mathbf{B}_r \in \mathbb{R}^{r \times m}$, $\mathbf{C}_r \in \mathbb{R}^{p \times r}$, and $\mathbf{D}_r \in \mathbb{R}^{r \times r}$.

Because of the memory term, both reduced and original systems have

Transfer function (need not be a rational function!):

$$\mathcal{H}(s) = \begin{bmatrix} \mathbf{0} \ \mathbf{C} \end{bmatrix} \begin{bmatrix} s^2 \mathbf{M} + (\widehat{\rho}(s) + \eta) \mathbf{K} & \mathbf{D} \\ \mathbf{D}^T & \mathbf{0} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{B} \\ \mathbf{0} \end{bmatrix}$$

 Want a reduced order model that replicates input-output response with high fideliety yet retains "viscoelasticity":

$$\mathbf{M}_r \ddot{\mathbf{x}}(t) + \eta \mathbf{K}_r \mathbf{x}_r(t) + \int_0^t \rho(t - \tau) \mathbf{K}_r \mathbf{x}_r(\tau) d\tau + \mathbf{D}_r \boldsymbol{\varpi}_r(t) = \mathbf{B}_r \mathbf{u}(t),$$

$$\mathbf{D}_r^T \mathbf{x}_r(t) = \mathbf{0}, \quad \text{which determines} \quad \mathbf{y}_r(t) = \mathbf{C}_r \boldsymbol{\varpi}_r(t)$$

with symmetric positive semidefinite \mathbf{M}_r , $\mathbf{K}_r \in \mathbb{R}^{r \times r}$, $\mathbf{B}_r \in \mathbb{R}^{r \times m}$, $\mathbf{C}_r \in \mathbb{R}^{p \times r}$, and $\mathbf{D}_r \in \mathbb{R}^{r \times r}$.

 Because of the memory term, both reduced and original systems have infinite-order.

Example 2: Delay Differential System

 Many complex processes exhibit some sort of delayed response in their input, output, or internal dynamics.

Often related to ancillary processes that create a time lag from processing, communication, material transport, or inertial effects occuring at a finer scale than is explicitly modeled.

$$\dot{\mathbf{x}}(t) = \mathbf{A}_1 \mathbf{x}(t) + \mathbf{A}_2 \mathbf{x}(t - \tau) + \mathbf{B} \mathbf{u}(t), \quad \mathbf{y}(t) = \mathbf{C} \mathbf{x}(t)$$

$$\mathcal{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - e^{-\tau s} \mathbf{A}_2)^{-1} \mathbf{B}.$$

- Delay systems are also infinite-order. The dynamic effects of even
- Find a reduced order model retaining the same delay structure:

$$\dot{\mathbf{x}}_r(t) = \mathbf{A}_{1r}\mathbf{x}_r(t) + \mathbf{A}_{2r}\mathbf{x}_r(t-\tau) + \mathbf{B}_r\mathbf{u}(t), \qquad \mathbf{y}_r(t) = \mathbf{C}_r\mathbf{x}_r(t)$$

$$\mathcal{H}_r(s) = \mathbf{C}_r(s\mathbf{I} - \mathbf{A}_{1r} - e^{-\tau s}\mathbf{A}_{2r})^{-1}\mathbf{B}_r$$

 Many complex processes exhibit some sort of delayed response in their input, output, or internal dynamics.

Often related to ancillary processes that create a time lag from processing, communication, material transport, or inertial effects occuring at a finer scale than is explicitly modeled.

$$\dot{\mathbf{x}}(t) = \mathbf{A}_1 \mathbf{x}(t) + \mathbf{A}_2 \mathbf{x}(t - \tau) + \mathbf{B} \mathbf{u}(t), \qquad \mathbf{y}(t) = \mathbf{C} \mathbf{x}(t)$$

$$\mathcal{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - e^{-\tau s} \mathbf{A}_2)^{-1} \mathbf{B}.$$

- Delay systems are also infinite-order. The dynamic effects of even a small delay can be profound.
- Find a reduced order model retaining the same delay structure:

$$\dot{\mathbf{x}}_r(t) = \mathbf{A}_{1r}\mathbf{x}_r(t) + \mathbf{A}_{2r}\mathbf{x}_r(t-\tau) + \mathbf{B}_r\mathbf{u}(t), \qquad \mathbf{y}_r(t) = \mathbf{C}_r\mathbf{x}_r(t)$$

$$\mathcal{H}_r(s) = \mathbf{C}_r(s\mathbf{I} - \mathbf{A}_{1r} - e^{-\tau s}\mathbf{A}_{2r})^{-1}\mathbf{B}_r$$

Example 2: Delay Differential System

 Many complex processes exhibit some sort of delayed response in their input, output, or internal dynamics.

Often related to ancillary processes that create a time lag from processing, communication, material transport, or inertial effects occuring at a finer scale than is explicitly modeled.

$$\dot{\mathbf{x}}(t) = \mathbf{A}_1 \mathbf{x}(t) + \mathbf{A}_2 \mathbf{x}(t - \tau) + \mathbf{B} \mathbf{u}(t), \quad \mathbf{y}(t) = \mathbf{C} \mathbf{x}(t)$$

$$\mathcal{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_1 - e^{-\tau s} \mathbf{A}_2)^{-1} \mathbf{B}.$$

- Delay systems are also infinite-order. The dynamic effects of even a small delay can be profound.
- Find a reduced order model retaining the same delay structure:

$$\dot{\mathbf{x}}_r(t) = \mathbf{A}_{1r}\mathbf{x}_r(t) + \mathbf{A}_{2r}\mathbf{x}_r(t-\tau) + \mathbf{B}_r\mathbf{u}(t), \qquad \mathbf{y}_r(t) = \mathbf{C}_r\mathbf{x}_r(t)$$

$$\mathcal{H}_r(s) = \mathbf{C}_r(s\mathbf{I} - \mathbf{A}_{1r} - e^{-\tau s}\mathbf{A}_{2r})^{-1}\mathbf{B}_r$$

$$\mathbf{u}(t) \longrightarrow \boxed{\mathbf{\mathcal{H}}(s) = \mathbf{\mathcal{C}}(s)\mathbf{\mathcal{K}}(s)^{-1}\mathbf{\mathcal{B}}(s)} \longrightarrow \mathbf{y}(t)$$

- $\mathfrak{C}(s) \in \mathbb{C}^{q \times n}$ and $\mathfrak{B}(s) \in \mathbb{C}^{n \times m}$ are analytic in the right half plane;
- $\mathcal{K}(s) \in \mathbb{C}^{n \times n}$ is analytic and full rank throughout the right half plane with $n \approx 10^5$, 10^6 or higher.
- "Internal state" $\mathbf{x}(t)$ is not itself important.
- How much state space detail is needed to replicate the map " $\mathbf{u} \mapsto \mathbf{v}$ "?

$$\mathcal{H}(s) = \mathcal{C}(s)\mathcal{K}(s)^{-1}\mathcal{B}(s) \longrightarrow \mathcal{H}_r(s) = \mathcal{C}_r(s)\mathcal{K}_r(s)^{-1}\mathcal{B}_r(s)$$

- Select $\mathbf{V}_r \in \mathbb{R}^{n \times r}$ and $\mathbf{W}_r \in \mathbb{R}^{n \times r}$.
- The the reduced model $\mathcal{H}_r(s) = \mathcal{C}_r(s)\mathcal{K}_r(s)^{-1}\mathcal{B}_r(s)$ is

$$\mathfrak{K}_r(s) = \mathbf{W}_r^T \mathfrak{K}(s) \mathbf{V}_r, \quad \mathfrak{B}_r(s) = \mathbf{W}_r^T \mathfrak{B}(s), \quad \mathfrak{C}_r(s) = \mathfrak{C}(s) \mathbf{V}_r.$$

$$\mathbf{u}(t) \longrightarrow \mathbf{\mathcal{H}}_r(s) = \mathbf{\mathcal{C}}_r(s)\mathbf{\mathcal{K}}_r(s)^{-1}\mathbf{\mathcal{B}}_r(s) \longrightarrow \mathbf{y}_r(t) \approx \mathbf{y}(t)$$

- The generic case: $\mathcal{K}(s) = s\mathbf{E} \mathbf{A}$, $\mathcal{B}(s) = \mathbf{B}$, $\mathcal{C}(s) = \mathbf{C}$,
- We choose $\mathcal{V}_r \in \mathbb{R}^{n \times r}$ and $\mathcal{W}_r \in \mathbb{R}^{n \times r}$ to enforce (tangential) interpolation.

Model Reduction by Tangential Interpolation

• For selected points $\{\sigma_1, \sigma_2, ... \sigma_r\}$ in \mathbb{C} ; and vectors $\{b_1, ...b_r\} \in \mathbb{C}^m$ and $\{c_1, ...c_r\} \in \mathbb{C}^q$, find $\mathcal{H}_r(s)$ so that

$$\mathbf{c}_{i}^{T} \mathbf{\mathcal{H}}(\sigma_{i}) = \mathbf{c}_{i}^{T} \mathbf{\mathcal{H}}_{r}(\sigma_{i})$$

$$\mathbf{\mathcal{H}}(\sigma_{i}) \mathbf{b}_{i} = \mathbf{\mathcal{H}}_{r}(\sigma_{i}) \mathbf{b}_{i}, \text{ and}$$

$$\mathbf{c}_{i}^{T} \mathbf{\mathcal{H}}'(\sigma_{i}) \mathbf{b}_{i} = \mathbf{\mathcal{H}}_{r}(\sigma_{i}) \mathbf{b}_{i}$$

for
$$i = 1, 2, ..., r$$
.

- Interpolation points: $\sigma_k \in \mathbb{C}$.
- Tangential directions: $c_k \in \mathbb{C}^q$, and $b_k \in \mathbb{C}^m$.
- Can be extended to higher-order interpolation.

General setting for interpolation

Theorem (B/Gugercin,09)

Suppose that $\mathfrak{B}(s)$, $\mathfrak{C}(s)$, and $\mathfrak{K}(s)$ are analytic at a point $\sigma \in \mathbb{C}$ and both $\mathfrak{K}(\sigma)$ and $\mathfrak{K}_r(\sigma) = \mathbf{W}_r^T \mathfrak{K}(\sigma) \mathbf{V}_r$ have full rank. Suppose $b \in \mathbb{C}^p$ and $c \in \mathbb{C}^q$ are arbitrary nontrivial vectors.

- If $\mathfrak{K}(\sigma)^{-1}\mathfrak{B}(\sigma)b \in \mathsf{Ran}(\mathbf{V}_r)$ then $\mathfrak{H}(\sigma)b = \mathfrak{H}_r(\sigma)b$.
- If $(\mathbf{c}^T \mathbf{C}(\sigma) \mathbf{K}(\sigma)^{-1})^T \in \mathbf{Ran}(\mathbf{W}_r)$ then $\mathbf{c}^T \mathbf{H}(\sigma) = \mathbf{c}^T \mathbf{H}_r(\sigma)$
- If $\mathfrak{K}(\sigma)^{-1}\mathfrak{B}(\sigma)\mathfrak{b} \in \mathsf{Ran}(\mathbf{V}_r)$ and $(\mathfrak{c}^T\mathfrak{C}(\sigma)\mathfrak{K}(\sigma)^{-1})^T \in \mathsf{Ran}(\mathbf{W}_r)$ then $c^T \mathcal{H}'(\sigma) b = c^T \mathcal{H}'(\sigma) b$
- Once again, tangential interpolation via projection
- Proof follows similar to the generic first-order case.
- Flexibility of interpolation framework

Interpolatory projections in model reduction

• Given distinct (complex) frequencies $\{\sigma_1, \sigma_2, \dots, \sigma_r\} \subset \mathbb{C}$, left tangent directions $\{c_1, \ldots, c_r\}$, and right tangent directions $\{b_1, \ldots, b_r\}$:

$$\mathbf{\mathcal{V}}_r = \left[\mathbf{\mathcal{K}}(\sigma_1)^{-1} \mathbf{\mathcal{B}}(\sigma_1) \mathbf{b}_1, \cdots, \mathbf{\mathcal{K}}(\sigma_r)^{-1} \mathbf{\mathcal{B}}(\sigma_r) \mathbf{b}_r \right]$$
$$\mathbf{\mathcal{W}}_r^T = \left[\begin{array}{c} \mathbf{c}_1^T \mathbf{\mathcal{C}}(\sigma_1) \mathbf{\mathcal{K}}(\sigma_1)^{-1} \\ \vdots \\ \mathbf{c}_r^T \mathbf{\mathcal{C}}(\sigma_r) \mathbf{\mathcal{K}}(\sigma_r)^{-1} \end{array} \right]$$

Guarantees that $\mathfrak{H}(\sigma_i)b_i = \mathfrak{H}_r(\sigma_i)b_i$, $\mathbf{c}_i^T \mathbf{\mathcal{H}}(\sigma_i) = \mathbf{c}_i^T \mathbf{\mathcal{H}}_r(\sigma_i), \quad \mathbf{c}_i^T \mathbf{\mathcal{H}}'(\sigma_i) \mathbf{b}_i = \mathbf{c}_i^T \mathbf{\mathcal{H}}'_r(\sigma_i) \mathbf{b}_i$ for i = 1, 2, ..., r.

Interpolation Proof:

• Recall $V_r = \text{Ran}(\mathbf{V}_r)$ and $W_r = \text{Ran}(\mathbf{W}_r)$. Define

$$egin{aligned} & \mathbf{\mathcal{P}}_r(z) = \mathbf{V}_r \mathbf{\mathcal{K}}_r(z)^{-1} \mathbf{W}_r^T \mathbf{\mathcal{K}}_r(z) & \text{and} \\ & \mathbf{\mathcal{Q}}_r(z) = \mathbf{\mathcal{K}}(z) \mathbf{V}_r \mathbf{\mathcal{K}}_r(z)^{-1} \mathbf{W}_r^T = \mathbf{\mathcal{K}}(z) \mathbf{\mathcal{P}}_r(z) \mathbf{\mathcal{K}}(z)^{-1} \end{aligned}$$

- $\mathcal{P}_r^2(z) = \mathcal{P}_r(z)$ with $\mathcal{V}_r = \text{Ran}(\mathcal{P}_r(z)) = \text{Ker}(\mathbf{I} \mathcal{P}_r(z))$
- $\Omega_r^2(z) = \Omega_r(z)$ with $W_r^{\perp} = \text{Ker}(\Omega_r(z)) = \text{Ran}(\mathbf{I} \Omega_r(z))$ $\mathcal{H}(z) - \mathcal{H}_r(z) = \mathbf{C}\mathcal{K}(z)^{-1} \left(\mathbf{I} - \mathbf{Q}_r(z)\right) \mathcal{K}(z) \left(\mathbf{I} - \mathbf{P}_r(z)\right) (z\mathbf{I} - \mathbf{A})^{-1} \mathbf{B}$
- Evaluate at $z = \sigma_i$ and postmultiply by \mathbf{b}_i : $\mathcal{H}(\sigma_i)\mathbf{b}_i = \mathcal{H}_r(\sigma_i)\mathbf{b}_i$
- Evaluate at $z = \sigma_i$ and premultiply by \mathbf{c}^T : $\mathbf{c}_i^T \mathcal{H}(\sigma_i) = \mathbf{c}_i^T \mathcal{H}_r(\sigma_i)$
- For Hermite condition, expand around $\sigma + \epsilon$ as before.

Higher order interpolation

• $\mathcal{D}_{\sigma}^{\ell}f:\ell^{th}$ derivative of f(s) at $s=\sigma.$ And $\mathcal{D}_{\sigma}^{0}f=f(\sigma).$

Theorem (B/Gugercin,09)

Given is $\Re(s) = \Re(s)\Re(s)^{-1}\Re(s)$. Suppose that $\Re(s)$, $\Re(s)$, and $\Re(s)$ are analytic at a point $\sigma \in \mathbb{C}$ and both $\mathfrak{K}(\sigma)$ and $\mathfrak{K}_r(\sigma) = \mathbf{W}_r^T \mathfrak{K}(\sigma) \mathbf{V}_r$ have full rank. Let nonnegative integers M and N be given as well as nontrivial vectors. $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^q$.

- (a) If $\mathcal{D}_{\sigma}^{i}[\mathfrak{K}(s)^{-1}\mathfrak{B}(s)]b \in Ran(\mathcal{V}_{r})$ for $i=0,\ldots,N$ then $\mathcal{H}^{(\ell)}(\sigma)b = \mathcal{H}^{(\ell)}_r(\sigma)b$ for $\ell = 0, \ldots, N$.
- (b) If $(\mathbf{c}^T \mathcal{D}^j_{\sigma} [\mathfrak{C}(s) \mathfrak{K}(s)^{-1}])^T \in \mathsf{Ran}(\mathcal{W}_r) \text{ for } j = 0, \dots, M$ then $c^T \mathcal{H}^{(\ell)}(\sigma) = c^T \mathcal{H}^{(\ell)}_r(\sigma)$ for $\ell = 0, ..., M$.
- (c) If $\mathcal{D}_{\sigma}^{i}[\mathfrak{K}(s)^{-1}\mathfrak{B}(s)]b \in Ran(\mathcal{V}_{r})$ for i = 0, ..., Nand $(\mathbf{c}^T \mathcal{D}^j_{\sigma} [\mathcal{C}(s) \mathcal{K}(s)^{-1}])^T \in \mathit{Ran}(\mathcal{W}_r) \ \mathit{for} \ j = 0, \ldots, M$ then $c^T \mathcal{H}^{(\ell)}(\sigma) b = c^T \mathcal{H}^{(\ell)}_r(\sigma) b$ for $\ell = 0, ..., M + N + 1$.

- A simple variation of the previous model:
- $\Omega=[0,1]\times[0,1]$: a volume filled with a viscoelastic material with boundary separated into a top edge ("lid"), $\partial\Omega_1$, and the complement, $\partial\Omega_0$ (bottom, left, and right edges).
- Excitation through shearing forces caused by transverse displacement of the lid, u(t).
- Output: displacement $\mathbf{w}(\hat{x}, t)$, at a fixed point $\hat{x} = (0.5, 0.5)$.

$$\partial_{tt}\mathbf{w}(x,t) - \eta_0 \, \Delta\mathbf{w}(x,t) \, - \, \eta_1 \partial_t \int_0^t \, \frac{\Delta\mathbf{w}(x,\tau)}{(t-\tau)^\alpha} \, d\tau \, + \, \nabla\varpi(x,t) = 0 \ \, \text{for} \, \, x \in \Omega$$

$$abla \cdot \mathbf{w}(x,t) = 0 \text{ for } x \in \Omega,$$

 $\mathbf{w}(x,t) = 0 \text{ for } x \in \partial \Omega_0,$ $\mathbf{w}(x,t) = u(t) \text{ for } x \in \partial \Omega_1$

freg (rad/sec)

$$\mathcal{H}_{\text{fine}}$$
: $n_x = 51,842$ and $n_p = 6,651$ \mathcal{H}_{30} : $n_x = n_p = 30$ $\mathcal{H}_{\text{coarse}}$: $n_x = 13,122$ $n_p = 1,681$ \mathcal{H}_{20} : $n_x = n_p = 20$

- \mathcal{H}_{30} , \mathcal{H}_{20} : reduced interpolatory viscoelastic models.
- \mathcal{H}_{30} almost exactly replicates $\mathcal{H}_{\text{fine}}$ and outperforms $\mathcal{H}_{\text{coarse}}$
- Since input is a boundary displacement (as opposed to a boundary force), $\mathfrak{B}(s) = s^2 \mathbf{m} + \rho(s) \mathbf{k}$,

Computational Delay Examples

 Many physical processes exhibit some sort of delayed response in their input, output, or internal dynamics.

$$\mathbf{E}\dot{\mathbf{x}}(t) = \mathbf{A}_{1}\mathbf{x}(t) + \mathbf{A}_{2}\mathbf{x}(t-\tau) + \mathbf{B}\,\mathbf{u}(t), \qquad \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

$$\mathbf{\mathcal{H}}(s) = \underbrace{\mathbf{C}}_{\mathbf{C}(s)}\underbrace{(s\mathbf{E} - \mathbf{A}_{1} - e^{-\tau s}\mathbf{A}_{2})}_{\mathbf{\mathcal{K}}(s)}^{-1}\underbrace{\mathbf{B}}_{\mathbf{B}(s)}.$$

• Find a reduced order model retaining the same delay structure:

$$\mathbf{E}_{r}\dot{\mathbf{x}}_{r}(t) = \mathbf{A}_{1r}\mathbf{x}_{r}(t) + \mathbf{A}_{2r}\mathbf{x}_{r}(t-\tau) + \mathbf{B}_{r}\mathbf{u}(t), \qquad \mathbf{y}_{r}(t) = \mathbf{C}_{r}\mathbf{x}_{r}(t)$$

$$\mathbf{\mathcal{H}}_{r}(s) = \underbrace{\mathbf{C}_{r}}_{\mathbf{C}_{r}(s)}\underbrace{(s\mathbf{E}_{r} - \mathbf{A}_{1r} - e^{-\tau s}\mathbf{A}_{2r})}_{\mathbf{\mathcal{K}}_{r}(s)}^{-1}\underbrace{\mathbf{B}_{r}}_{\mathbf{B}_{r}(s)}.$$

Direct (generalized) interpolation:

$$\mathcal{H}_r(s) = \mathbf{e}^T \mathcal{V}_r \left(s \mathcal{W}_r^T \mathbf{E} \mathcal{V}_r - \mathcal{W}_r^T \mathbf{A}_1 \mathcal{V}_r - \mathcal{W}_r^T \mathbf{A}_2 \mathcal{V}_r e^{-s\tau} \right)^{-1} \mathcal{W}_r^T \mathbf{e}.$$

Approximate delay term with rational function:

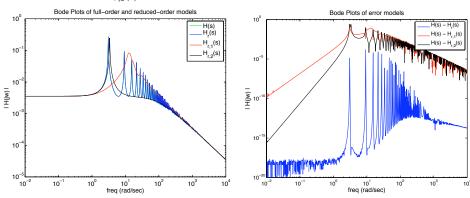
$$e^{- au s} pprox rac{p_\ell(- au s)}{p_\ell(au s)}$$

- Pass to $(\ell+1)^{st}$ order ODE system: $\mathbf{D}(s)\widehat{x}(s) = p_{\ell}(\tau s) \mathbf{e} \widehat{u}(s)$ with $\mathbf{D}(s) = (s\mathbf{E} - \mathbf{A}_0) p_{\ell}(\tau s) - \mathbf{A}_1 p_{\ell}(-\tau s).$
- Model reduction on linearization: first order system of dimension $(\ell+1)*n. (\rightarrow Loss of structure!)$

Computational Example: Delay System

 $\mathfrak{H}_r(s)$ - Generalized interpolation; $\mathfrak{H}_{r,1}(s)$ - First-order Padé;

 $\mathcal{H}_{r,2}(s)$ - Second-order Padé;



Original system dim: n=500. Reduced system dim: r=10. Interpolation points: ± 1.0 E-3 \imath , ± 3.16 E-1 \imath , ± 5.0 \imath , 3.16E+1 \imath , ± 1.0 E+3 \imath

	\mathcal{H}_{∞} error
$\mathcal{H}-\mathcal{H}_r$	2.42×10^{-4}
$\mathcal{H}-\mathcal{H}_{r,1}$	2.65×10^{-1}
$\mathcal{H}-\mathcal{H}_{r,2}$	2.61×10^{-1}

- Consider $\mathfrak{H}_{p,70}(s)$.
- $\|\mathbf{\mathcal{H}}(s) \mathbf{\mathcal{H}}_{p,70}(s)\|_{\mathcal{H}_{\infty}} = 1.57 \times 10^{-3}$.
- Reducing $\mathcal{H}_{p,70}(s)$ requires solving linear systems of order $(500 \times 70) \times (500 \times 70).$
- Preserving the delay structure is crucial.
- Multiple delays could also be handled similarly.

Higher-order ODEs

$$\mathbf{u}(t) \longrightarrow \begin{bmatrix} \mathbf{A}_0 \frac{d^{\ell} \mathbf{x}}{dt^{\ell}} + \mathbf{A}_1 \frac{d^{\ell-1} \mathbf{x}}{dt^{\ell-1}} + \dots + \mathbf{A}_{\ell} \mathbf{x} = \mathbf{B}_0 \frac{d^{\ell} \mathbf{u}}{dt^{k}} + \dots + \mathbf{B}_{k} \mathbf{u} \\ \mathbf{y}(t) = \mathbf{C}_0 \frac{d^{q} \mathbf{x}}{dt^{q}} + \dots + \mathbf{C}_{q} \mathbf{x}(t) \end{bmatrix} \longrightarrow \mathbf{y}(t)$$

- Perform reduction directly in the original coordinates without linearization while enforcing interpolation
- Perfectly fits the framework:

$$\mathfrak{K}(s) = \sum_{i=0}^{\ell} s^{\ell-i} \mathbf{A}_i, \quad \mathfrak{B}(s) = \sum_{i=0}^{k} s^{k-i} \mathbf{B}_i, \quad \mathfrak{C}(s) = \sum_{i=0}^{q} s^{q-i} \mathbf{C}_i$$

Construct \mathcal{V}_r and \mathcal{W}_r as in the Theorem. Then

$$\mathcal{K}_r(s) = \sum_{i=0}^{\ell} s^{\ell-i} \mathcal{W}_r^T \mathbf{A}_i \mathcal{V}_r, \quad \mathcal{B}(s) = \sum_{i=0}^{k} s^{k-i} \mathcal{W}_r^T \mathbf{B}_i, \quad \mathbf{C}(s) = \sum_{i=0}^{q} s^{q-i} \mathbf{C}_i \mathcal{V}_r$$