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Lecture 1: (Beattie)
. . . . . [ Ex(1) = Ax(¢) +Bu(s),
a. Linear (time-invariant, nonparametric) case: { ¥(t) = Cx(1) + Du()
o Rational Krylov subspaces
e Tangential interpolation

b. The Loewner Framework: Nonintrusive model reduction directly from
observations of system response without access to E, A, B, C.

c. Reducing structured dynamical systems

Lecture 2: (Beattie)
@ Optimal model reduction by interpolation and IRKA
@ More on structure-preserving model reduction

Lecture 3: (Antoulas)
@ Data-driven interpolatory methods for nonlinear systems
@ Chef’s surprize
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LinSys Settings Proj

Linear Dynamical Systems

S: ul)— — ¥y(1)

@ AE e R B e R C € R”"and D € R9*"™

@ x(t) € R" : states, u(r) € R”:Input, y(z) € R?: Output

@ We will assume N\, (AE) e C_fori=1,2,...,n

@ State-space dimension, n, is quite large, n ~ O(10*,107) or higher
@ What is important is the mapping “u — y”,

NOT full information on state evolution: x(7)
—> Remove unimportant states having small impact on y(z)
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LinSys Settings Proj

@ Produce a smaller dynamical system

E (1) = A, x,(t) + B u(t) B
¥-(t) = C, x,(t) + D, llll(t) — ¥(1) ()

Spu(t) —

where A, E, € R, B, € R C, € R?*", and D, € R¥*™
such that

r-dimensional state space with r < n;

lly — y.|| is small wrt an appropriate norm;
important structural properties of S are preserved;
the procedure is computationally efficient.
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LinSys Settings Proj

@ Produce a smaller dynamical system

E, %, (1) = A, x,(t) + B, u(r)
v (1) = C,x,(t) + D, u(r)

S () — — ¥:(1) = y(1)

where A, E, € R, B, € R C, € R?*", and D, € R¥*™
such that

r-dimensional state space with r < n;

lly — y.|| is small wrt an appropriate norm;
important structural properties of S are preserved;
the procedure is computationally efficient.

@ “Project dynamics” onto an r-dimensional subspace;
@ Eliminate states that:
e are insensitive to variations in u(¢): “Hard to reach”
o have little influence on y(¢): “Hard to observe”

@ S, then used as a surrogate for the original model.
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Model Reduction via Projection

Choose

@ V. = Range(V,): the r-dimensional right modeling subspace
(trial subspace) where V, € R"*", and

@ W, = Range(W,), the r-dimensional left modeling subspace
(test subspace) where W, € R"*"

@ Approximate x(¢) ~ V, x,(r) by forcing x, () to satisfy
~ =N
nx1 nxr  rxl1
W, (EV,x, — AV,x, —Bu) =0 (Petrov-Galerkin)

@ Leads to a reduced order model:

E, =W, EV,, A, =W, AV,, B,=W,/B, C,=CV,, D,=_D
N—— N—— N—— ~—~ ~~
rxr rxr rxXm qxr qxm
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n m
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Reduction
al C | aQ_c, |

Figure: Projection-based Model Reduction

@ Basis independence - Only V, = Ran(V,) and W, = Ran(W,) matters.

@ Once V, and W, are selected, S, is fully determined.
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Transfer Functions and the Frequency Domain

0 S: u(f)—y() = (Su)r) = /_ " h(t— Pu(r)dr

H(s) = (Lh)(s) = /OOO h(t)e*Tdr = C(sE — A)"'B +D.

H(s) is called the transfer function of S.

H(s): matrix-valued (g x p) rational function in s € C.

Consider the simple n = m = g = 2 example with D = 0,

3 -2 11 0 1
R I N P e
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o Let z(w) = F(z(1)

Full response: y(w) = H(w)a(w)
Reduced order response: y,(w) = H, (w)a(w)

with transfer functions:
H(s) = C(sSE—A)"'B4+D and H,(s) = C.(sE, —A,)"'B, +D,

aos" +ars" !+ aps" 2+

@ H(s) =
O = e B T BT 1

(Assuming SISO)

s s s TR 4,
s s F s Ay,

@ Model Reduction = Rational Approximation

@ H,(s) (Assuming SISO)
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Error measures: H.. Norm

@ £? - £? induced norm associated with S : u — y

vlo  [iSull
1Sl = sup 2 _ — sup [H(w)]l,
AT S T -

@ [|S — S/l is worst-case output error ||y(r) — y,(1)|, with [luf, = 1.
[y =yrlly < IS =Sl l[ully 220

Suppose [lu||, = 1,

e 2 [ AN - 2
[0 = v @B = o [ 150) = 5B de
0 T J—o0
[ e 2 e 2
<o [ IHGw) — BB ()3 o
T J -0

2 1 * e 2 2
<sup [H(w) — Hr(w)ll; | 5= [u(ew)[f; dw
w 2 — o

def
<sup|[H(w) —H(w)[3 = IS =S5
w
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Error measures: H, Norm

@ £, norm of h(z) in time domain.

i = () ”h(””i‘”); (/) ||H<zw>||1%azc~f>é

@ [£,-L induced norm of S for MISO and SIMO systems:

IS5, = sup Yo for MISO and SIMO systems
: u#0 ”ll”2

@ In the general case of MIMO systems:

1y = ¥rllze < IS = Srllyy, l[ullL,
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Computing the H, norm:

@ Inorder for ||S][;,, < oo, it’s necessary that D = 0.

@ Given H(s) = C(sE — A)~!B, let P be the unique solution to
APE” + EPA” + BB” = 0.
Then,
IS, =4/ Tr(CPCT)
@ Directly follows from definition of H, norm + residue thm.

@ Matlab commands: norm (S, 2), normh2 (S), h2norm (S),
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Frequency Domain Plots

@ System response described graphically in the frequency domain.
@ Amplitude Bode Plot: Plot ||H(w)||2 VS w € R.
@ For the dynamical system on Slide 8:

Frequency response of H(s)
10 w

10 - L \0 L
10 10 10 10 10
w (rad/sec)

Figure: Frequency Response of H(s)
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Interpolatory Model Reduction

@ Seek a reduced model S, whose transfer function H,(s)
is a rational interpolant to H(s) in selected directions.

Tangential Interpolation Problem:

left interpolation points: right interpolation points:
{witiz CC, {oitio, cC
with corresponding and with corresponding
left tangent directions: right tangent directions:
{Gitio, c {b}, ccm

Find E,, A,, B,, C,, and D, (hence H,(s)) such that

CTH, (1) = CTH(ju;) and H,(0;)b; = H(0))by;,
fori=1,---,r, forj=1,---,r,
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@ We are not requiring H,(s) to (fully) interpolate H(s) at s = o
i.e., we are not requiring full matrix interpolation: H(c') = H, (o)
(this would result in ¢ x m interpolation conditions at every
interpolation point, s = o).

@ Instead, we are requiring H,(s) to match H(s)
at s = o only along a direction, b: H(c)b = H,(o)b.

@ This results in only m interpolation conditions at every
interpolation point, s = o.

@ Later, we will see that this type of interpolation,
tangential interpolation, is necessary for optimal model reduction.
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Interpolatory Projections

@ How to enforce tangential interpolation via projection?
@ First case: D = D, (so wlog take D = D, = 0).

Theorem

Leto, u € C be such thatsE — A andsE, — A, are invertible for
s = o, u. Assumeb € C™ and c € C? are nontrivial vectors.

(a) if(¢E—A)"'Bb e Ran(V,), then H(c)b = H,(o)b;
T
(b) if (cTc (LE — A)’1> € Ran(W,), then c"H(u) = cTH,(1);
(c) and if both (a) and (b) hold, and o = 1, then
c"H (0)b = c"H.(0)b as well.

[Skelton et. al., 87], [Grimme, 97], [Gallivan et. al., 05]
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Consequences:

o Given {o;}_,, {1}/, {bi}}_; € C", and {c;}]_, € C, set
V,=[(ciE—A)"'Bby, ---, (¢;E—A)"'Bb,] € C"*" and
W, =[(mE-A"""CT¢; -+ (i, E—AT)"'CTc, | e ™
@ Obtain H,(s) via projection as before

E. =W/ 'EV, A,=W,AV,, B,=W,/B, C,=CV,, D, =D

@ Then
H(o;)b; = H,(0:)b;, for i=1,---,r,

cTH() = |, (i),  for j=1,---r,
ciH'(ox)by = cfH (ax)br  if op = i

bitangential Hermite interpolation where o, = i
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Reduction fromn =2tor=1 (?h) ©

@ Recall the simple example n = m = ¢ = 2 case with D = 0,
-3 -2 1 1 0 1
R PR b

_ 1 1 s+4
= —_ 1 = ——-----
@ H(s) =C(sE—A)"'B s2+3s+2[s_1 e ]

() Let0'1:,u,1:0,b1: |: _} ],andcl—[;],

@V, =(0iE—A)"'Bb; = [ _1é ]

oW, =(iE-A)TC¢c| = [ :(3)'2 ]
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@ E, = W,EV, = 4.75, A, = W,TAV, = —3.5,

—1.5
@B, =W/B=] -05 —4 ], C,:CV,:[ 2'5],

@ H.(s) =C,(sE, —A,)"'B, = —

0.1579 1.2630
s+0.7368

—0.2632 —2.105
—-1.5
o H(O’l)bl = H,(O'l)bl = |: 2.5 :| v

o c'H(o)) = cTH, (o)) =[-05 —4]

o C{H/<J1)b1 = C{H;(Ul)bl =4.75 v
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Interpolation Proof:

@ Recall V, = Ran(V,) and W, = Ran(W,). Define
P.(z) = V,(zE, — A,) "W/ (zE - A) and
Q,(z) = (zE — A)V,(zE, — A,) "W = (zE — A)P,(z2) zE — A) ™!
@ P(z) = P,(z) with V., = Ran(P,(z)) = Ker (I — P,(z))
@ Q’(z) = Q,(z) with Wi- = Ker(Q,(z)) = Ran (I — Q,(z))
H(z) —H,(z) =CZE - A)"'(I-9,(z)) (zE — A) (I — fP,(z)) (zI-A)"'B
@ Evaluate at z = ¢; and postmultiply by b;: H(o;)b; = H,(0;)b;
@ Evaluate at z = o; and premultiply by ¢’:  ¢/H(o;) = ¢/H, (o)
@ Evaluate at z = o + ¢, premultiply by ¢’ and postmultiply by b:
c/H(o; +€)b; — ¢/H,(0; + £)b; = O(e?).
Since ¢/H(o;)b; = ¢/H,(0;)b; ,

1 1
- (cTH(o; + €)b; — ¢/ H(o)b;) — - (¢TH,(0; + €)b; — ¢/ Hy(0;)b;) — 0, as € — 0.
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Higher-order Interpolation

Let o € C be such that bothcE — A andcE, — A, are invertible. If
b € C" and ¢ € CY are fixed nontrivial vectors then

@it (0B~ A)" E)j_l (¢E—A)"'Bb e Ran(V,) forj =1, N
then H) (0)b = HY) (6)b for £=0,1,...,N—1

(0) if ((uE A)_TET)j_l (LE— A)TCc e Ran(W,) forj = 1, . M,
then c"HY (1) = cTHY ()b for £=0,1,... .M — 1;

(c) if both (a) and (b) hold, and if o = 11, then c"H'¥) (¢)b = ¢c"HY (o)b,
fort=1,... M+ N+ 1

@ The proof follows similarly.
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Constructing interpolants with D, # D

@ For optimal H., approximants, typically 1_i>m H,(s) # 1_i>m H(s)

Theorem ([B/Gugercin,09] [Mayo/Antoulas,07])

Given {u;};_; U{o;}i_;,, {ci}j_; C C?and {b;};_, C C", letV, e C™"
and W, € C**" be as before. Define B andC as

B=[bs, by, ....,b,] and C'=1c|, ¢ ...,0c]"
For any D, € CP*"™, define
E.(s) = W'EV,, A, =W’AV, +C’D,B,
B, = W/B-C'D,, and C,=CV,—D,B.
Then with H,(s) = C,(sE, — A,)"'B, + D,, we have

T T :
H(oi)b; = H,(0:)b; and c¢;H(w) =¢;H, (i) fori=1, ... r




Intrplt Tanglntrplt IntrpltProj Loewner

Interpolation from Data: Loewner Framework
@ In some applications, dynamics are not available; but an abundant

amount of input/output measurements are available.
@ The goal: Construct a reduced-order model directly from data.

SHEEP SETUP

STRRT
1000000000 Giiz

»sTOP
65.000000000 Gtz
SET CENTER/SPAN

321 DATA POINT(S)
STEPSIZE VARIRBLE
FOR DISCRETE FILL

C.H. NODE  OFF

MARKER SHEEP
DISCRETE FILL

woLD BUTTON
FuncTion

TEST SIGNALS
PRESS <ENTER>
10 seLect
o8 TURN ON/OFF

Figure: Vector Network Analyzer. (Data: A.C. Antoulas)
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A more general problem setting

@ Consider the following example ([Antoulas, 2005])

or o*T
- >
o (z,t) = 82(z,t), t>0, z€[0,1]
with the boundary conditions 2£(0,#) =0 and 2L(1,1) = u(r)
u(t) : supplied heat, y(r) = T(0,1)
. Y(s) 1 _1
@ Transfer function:  H(s) = = # C(sE — A)

U(s) +/ssinhy/s

@ New goal: Given the ability to evaluate H(s):

?| Ex=Ax/(t)+Bu(t
H(s) Iz (1) (1)

(1) = Cx,(1)
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Problem Set-up

@ Given a set of input-output response measurements on H(s):

left driving frequencies: right driving frequencies:
{uitiz € C, {oifie, € C
using left input directions: and using right input directions:
{ci}io, c ¢, {bi}iz, c C”
producing left responses: producing right responses:
{zi}j-, cCm, {yitio, cc

@ Find a reduced model by determining (reduced) system matrices
E,, A,, B,, C,, and D, such that the associated transfer function,
H.(s) is a tangential interpolant to the given data:

¢H, (i) = 2] and H,(0))b; = ¥;,
fori=1,---,r, forj=1,---,r,
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Main Ingredients

@ The Loewner matrix:

b _cly b gy,
pi — o1 i — Oy
L= : 5 e Cr,
z)b; —cly, N z}b, —cly,
Mg — 01 Hg — Or

@ Suppose H(s) = C(sE — A)~'B:

L _2ibj—¢ly;  &[M(m) — H(o))lb;
Y Hi — 0j Wi — 0j

@ What does L represent?
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§: 61 62 Br ?: 371 92 yr
z! i cl
5T ~T
ZT: Z.2 6T: C.2
Zg o] oA

Theorem (Mayo/Antoulas,2007)
The Loewner matrix 1L satisfies the Sylvester equation

LY — ML = CTY — Z'B,

where ¥ = diag(oi, ..., 0,) € C™", and M = diag(p1, ..., pg) € CI*4.

@ Proof by direct substitution.
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@ The shifted Loewner matrix:

pmzibi —oicfyr  uz{b, — o,cly,
nr — oy H1 — oy
M = c QIxr
pgZiby — o1Chy, 1gZtb, — o,Cly,
L Hq — 01 Hq = Or _

@ IfH(s) = C(sE— A)"'B

¢! [nH (1) — oH(a;)]b;
i — 0

M =

@ What does M represent?
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Theorem (Mayo/Antoulas,2007)

M satisfies the Sylvester equation

MY — MM = CTYx — MZ"B.

@ Proof by direct substitution.

Theorem (Mayo/Antoulas,2007)

Assume that p; # oj foralli, j=1, ..., r. Suppose thatM — sL is
invertible for all s € {o;} U {;}. Then, with

E,=-L A,=-M, B,=Z', C. =Y, D, =0,

H,(s) = C,(sE, — A,)"'B, = Z"(M — sL)~'Y

interpolates the data and furthermore is a minimal realization.

v
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Sketch of the proof

@ Assume H(s) = C(sE — A)~'B (convenient but not necessary).
® H(u) — H(0j) = (0 — i) C(E — A)"'E(0jE — A)~'B.
— L =-WI/EV, (resolvent identity !)
© uiH(p;) — 0jH(0y) = (0j — pi) C(wiE — A)~'A(0;E — A)~'B.
= M = —-WTAV, (resolvent identity !)

@ Also Z' = W'B and Y = CV, by definition.

= H,(s) = Y(M — sL)~'Z” is a tangential interpolant to H(s).

@ Proof without assuming H(s) = C(sE — A)~!'B uses the Sylvester
equations.
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Rank deficient case

@ Assume
L
rank (sL—M) = rank [LL. M] = rank [ M } > p, forall s € {o;}U{p;}.

@ Compute the SVD: s — M = YOX*, for some s € {o;} U {1}

Theorem (Mayo/Antoulas,2007)

A realization [E,,A,,B,, C,], of a minimal solution is given as follows:

E,=-Y!LX,, A,=-YMX, B,=YY, C,=27'X,.

@ Depending on whether p is the exact or approximate rank, either
an interpolant or an approximate interpolant, respectively.
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@ There is no need for H(s) itself to be a finite-order rational function.

All that is required is the ability of computing H(s) at any s € C;

1
~ /ssinh /s

for example, H(s) can be handled easily.

@ Once data is collected, only a minimal amount of computation is
necessary.

@ For Hermite interpolation, choose o; = i; and then modify

Li = 6iH,(Ui)6i and Mj;; = 6i[SH(s)];:‘7i6i
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Structure-preserving model reduction

14 £ —1 k
Ao% +A1%+...+A5X:Bo%+...+Bku

u(r) —
Q (1) = Co% + ...+ Cyx(2)

— y(t)

@ “Every linear ODE may be reduced to an equivalent first order
system”  Might not be the best approach ...

@ For example
C(s°M +sD +K)"'B=C(s& - A)"'B

where
I 0 0 I 0
8=[0 M},A:[_K _D],gz[B],e:[c 0]

@ Disadvantages???
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@ The “state space” is an aggregate of dynamic variables some of
which may be internal and “locked” to other variables.

@ Refined goal: Want to develop model reduction methods that can
reduce selected state variables (i.e., on selected subspaces) while
leaving other state variables untouched; maintain structural
relationships among the variables.

“Structure-preserving model reduction”

@ For the second-order systems, see: [Craig Jr.,1981], [Chahlaoui et.al, 2005],
[Bai,2002], [Su/Craig,(1991)], [Meyer/Srinivasan,1996], ...

@ We will be investigating a much more general framework.
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Example 1: Incompressible viscoelastic vibration

OnW(x,1) — nAw(x, 1) — /0‘ p(t — 1) Aw(x, 7) dT + Vw(x,1) = b(x) -u(z),

V -w(x,t) =0 which determines y(1) = [w(x1,1), ..., @w(x,,1)]"

@ [Leitman and Fisher, 1973]
@ w(x,1) is the displacement field; w(x, 1) is the pressure field; p(7) is
a “relaxation function”
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Example 1: Incompressible viscoelastic vibration

OnW(x,1) — nAw(x, 1) — /0‘ p(t — 1) Aw(x, 7) dT + Vw(x,1) = b(x) -u(z),

V -w(x,t) =0 which determines y(1) = [w(x1,1), ..., @w(x,,1)]"

@ [Leitman and Fisher, 1973]
@ w(x,1) is the displacement field; w(x, 1) is the pressure field; p(7) is
a “relaxation function”
t
Mi(1) + nKx(1) + / ot — 7)Kx(r)dr + D (i) = Bu(1),
0
D" x(t) =0,  which determines y(t) = Cw (1)

@ x ¢ R™ discretization of w; o € R™ discretization of w.

@ M and K are real, symmetric, positive-definite matrices,
B e R C e RV, and D € R ¥,
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Example 1: Incompressible viscoelastic vibration

Transfer function (need not be a rational function !):

35 = [oc]| MR K Hl[lz]
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Example 1: Incompressible viscoelastic vibration

Transfer function (need not be a rational function !):

et = oc) [ MK BT E]

@ Want a reduced order model that replicates input-output response
with high fideliety yet retains “viscoelasticity”:

t
M, x(t) + nK,x,(1) + / p(t — 1)K, x,(7)dT + D, wo,(t) = B,u(t),
0
D! x,(t) =0,  which determines y,(t) = C, =, ()

with symmetric positive semidefinite M,, K, € R™*" B, € R™",
C, e RP*" and D, € R™",
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Example 1: Incompressible viscoelastic vibration

Transfer function (need not be a rational function !):

et = oc) [ MK BT E]

@ Want a reduced order model that replicates input-output response
with high fideliety yet retains “viscoelasticity”:

t
M, x(t) + nK,x,(1) + / p(t — 1)K, x,(7)dT + D, wo,(t) = B,u(t),
0
D! x,(t) =0,  which determines y,(t) = C, =, ()

with symmetric positive semidefinite M,, K, € R™*" B, € R™",
C, e RP*" and D, € R™",

@ Because of the memory term, both reduced and original systems have
infinite-order.
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Example 2: Delay Differential System

@ Many complex processes exhibit some sort of delayed response
in their input, output, or internal dynamics.

Often related to ancillary processes that create a time lag from processing, communication,
material transport, or inertial effects occuring at a finer scale than is explicitly modeled.

x(1) = A1x(1) + Aox(t — 7) + Bu(r), y(r) = Cx(1)
H(s) = C(sT— A — e ™Ay)"'B.
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Example 2: Delay Differential System

@ Many complex processes exhibit some sort of delayed response
in their input, output, or internal dynamics.

Often related to ancillary processes that create a time lag from processing, communication,
material transport, or inertial effects occuring at a finer scale than is explicitly modeled.

x(1) = A1x(1) + Aox(t — 7) + Bu(r), y(r) = Cx(1)
H(s) = C(sT— A — e ™Ay)"'B.

@ Delay systems are also infinite-order. The dynamic effects of even
a small delay can be profound.
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Example 2: Delay Differential System

@ Many complex processes exhibit some sort of delayed response
in their input, output, or internal dynamics.

Often related to ancillary processes that create a time lag from processing, communication,
material transport, or inertial effects occuring at a finer scale than is explicitly modeled.

x(1) = A1x(1) + Aox(t — 7) + Bu(r), y(r) = Cx(1)
H(s) = C(sT— A — e ™Ay)"'B.
@ Delay systems are also infinite-order. The dynamic effects of even
a small delay can be profound.
@ Find a reduced order model retaining the same delay structure:

X (1) = Ax, (1) + Ay X, (t — 7) + B, u(r), y-(1) = Cx.()
:}Cr(s) = Cr(SI — Ay — e_TSAZr)_lBr
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Generalized Coprime Interpolation Setting

u(t) —| H(s) = €()K(s)"'B(s) |— y()

@ C(s) € C7*" and B(s) € C™*™ are analytic in the right half plane;
@ I(s) € C™"is analytic and full rank throughout the right half plane

with n ~ 10* — 107 or higher.

@ “Internal state” x(r) is not itself important.

@ How much state space detail is needed to replicate the map
‘u—y’ ?

H(s) = C(s)IK(s) "' B(s) — | F(s) = C(5)I(s) ' By (s)
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A General Projection Framework

@ Select V, € R™" and W, € R**",
@ The the reduced model 3<,(s) = €, (s)K.(s) "B, (s) is

K, (s) = WIK(s)V,, B.(s)=WIB(s), €C.(s)=EC>s)V,.

u(r) — | 36(s) = € (5)Ko(s) "' Brs) |—> yr(1) = y(1)

@ The generic case: K(s) = sE — A, B(s) =B, C(s) = C,

@ We choose V, € R*™*" and W, € R"*" to enforce (tangential)
interpolation.
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Model Reduction by Tangential Interpolation

@ For selected points {0y, 07, ...0,} in C; and vectors
{bi, ..b,} € C" and {cy, ...c,} € C4, find H,(s) so that

c/H(oi) = c/H, (o)
J'C(U,-)b,- = g{r(O'l')bi, and
Cle]‘C/(U,‘)bi = g{r(Ji)bi

fori=1,2,...,r.
@ Interpolation points: o; € C.

@ Tangential directions: ¢, € C4, and b, € C™.

@ Can be extended to higher-order interpolation.
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General setting for interpolation

Theorem (B/Gugercin,09)

Suppose that B(s), C(s), and IK(s) are analytic at a point o € C
and both K (o) and K,.(o) = WIK()V, have full rank.
Suppose b € C* and c € C? are arbitrary nontrivial vectors.

® If K(o)'B(o)be Ran(V,) then H(o)b =3, (o)b.

o If (cTG(a)fK(a)*l)T € Ran(W,) then c'H(o)=cTH, (o)

@ If K(o)"'B(o)b e Ran(V,) and (c'€(c)K(s)™")" € Ran(W,)
then c"3'(o)b =c'H (o)b

@ Once again, tangential interpolation via projection
Proof follows similar to the generic first-order case.
@ Flexibility of interpolation framework
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Interpolatory projections in model reduction

@ Given distinct (complex) frequencies {0, o2, ...,0,} C C,
left tangent directions {cy, ..., c,}, and
right tangent directions {by, ..., b,}:

V, = [K(o1)'B(or)by, -+, K(ov) ' B(o,)b, |
c{C(o1)K (o) ™!
W — .

r

T C(0) K (0,) !

@ Guarantees that  H(o))b; = 3, (0;)b;,
¢/ H(0j) = ¢/ 3, (), ¢/ H (d;)b; = ¢/ H,(o7)b;

forj=1,2,...,r.
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Interpolation Proof:

@ Recall V, = Ran(V,) and W, = Ran(W,). Define

P (z) = V,K,(z) '"W'K,(z) and
Q,(z) = K(2)V, K. (2) '"W! = K(2)P,(2)K(z) "

@ P(z) = P,(z) with V., = Ran(P,(z)) = Ker (1 — P,(z))
@ Q%(z) = Q,(z) with Wt = Ker(Q,(z)) = Ran (1 - Q,(z))
H(2) = H0:(2) = CK ()™ (1= 21(2) K () (1 - P,(2) ) (A~ A) "B

@ Evaluate at z = 0; and postmultiply by b;:  H(o;)b; = H,(0;)b;
@ Evaluate at z = o; and premultiply by ¢’:  ¢/H(0;) = ¢! I, (o))

@ For Hermite condition, expand around o + € as before.
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Higher order interpolation

@ Df : /" derivative of f(s) at s = 0. And DYf = f(o).

Theorem (B/Gugercin,09)

Given is H(s) = C(s)XK(s) "' B(s). Suppose that B(s), C(s), and K(s)
are analytic at a point o € C and both K (o) and K.(c) = WK (o)V,
have full rank. Let nonnegative integers M and N be given as well as
nontrivial vectors, b € R™ and c € RY.
(a) IfD! [K(s)"'B(s)]b € Ran(V,) fori=0,..., N

then 9 (o)b = 1}6(5)( Yo fort=0,...,N.

(b) If (c"DL[C(s)K(s)~ ]) eRan(W)forj_O M
then cTH®) (a) HO(5) fort=0,..., M.
() IFDL[% () B(s)}b € Ran(V,) fori=0,.... N
and (c"D/[€(s)K ) € Ran(W,) forj =0, .
thencT:H()( )b = cTH (o)b for ¢ = 0 .,M+N+1.
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Viscoelastic Example

@ A simple variation of the previous model:

@ (2 =10,1] x [0, 1]: a volume filled with a viscoelastic material with
boundary separated into a top edge (“lid”), 992, and the
complement, 0€ (bottom, left, and right edges).

@ Excitation through shearing forces caused by transverse
displacement of the lid, u(z).

@ Output: displacement w(x, ), at a fixed point x = (0.5,0.5).

t
A
0w (x,1) — no Aw(x,1) — 7710,/ wx,7) dr + Vw(x,t) =0 forx € Q

o (t—T7)

V- w(x,t) =0forx e Q,
w(x,1) =0 for x € 9Qy, w(x, 1) = u(r) for x € 0
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Amplitude Bode Plots for x displacement

10 T
107k \ 4
= \ /
2 VN
¥ i W
10 "¢ |
- S
‘ Hine =~ — —Hooarse Hao 20 ‘
10' T L L
10° 10* 10° 10° 10°
Amplitude Bode Plots for y displacement
H. T
10.4J R Mo 20 ‘ |
Z 107, e 8
g < BPEIN .-
I ---- N
10°E v 1
N\
-7 I Il 1
10
10° 10" 10° 10° 10°

freq (rad/sec)
Hne: n, = 51,842 and np:6,651 ﬂ{g,()lnle’lp::;o
Heoarse: Ny = 13,122 n, = 1,681 Hoo: ne = n, = 20

@ F30, Hyp : reduced interpolatory viscoelastic models.
@ J(3, almost exactly replicates FH g, and outperforms Heoarse

@ Since input is a boundary displacement (as opposed to a boundary
force), B(s) = s> m + p(s)k,
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Computational Delay Examples

@ Many physical processes exhibit some sort of delayed response in
their input, output, or internal dynamics.
Ex(1) = A1x(r) + Axx(t — 7) + Bu(z), y(r) = Cx(1)
H(s)= C (SE—A,—e ™A;) ' B .
Cs) Ks) B(s)

@ Find a reduced order model retaining the same delay structure:

E.x (1) = A, x.(t) + Ayx,(t — 7) + B u(z), y-(t) =Cx.(1)

H,(s)= C, (sE,—A;,—e TAy) " B, .
C.(s) K, (s) B, (s)

Antoulas/Beattie/Gugercin Interpolatory Model Reduction



StrcMOR Ex2 Projection Interp Thm

Compare approaches:

@ Direct (generalized) interpolation:
H,(s) = 7V, (sWIEV, — WAV, - WAV, e=57) ' W,

@ Approximate delay term with rational function:

—TS ~ pg(—TS)

¢ pe(Ts)

o Passto (¢4 1)” order ODE system: D(s) x(s) = p¢(7s) eu(s) with
D(s) = (SE — Ag) pe(7s) — Aipe(—Ts).

@ Model reduction on linearization: first order system of dimension
(¢ + 1) x n. (—Loss of structure!)
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Second Example: Delay System

H,(s) - Generalized interpolation; I, ;(s) - First-order Padé;
3, »(s) - Second-order Padé;

o Bode Plots of full-order and reduced-order models

N Bode Plots of error models

—A®-He
___H@E-H, (5
—__HE)-H(8)

| HGw) |
3

10
10° 107 10° 10" 10° ° *
freq (rad/sec)

] /
} WMW\WWWW

o 10' 10° - *
freq (rad/sec)

Original system dim: n = 500. Reduced system dim: r = 10.
Interpolation points: +£1.0E-34, £3.16E-11, £5.012, 3.16E+112, +1.0E+3¢
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Hoo €rror
H—H, |[242x107*
H -3, | 265x 107!
H—H,p | 261 x 107!

@ Consider 3, 70(s).
@ ||H(s) — Hp70(5)| |3, = 1.57 x 1073,

@ Reducing J{, 70(s) requires solving linear systems of order
(500 x 70) x (500 x 70).

@ Preserving the delay structure is crucial.

@ Multiple delays could also be handled similarly.
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Higher-order ODEs

k
d,z X4 A 4 d,z X+ +Ax=BoL+. .. +Bu

u(r) —
y() = Cod,q +...+ Cox(1)

— y(1)

@ Perform reduction directly in the original coordinates without
linearization while enforcing interpolation
@ Perfectly fits the framework:

¢ k .
K(s) =) s"Ai Bls) =) 5By, €)= s7'C
=0 =0 i=0
@ Construct V, and W, as in the Theorem. Then

¢ q
K, (s) = Zsé_iW,TA,-V,, B(s) = Zsk_iW,TBi, C(s) = Zs”_iC,-Vr

i=0 i=0
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Checkpoint - Where are we ?

@ Basic framework for interpolatory model reduction:

o Rational Krylov spaces are natural projecting (test/trial) subspaces
for canonical first-order realizations of SISO systems — but not for
general (coprime) realizations or MIMO systems (tangential
interpolation).

@ Data-driven Interpolation - the Loewner framework

o Reduced models are obtained directly from response

measurements
@ Importance of maintaining ancillary system structure

e Structure-preserving interpolatory model reduction approaches

(coprime realizations)
@ Open questions (so far)

o Where do we interpolate ? ...and in what directions ?
(H,-optimal methods)

e Extensions / Applications ? (e.g., DAEs, portHamiltonian/passive
systems, bilinear/quadratic systems, parameterized systems,
time-domain data-driven interpolation,...)
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Checkpoint - Where are we ?

@ Basic framework for interpolatory model reduction:

o Rational Krylov spaces are natural projecting (test/trial) subspaces
for canonical first-order realizations of SISO systems — but not for
general (coprime) realizations or MIMO systems (tangential
interpolation).

@ Data-driven Interpolation - the Loewner framework
o Reduced models are obtained directly from response
measurements
@ Open questions (so far)

o Where do we interpolate ? ...and in what directions ?
(H,-optimal methods)

o Extensions / Applications ? (e.g., DAEs, portHamiltonian/passive
systems, bilinear/quadratic systems, parameterized systems,
time-domain data-driven interpolation,...)
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‘H, Space

@ H,: Set of matrix-valued functions, H(z), with components that are
analytic for z in the open right half plane, Re(z) > 0, such that

o0
sup / [H(x + )| dy < oo,
x>0 J -0

@ H, is a Hilbert space and transfer functions associated with stable
finite dimensional dynamical systems are elements of .

@ For stable G(s) and H(s) with the same m and ¢

(G, H),, & % 7@0 Tr(G(uu)H(zw)T> dw = % [ b Tr (G (—w)H(1w)") dw

@ with a norm defined as

1 +oo 1/2
def
(61 (55 [ I6Glpas)

o0
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@ For matrix-valued meromorphic functions, F(s),

res[F(s), \] = lim(s — A\)F(s) has rank-1 if X is a simple pole

S—A

@ We assume simple poles; the theory applies to the general case.
@ Pole-residue expansion of F(s) of dimension-r:

@ where

AN€eEC_, ¢;eC? and b;eC” for i=1,...,r
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Lemma

Suppose that G(s) andH(s) = > 7" | — “ —L_c,b! are real, stable and

suppose that H(s) has simple poles at i1, 2, - . Then

m 1/2
and [[H]fy, = ( CZH(—uk)bk) :
k=1

@ Proof: Application of the residue theorem:
—/ Tr(G(—w)H(w)T) dw = lim L‘/ Tr(G(—s)H(s)T) ds
@ where

I'r ={z|z=wwithw € [-R,R| } U {Z

. 3
z=Re" withd e [g,;]}.
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Pole-residue based H, error expression

Theorem

Given a full-order real system, H(s) and a reduced model, H,(s),

having the form H,(s) = >"1_, ﬁcibiT (H, has simple poles at

AL, A2, ... A\ and rank-1 residues ¢,bT, ..., c,bl.), the H, norm of the
error system is given by

2 2 ~ Q ~ clc,blby
IH —H, 3, = [H[J3, - ZZ C; H(—Ax)br + Z IV
k=1 k=1~ kT AL

@ SISO Case: [Krajewski et al.,1995], [Gugercin/Antoulas,2003]
@ MIMO Case: [B./Gugercin,2008],

@ Can be used in developing descent-type H, optimal model
reduction algorithms [B./Gugercin,2009]
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Optimal #, approximation

Problem

Given H(s), find H,(s) of order r which solves: ; m(1é1) [H — Gylly, -
egree(G,)=r

@ The goal is to minimize max lly(¢) — y,(7)||c for all possible unit
t_
energy inputs.

@ Non-convex optimization problem. Finding a global minimum is, at
best, a formidable task.

@ [Wilson,1970], [Hyland/Bernstein,1985]: Sylvester-equation based optimality
conditions

@ Wilson [1970]: Solution is obtained by projection.
Is it interpolatory projection?
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Interpolatory #, optimality conditions

Theorem ([Gugercin/Antoulas/B.,08])

Given H(s), let H,(s) = _, LGBT be the best stable r'™ order

approximation of H with respect to the H, norm. Assume H, has
simple poles at/\l, /\2, ... \.. Then

H(—Ao)be = Ho(=A)by,  ¢TH(=Ae) = G{H(—\e),
and  G{H'(~A\)by = C;{H/( by fork=1,2, ..., r
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Interpolatory #, optimality conditions

Theorem ([Gugercin/Antoulas/B.,08])

Given H(s), let H,(s) = _, LéBT be the best stable r'™ order

approximation of H with respect to the H, norm. Assume H, has
simple poles at/\l, /\2, ... \.. Then

H(—A)by = Ho(=A)by,  GTH(—X) = G{H,(— ),
and ¢/H (Ak)bk_c,{H( \bx  fork=1,2, ... r

@ Tangential Hermite interpolation for H, optimality

~

o Optimal interpolation points : o; = —\;

@ The SISO conditions: [Meier /Luenberger,67]
@ Other MIMO works: [van Dooren et al..08], [Bunse-Gernster et al.,09]
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Proof:

@ Let H,(s) be a stable r-th order dynamical system. Then,

IH— B3, < [|H-H/5, = H-H +H - H|3,

= [|H — H,|j3,, + 2 Re (H — H,, H, — H,)3;, + |H, — H/[3,,
sothat 0 < 2Re (H—H,, H, — H,)3, + [H, — B[},

56%0

@ Choose H,(s) so that  H,(s) — H,(s) = —Xsblf, & € C7: arbitrary
5= Ao

— (H-H,H, —H)y =<’ (H(—S\z) - H,(—XZ)) bel.

el
—2%6()\4)

— € (H(-A) = B(=A0)) b =0

—  0< \ET(H(—M) = Hr(_j‘e)) by <e
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@ A similar arguments leads to left-tangential conditions.

@ For the Hermite condition, choose H,(s) so that

@ After various manipulations

0< —2¢lc! (H’(—j\g) - H;(—j\g)) be| + O(£2).

@ Asc — 0, we obtain [c7 (H'(—Xg) - H;(—xg)) be| = 0.

@ )\, b;, & NOT known a priori = Need iterative steps
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An lterative Rational Krylov Algorithm (IRKA):

Algorithm (Gugercin/Antoulas/B. [2008])
@ choose {o1,...,0.}, {b1,...,b,} and {&y,...,6,}
Qv - [(alE —A)"'Bb; --- (0,E— A)"'Bb, }
W, = [(o1 E—AT)7ICT¢; -+ (0, E—AT)~ICT¢, ].
@ while (not converged)
QO A, =WIAV, E, = W,TEY,, B, = W/B, and C, = CV,

", ¢b! .
@ ComputeH,(s) =) C’—b’)\ andset {o;} +— {-\i},
=1 5 A

oV, — [(a,E—A)—lBB1 (J,E—A)‘IBB,]
@ W, =[(nE—A)"ICT¢, - (0, E—AT)"'CT¢, |.

Q A, =W/AV,, E, = W/EV,, B, = W'B, C, = CV,, D, = D.
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@ In its simplest form, IRKA is a fixed point iteration.

@ IRKA is not a descent method and global convergence is not
guaranteed despite overwhelming numerical evidence.

@ Newton formulation is possible [Gugercin/Antoulas/B.,08]

@ Guaranteed convergence: State-space symmetric systems
[Flagg/B./Gugercin,2012]

@ Globally convergent descent version: [B./Gugercin (2009)]

@ Implementation with iterative solves:
o w/ Krylov subspace recycling [Ahuja/deSturler/Gugercin/Chang (2010)]
e w/ general iterative system solves [B/Gugercin/Wyatt (2010)]
e w/ preconditioned multishift BICG [Ahmad/Szyld/vanGijzen(2016)]
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Small order benchmark examples

[Model [r] KA | GFM_ | OPM |
FOM-1 [ 1] 42683 x 107" | 42709 x 10~ T | 4.2683 x 10~!
FOM-1 [ 2 ] 3.9290 x 102 | 3.9299 x 102 | 3.9290 x 102
FOM-1 | 3| 1.3047 x 10~3 | 1.3107 x 10~3 | 1.3047 x 103
FOM-2 [ 3] 1171 x 10T | 1.171 x 10! Divergent
FOM-2 | 4| 8.199 x 10~ 8.199 x 1073 8.199 x 10~3
FOM-2 | 5| 2.132x 1073 | 2.132x 1073 Divergent
FOM-2 | 6 | 5.817 x 10~ 5817 x 1073 5.817 x 1073
FOM-3 [ 1] 4.818 x 107! 4818 x 107" 4818 x 107"
FOM-3 | 2 | 2443 x 107" | 2.443 x 107! Divergent
FOM-3 | 3 574 x 1072 598 x 1072 574 x 1072

[FOM4 1] 985x10> | 985x10° | 985x10° |

@ GFM: Gradient Flow Method of Yan and Lam [1999]
@ OPM: Optimal Projection Method of Hyland and Bernstein [1985]
@ FOM-1:n=4, FOM-2:n=7, FOM-3:n =4, FOM-4:n =2,
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a. _ s>+ 155450
@ FOM-3: H(s) = w7257 70,750

@ Hj(s) = 2.1555°+3.3435433.8
3V T 46.2217)(s+0.61774+71.5628) (s+0.61774+71.5628)

@ S = {—1.01, —2.01, —30000}, S, = {0, 10, 3},
S; = {1, 10, 3}, and S = {0.01, 20, 10000}

Relative error vs number of iterations

—— Initial shifts: —1.01, —2.01, 30000
—%— Initial shifts: 1, 10, 3

Initial Shitfs: 0, 10, 3
—%—_Initial Shitfs: 0.01, 20, 10000

Relative Error

4
k: Number of iterations
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Successive substitution vs Newton Framework

_ =S4 (1/4)s+(5/4) _ _0.97197
© H(s) = S 1252+ (17/16)s+(15/32)° Hop(s) = SFo2mm

N
o 32~ 1.3728>1

Successive substitution framework with o, = 0.2

_15 I I I I I I I I I
10 20 30 40 50 60 70 80 90 100
Newton framework with o,=2000
2000 ! ! T *
1L 4
I I I I I I I I I
1 2 3 4 5 6 7 8 9 10 1

Iteration index
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IRKA  SmallExmpl

H2space H2Cond

@ n=1412. Reducetor=2:2:60
@ Compare with balanced truncation

Evolution of IRKA for r=2
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Comparision between IRKA and BT
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Indoor-air environment in a conference room

Figure: Geometry for our Indoor-air Simulation

@ Four inlets, one return vent
@ Thermal loads: two windows, two overhead lights and occupants

@ FLUENT to simulate the indoor-air velocity, temperature and
moisture.
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@ Modeled by
ov 1 Gr .
“zr . = —_VP+—A —Tk
at+v Vv \Y% +Re V+Rez
Vv = 0
oT 1
E+VVT = @AT"‘BM,
oS 1
— VS = —AS
Ot tv-v Pe 7’

@ v: the velocity vector,  P: the pressure,
T: the temperature, S: the moisture concentration.

@ Adiabatic boundary conditions on all surfaces except the inlets,
windows and lights.

@ FLUENT simulations with varying inlet temperature, occupant
loads, as well as solar and lighting loads = v was computed.

Antoulas/Beattie/Gugercin Interpolatory Model Reduction



H20pt H2space H2Cond IRKA SmallExmpl ConfRoom SSM

Finite Element Model of Convection/Diffusion

@ A finite element model for thermal energy transfer with frozen
velocity field v,
oT

— +v-VT = 7AT B
8t—|—vv RePr + Bu,

@ leading to
Ex(t) = Ax(r) +Bu(r), y(r) = Cx(s),

with n = 202140, m = 2 inputs

@ the temperature of the inflow air at all four vents, and

@ a disturbance caused by occupancy around the conference table,
and p = 2 outputs

@ the temperature at a sensor location on the max x wall,

@ the average temperature in an occupied volume around the table,

Antoulas/Beattie/Gugercin Interpolatory Model Reduction
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Reuvisit the conference room example

@ Recalln =202140,m=2andp =2
@ Reduced the order to r = 30 using IRKA.

From Input [1] From Input [2]

To Output [1]

Magnitude

To Output [2]




H20pt H2space H2Cond IRKA SmallExmpl ConfRoom SSM

@ The (2,2) block is associated with the dominant subsystem.
@ Relative H, errors in each subsystem by IRKA
From Input [1] | From Input [2]

To Output [1] | 6.62 x 10~ 1.82 x 107
To Output [2] | 4.86 x 10~* 5.40 x 1077

@ Does IRKA pay off? How about some ad hoc selections:

From Input [1] | From Input [2]
To Output [1] | 9.19 x 1072 8.38 x 10772
To Output [2] | 5.90 x 1072 2.22 x 1072

@ One can keep trying different ad hoc selections but this is exactly
what we want to avoid.
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Storm Surge Modeling of Bay St. Louis, MS, USA

@ Data: Chris Massey, US Army Corps of Eng. Res. & Dev. Citr.

Antoulas/Beattie/Gugercin Interpolatory Model Reduction



H20pt H2space H2Cond IRKA SmallExmpl ConfRoom SSM
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Computational Domain Wind Forecasm
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Storm Surge Modeling of Bay St. Louis

@ 29 wind-forecast locations

@ Surface elevation measurements at five measurement stations.

@ A model of the form Ex =Ax(1) +Bu(r),
y = Cx(r)

results from linearization of Shallow Water Equations
with n = 5808

@ Reduced-order model to predict surface elevation given the
wind-forecast data.

Antoulas/Beattie/Gugercin Interpolatory Model Reduction
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Ex = Ax(r) +Bu(r),
y = Cx(1)
with n = 5808, m = 58 and ¢ = 5.

@ Reduce the order to r = 30 with IRKA and compare with
half-resolution discretization.

@ Recall the model:
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Elevation Station 1

Elevation Station Number 1

0 T T T T =
T~ Full Resolution
-0.005 - — IRKA

-0.01f — g
-0.015 8

_0.02|- ZOOM 1
-0.025

Elavation (m)

-0.03 q

_0.035 I I I I I I I I
0 5 10 15 25 30 35 40 45

Time (Hours)

—0.01F T J

-0.012- q

-0.014} B
-0.016 - B

Elavation (m)

-0.018 b
-0.02~ 4
-0.022- 3

I
18 20 22 24 26 28 30
Time (Hours)




H20pt H2space H2Cond IRKA SmallExmpl ConfRoom SSM

Surface elevation after 46 hours

Elevation (m) after 46 hours
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-0.045

¥ )

1,1) plot:  Full-resolution
(1.2) plot:  r=30 IRKA reduction
2,1) plot: Half-resolution
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U Component of Velocity after 46 Hours
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How about r =7
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IRKA in other settings and application

@ Cellular neurophysiology: [Kellems,Roos,Xiao,Cox (2009)].

@ Bilinear Systems: [Benner/Breiten (2011)], [Flagg/Gugercin (2012)]

¥(1) = Ay(1) + Y Naw()y(1) + Bu(r), m(r) = Cy(1)
k=1

@ Inverse Problems: [Druskin/Simoncini/Zaslavsky (2011)]

@ H..-model reduction: [Flagg/B/Gugercin (2011)]

@ Energy-efficient building design: [Borggard/Cliff/Gugercin (2012)]
@ Aerospace Applications [Poussat-Vassal (2011)].

@ Structural Models [Bonin et.al (2010)], [Wyatt, (2012)], [Polyuga et.al. (2012)]
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Data-Driven IRKA: Freedom in H(S)

@ Recall the optimality conditions.

Theorem ([Gugercin/AntouIas/B,OS])

Given H(s), letH,(s) = >, —5 &b be the best stable r™ order

approximation of H with respect to the H, norm. Assume H, has
simple poles at/\l, /\2, ... \.. Then

H(—A\o)br = H(—A)by,  67H(=Ae) = €TH,(— ),
and GIH'(—\ )by = CTH.(=\)by  fork=1,2, ..., r

@ No assumption that H(s) needs to be rational, only that H,(s) is
@ The conditions are valid for general non-rational H(s).
@ IRKA iteratively corrects Hermite interpolants.

Antoulas/Beattie/Gugercin Interpolatory Model Reduction
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Recall (regular) IRKA:

Algorithm (Gugercin/Antoulas/B [2008])
@ cChoose {oi,...,0,}, {b1,...,b,} and {¢y,...,¢,}
(> Jav- [(UIE —A)"'Bb; - (0,E —A)"'Bb, }
W, = [(E—AT)"'CT¢ -+ (0, E— AT)~'CT¢, .

© while (not converged)
Q@ A, =W/AV, E, = W/EV,, B, = WB, and C, = CV,
@ Compute H,(s) = Zr: 6ib€ ,

= i

© V= [(iE—A)"'Bb; - (o;E—A)"'Bb, |
O W,=[(01E—AT)"'CT¢, --- (0,E — AT)"'CT¢, |.

andset {o;} «— {-\},

QO A =W/AV, E,=W/'EV,,B, =W'B,C, =CV,,D, =D.

@ Replace Hermite interpolation via projection with Loewner

Antoulas/Beattie/Gugercin Interpolatory Model Reduction
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Realization Independent IRKA (TF-IRKA)

Algorithm (Realization Independent IRKA  B/Gugercin, 2012)
@ Choose initial o;, {¢;}, and {b;} fori=1,...,r.
Q@ Evaluate H(o;) and H'(o;) fori=1,...,r.

© while not converged
@ ConstructE, = —L, A, = —M, B, = Z" and C, = Y

C,'b;r
S*)\,‘

@ ConstructH,(s) = C,(sE, — A,)"'B, = Z"(M — sL)~'Y = 3/,
Q o, +— —)\i,éi<—Ci, and6i<— b,‘ fori = 1,...,r
O Evaluate H(o;) and H'(o;) fori=1,...,r.

@ ConstructH,(s) = C,(sE, — A,)~"'B, = Z(M — sL)~'Y

@ Allows infinite order transfer functions !
e.g., H(s) = C(sE — Ag — e A — e ™5A,)"'B
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Revisit: One-dimensional heat equation

o (1) = gig(z,z), 9(0,1) = 0,9L(1,1) = u(r), and y(t) = T(0,1)

1
® H) = Jrsinh o5
@ Apply TF-IRKA. Cost: Evaluate 3(s) and 3'(s) !!l
@ Optimal points upon convergence: o; = 20.9418, 0, = 10.8944.

30 () 004695 37841
)T 31 845+ 2281 | s

@ [|H — (|3, =584 x 1073, ||H — K, |ln, =9.61 x 1074
@ Balanced truncation of the discretized model:
@ n = 1000: ||F€ — I, |[3, = 5.91 x 1073, ||F€ — F,||3.. = 1.01 x 1073
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Delay Example

@ Ex(1) = Aix(1) + Aox(r — 7) + Bu(r), y(1) = Cx(r)
e E A] A2 c RIOOOXIOOO B CT c RlOOO

o H(S) = C(SE — A — eiTsAz)ilB.

@ H'(s)=—CHE—A; — e ™A)"Y(E +7e"™Ay)(sE — A| —e"™Ay)"'B.
o

Obtain an order r = 20 optimal #, rational approximation directly
using H(s) and H'(s)

@ H,(s) exactly interpolates H(s). This will not be the case if e™ ™ is
approximated by a rational function.

@ Moreover, the rational approximation of e~"* increases the order
drastically.

@ Multiple state-delays, delays in the input/output mappings are
welcome.

Antoulas/Beattie/Gugercin Interpolatory Model Reduction
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Delay Example

Amplitude Bode Plots
10 - - - T T ;

Original
---H2
Pade

10 L L L
107 10° 10' 10° 10°

freq (rad/sec)

@ Relative H, errors:
H,-model: 8.63 x 1073 Pade approx: 5.40 x 107!

@ Pade Model has dimension N = 3000 !!!

gercin Interpolatory Model Reduction
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Structure-preserving model reduction

14 £ —1 k
Ao% +A1%+...+A5X:Bo%+...+Bku

u(r) —
Q (1) = Co% + ...+ Cyx(2)

— y(t)

@ “Every linear ODE may be reduced to an equivalent first order
system”  Might not be the best approach ...

@ For example
C(s°M +sD +K)"'B=C(s& - A)"'B

where
I 0 0 I 0
o= [3a] ac[ % e[ eren

@ Disadvantages???

Antoulas/Beattie/Gugercin Interpolatory Model Reduction
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@ The “state space” is an aggregate of dynamic variables some of
which may be internal and “locked” to other variables.

@ Refined goal: Want to develop model reduction methods that can
reduce selected state variables (i.e., on selected subspaces) while
leaving other state variables untouched; maintain structural
relationships among the variables.

“Structure-preserving model reduction”

@ For the second-order systems, see: [Craig Jr.,1981], [Chahlaoui et.al, 2005],
[Bai,2002], [Su/Craig,(1991)], [Meyer/Srinivasan,1996], ...

@ We will be investigating a much more general framework.

Antoulas/Beattie/Gugercin Interpolatory Model Reduction
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Example 1: Incompressible viscoelastic vibration

OnW(x,1) — nAw(x, 1) — /0‘ p(t — 1) Aw(x, 7) dT + Vw(x,1) = b(x) -u(z),

V -w(x,t) =0 which determines y(1) = [w(x1,1), ..., @w(x,,1)]"

@ [Leitman and Fisher, 1973]
@ w(x,1) is the displacement field; w(x, 1) is the pressure field; p(7) is
a “relaxation function”

Antoulas/Beattie/Gugercin Interpolatory Model Reduction
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Example 1: Incompressible viscoelastic vibration

OnW(x,1) — nAw(x, 1) — /0‘ p(t — 1) Aw(x, 7) dT + Vw(x,1) = b(x) -u(z),

V -w(x,t) =0 which determines y(1) = [w(x1,1), ..., @w(x,,1)]"

@ [Leitman and Fisher, 1973]
@ w(x,1) is the displacement field; w(x, 1) is the pressure field; p(7) is
a “relaxation function”
t
Mi(1) + nKx(1) + / ot — 7)Kx(r)dr + D (i) = Bu(1),
0
D" x(t) =0,  which determines y(t) = Cw (1)

@ x ¢ R™ discretization of w; o € R™ discretization of w.

@ M and K are real, symmetric, positive-definite matrices,
B e R C e RV, and D € R ¥,

Antoulas/Beattie/Gugercin Interpolatory Model Reduction
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Example 1: Incompressible viscoelastic vibration

Transfer function (need not be a rational function !):

35 = [oc]| MR K Hl[lz]

Antoulas/Beattie/Gugercin Interpolatory Model Reduction
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Example 1: Incompressible viscoelastic vibration

Transfer function (need not be a rational function !):

et = oc) [ MK BT E]

@ Want a reduced order model that replicates input-output response
with high fideliety yet retains “viscoelasticity”:

t
M, x(t) + nK,x,(1) + / p(t — 1)K, x,(7)dT + D, wo,(t) = B,u(t),
0
D! x,(t) =0,  which determines y,(t) = C, =, ()

with symmetric positive semidefinite M,, K, € R™*" B, € R™",
C, e RP*" and D, € R™",

Antoulas/Beattie/Gugercin Interpolatory Model Reduction
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Example 1: Incompressible viscoelastic vibration

Transfer function (need not be a rational function !):

et = oc) [ MK BT E]

@ Want a reduced order model that replicates input-output response
with high fideliety yet retains “viscoelasticity”:

t
M, x(t) + nK,x,(1) + / p(t — 1)K, x,(7)dT + D, wo,(t) = B,u(t),
0
D! x,(t) =0,  which determines y,(t) = C, =, ()

with symmetric positive semidefinite M,, K, € R™*" B, € R™",
C, e RP*" and D, € R™",

@ Because of the memory term, both reduced and original systems have
infinite-order.

Antoulas/Beattie/Gugercin Interpolatory Model Reduction
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Example 2: Delay Differential System

@ Many complex processes exhibit some sort of delayed response
in their input, output, or internal dynamics.

Often related to ancillary processes that create a time lag from processing, communication,
material transport, or inertial effects occuring at a finer scale than is explicitly modeled.

x(1) = A1x(1) + Aox(t — 7) + Bu(r), y(r) = Cx(1)
H(s) = C(sT— A — e ™Ay)"'B.

Antoulas/Beattie/Gugercin Interpolatory Model Reduction
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Example 2: Delay Differential System

@ Many complex processes exhibit some sort of delayed response
in their input, output, or internal dynamics.

Often related to ancillary processes that create a time lag from processing, communication,
material transport, or inertial effects occuring at a finer scale than is explicitly modeled.

x(1) = A1x(1) + Aox(t — 7) + Bu(r), y(r) = Cx(1)
H(s) = C(sT— A — e ™Ay)"'B.

@ Delay systems are also infinite-order. The dynamic effects of even
a small delay can be profound.

Antoulas/Beattie/Gugercin Interpolatory Model Reduction
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Example 2: Delay Differential System

@ Many complex processes exhibit some sort of delayed response
in their input, output, or internal dynamics.

Often related to ancillary processes that create a time lag from processing, communication,
material transport, or inertial effects occuring at a finer scale than is explicitly modeled.

x(1) = A1x(1) + Aox(t — 7) + Bu(r), y(r) = Cx(1)
H(s) = C(sT— A — e ™Ay)"'B.
@ Delay systems are also infinite-order. The dynamic effects of even
a small delay can be profound.
@ Find a reduced order model retaining the same delay structure:

X (1) = Ax, (1) + Ay X, (t — 7) + B, u(r), y-(1) = Cx.()
:}Cr(s) = Cr(SI — Ay — e_TSAZr)_lBr
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Generalized Coprime Interpolation Setting

u(t) —| H(s) = €()K(s)"'B(s) |— y()

@ C(s) € C7*" and B(s) € C™*™ are analytic in the right half plane;
@ I(s) € C™"is analytic and full rank throughout the right half plane

with n =~ 10°, 10% or higher.

@ “Internal state” x(r) is not itself important.

@ How much state space detail is needed to replicate the map
‘u—y’ ?

H(s) = C(s)IK(s) "' B(s) — | F(s) = C(5)I(s) ' By (s)

Antoulas/Beattie/Gugercin Interpolatory Model Reduction
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A General Projection Framework

@ Select V, € R™" and W, € R**",
@ The the reduced model 3<,(s) = €, (s)K.(s) "B, (s) is

K, (s) = WIK(s)V,, B.(s)=WIB(s), €C.(s)=EC>s)V,.

u(r) — | 36(s) = € (5)Ko(s) "' Brs) |—> yr(1) = y(1)

@ The generic case: K(s) = sE — A, B(s) =B, C(s) = C,

@ We choose V, € R*™*" and W, € R"*" to enforce (tangential)
interpolation.

Antoulas/Beattie/Gugercin Interpolatory Model Reduction
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Model Reduction by Tangential Interpolation

@ For selected points {0y, 07, ...0,} in C; and vectors
{bi, ..b,} € C" and {cy, ...c,} € C4, find H,(s) so that

c/H(oi) = c/H, (o)
J'C(U,-)b,- = g{r(O'l')bi, and
Cle]‘C/(U,‘)bi = g{r(Ji)bi

fori=1,2,...,r.
@ Interpolation points: o; € C.

@ Tangential directions: ¢, € C4, and b, € C™.

@ Can be extended to higher-order interpolation.
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General setting for interpolation

Theorem (B/Gugercin,09)

Suppose that B(s), C(s), and IK(s) are analytic at a point o € C
and both K (o) and K,.(o) = WIK()V, have full rank.
Suppose b € C* and c € C? are arbitrary nontrivial vectors.

® If K(o)'B(o)be Ran(V,) then H(o)b =3, (o)b.

o If (cTG(a)fK(a)*l)T € Ran(W,) then c'H(o)=cTH, (o)

@ If K(o)"'B(o)b e Ran(V,) and (c'€(c)K(s)™")" € Ran(W,)
then c"3'(o)b =c'H (o)b

@ Once again, tangential interpolation via projection
Proof follows similar to the generic first-order case.
@ Flexibility of interpolation framework

Antoulas/Beattie/Gugercin Interpolatory Model Reduction
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Interpolatory projections in model reduction

@ Given distinct (complex) frequencies {0, o2, ...,0,} C C,
left tangent directions {cy, ..., c,}, and
right tangent directions {by, ..., b,}:

V, = [K(o1)'B(or)by, -+, K(ov) ' B(o,)b, |
c{C(o1)K (o) ™!
W — .

r

T C(0) K (0,) !

@ Guarantees that  H(o))b; = 3, (0;)b;,
¢/ H(0j) = ¢/ 3, (), ¢/ H (d;)b; = ¢/ H,(o7)b;

forj=1,2,...,r.
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Interpolation Proof:

@ Recall V, = Ran(V,) and W, = Ran(W,). Define

P (z) = V,K,(z) '"W'K,(z) and
Q,(z) = K(2)V, K. (2) '"W! = K(2)P,(2)K(z) "

@ P(z) = P,(z) with V., = Ran(P,(z)) = Ker (1 — P,(z))
@ Q%(z) = Q,(z) with Wt = Ker(Q,(z)) = Ran (1 - Q,(z))
H(2) = H0:(2) = CK ()™ (1= 21(2) K () (1 - P,(2) ) (A~ A) "B

@ Evaluate at z = 0; and postmultiply by b;:  H(o;)b; = H,(0;)b;
@ Evaluate at z = o; and premultiply by ¢’:  ¢/H(0;) = ¢! I, (o))

@ For Hermite condition, expand around o + € as before.
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Higher order interpolation

@ Df : /" derivative of f(s) at s = 0. And DYf = f(o).

Theorem (B/Gugercin,09)

Given is H(s) = C(s)XK(s) "' B(s). Suppose that B(s), C(s), and K(s)
are analytic at a point o € C and both K (o) and K.(c) = WK (o)V,
have full rank. Let nonnegative integers M and N be given as well as
nontrivial vectors, b € R™ and c € RY.
(a) IfD! [K(s)"'B(s)]b € Ran(V,) fori=0,..., N

then 9 (o)b = 1}6(5)( Yo fort=0,...,N.

(b) If (c"DL[C(s)K(s)~ ]) eRan(W)forj_O M
then cTH®) (a) HO(5) fort=0,..., M.
() IFDL[% () B(s)}b € Ran(V,) fori=0,.... N
and (c"D/[€(s)K ) € Ran(W,) forj =0, .
thencT:H()( )b = cTH (o)b for ¢ = 0 .,M+N+1.
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Viscoelastic Example

@ A simple variation of the previous model:

@ (2 =10,1] x [0, 1]: a volume filled with a viscoelastic material with
boundary separated into a top edge (“lid”), 992, and the
complement, 0€ (bottom, left, and right edges).

@ Excitation through shearing forces caused by transverse
displacement of the lid, u(z).

@ Output: displacement w(x, ), at a fixed point x = (0.5,0.5).

t
A
0w (x,1) — no Aw(x,1) — 7710,/ wx,7) dr + Vw(x,t) =0 forx € Q

o (t—T7)

V- w(x,t) =0forx e Q,
w(x,1) =0 for x € 9Qy, w(x, 1) = u(r) for x € 0

Antoulas/Beattie/Gugercin Interpolatory Model Reduction
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Amplitude Bode Plots for x displacement

10 T
107k \ 4
= \ /
2 VN
¥ i W
10 "¢ |
- S
‘ Hine =~ — —Hooarse Hao 20 ‘
10' T L L
10° 10* 10° 10° 10°
Amplitude Bode Plots for y displacement
H. T
10.4J R Mo 20 ‘ |
Z 107, e 8
g < BPEIN .-
I ---- N
10°E v 1
N\
-7 I Il 1
10
10° 10" 10° 10° 10°

freq (rad/sec)
Hne: n, = 51,842 and np:6,651 ﬂ{g,()lnle’lp::;o
Heoarse: Ny = 13,122 n, = 1,681 Hoo: ne = n, = 20

@ F30, Hyp : reduced interpolatory viscoelastic models.
@ J(3, almost exactly replicates FH g, and outperforms Heoarse

@ Since input is a boundary displacement (as opposed to a boundary
force), B(s) = s> m + p(s)k,

las/Beattie/Gugercin Interpolatory Model Reduction
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Computational Delay Examples

@ Many physical processes exhibit some sort of delayed response in
their input, output, or internal dynamics.
Ex(1) = A1x(r) + Axx(t — 7) + Bu(z), y(r) = Cx(1)
H(s)= C (SE—A,—e ™A;) ' B .
Cs) Ks) B(s)

@ Find a reduced order model retaining the same delay structure:

E.x (1) = A, x.(t) + Ayx,(t — 7) + B u(z), y-(t) =Cx.(1)

H,(s)= C, (sE,—A;,—e TAy) " B, .
C.(s) K, (s) B, (s)

Antoulas/Beattie/Gugercin Interpolatory Model Reduction
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Compare approaches:

@ Direct (generalized) interpolation:
H,(s) = 7V, (sWIEV, — WAV, - WAV, e=57) ' W,

@ Approximate delay term with rational function:

TS o pg(—TS)

¢ pe(Ts)

o Passto (¢4 1)” order ODE system: D(s) x(s) = p¢(7s) eu(s) with
D(s) = (SE — Ag) pe(7s) — Aipe(—Ts).

@ Model reduction on linearization: first order system of dimension
(¢ + 1) x n. (—Loss of structure!)

Antoulas/Beattie/Gugercin Interpolatory Model Reduction
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Inter

Computational Example: Delay System

H,(s) - Generalized interpolation; I, ;(s) - First-order Padé;
3, »(s) - Second-order Padé;

o Bode Plots of full-order and reduced-order models Bode Plots of error models
10 T T T T : 10° T T T T
H(s) —_H@E)-H(s)
H (s) —_H(s)-H_(s)
; H o | —HE-H O
H o -

| HGw) |
3

/
A
e
¥ B e

o 10' 10° 10° *
freq (rad/sec)

freq (rad/sec)

Original system dim: n = 500. Reduced system dim: r = 10.
Interpolation points: +£1.0E-34, £3.16E-11, £5.012, 3.16E+112, +1.0E+3¢
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Hoo €rror
H—H, |[242x107*
H -3, | 265x 107!
H—H,p | 261 x 107!

@ Consider 3, 70(s).
@ ||H(s) — Hp70(5)| |3, = 1.57 x 1073,

@ Reducing J{, 70(s) requires solving linear systems of order
(500 x 70) x (500 x 70).

@ Preserving the delay structure is crucial.

@ Multiple delays could also be handled similarly.

Antoulas/Beattie/Gugercin Interpolatory Model Reduction
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Higher-order ODEs

k
d,z X4 A 4 d,z X+ +Ax=BoL+. .. +Bu

u(r) —
y() = Cod,q +...+ Cox(1)

— y(1)

@ Perform reduction directly in the original coordinates without
linearization while enforcing interpolation
@ Perfectly fits the framework:

¢ k .
K(s) =) s"Ai Bls) =) 5By, €)= s7'C
=0 =0 i=0
@ Construct V, and W, as in the Theorem. Then

¢ q
K, (s) = Zsé_iW,TA,-V,, B(s) = Zsk_iW,TBi, C(s) = Zs”_iC,-Vr

i=0 i=0

Antoulas/Beattie/Gugercin Interpolatory Model Reduction
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