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PDEs with random parameters

Consider a differential problem

L(u;y) =G (%)
depending on a set of random parameters
y = (y1,...,yn) € I' C RV with joint probability measure z on T

We assume that (*) has a unique solution u(y), in some suitable
function space V, and we focus on a Quantity of Interest
Q:V =R
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Consider a differential problem
L(u;y) =G (%)

depending on a set of random parameters
y = (y1,...,yn) € I' € R with joint probability measure z on T.

We assume that (*) has a unique solution u(y), in some suitable
function space V, and we focus on a Quantity of Interest
Q:V =R

Goal: approximate the whole response function

y= f(y) =Quy)): T =R

by multivariate polynomials.
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PDEs with random parameters

Consider a differential problem

L(u;y) =G (%)
depending on a set of random parameters
y = (y1,...,yn) € I' € R with joint probability measure z on T.

We assume that (*) has a unique solution u(y), in some suitable
function space V, and we focus on a Quantity of Interest
Q:V =R

Goal: approximate the whole response function
y = f(y) =Qu(y)) : I' = R
by multivariate polynomials.

Possibly derive approximated statistics as E[f], Var[f], etc.
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Polynomial approximation on downward closed sets

Assume f € LZ(F). We seek an approximation of f in a finite
dimensional polynomial subspace

Vi = span {Hfle yhr,  withp= (p1,...,pN) € A}
with A ¢ N& a downward closed index set.
p2

Definition. An index set A is
downward closed if

PEA andq<p = q€eA.
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Weighted discrete least squares approximation

1. Sample independently A/ points (y(l),...,y(M)) € ' from
a distribution v < p, with density p = d

2. define the weight function w(y) = (y)
3. find weighted discrete least squares approximation on Vi

Ly f = argmin | £ — ol]y with HgHM——Z w(y?)g (v

veEV)
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Weighted discrete least squares approximation

1. Sample independently A/ points (y(l), o ,y(M)) € ' from
a distribution v < p, with density p = d

2. define the weight function w(y) = (y)
3. find weighted discrete least squares approximation on V)

. 1M : N2
s f = argmin||f = vl with ngﬁﬁﬁ w(ym)g(yU)) .
veEV) j=1

Here: E“g”M] fr frg ||g||

Algebraic system: let {¢]}\AI be a basis of Vj, orthonormal w.r.t.

T
1, and I, f(y) = ijl ¢j¢j(y). Then, ¢ = (c1,...,¢n))
satisfies

Gc = f, Gi,j = (sz, ¢j)M s fl = (f7 d)z)M
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Optimally of discrete least squares approximation

Theorem ([Cohen-Miinorati 2017][Cohen-Davenport-Leviatan 2013])

For arbitrary » > 0 define

|A]
1/2(1 —log2) )
Ky 1= —1 = and KA w o= SUP ’U.) Z¢l y)

M KA w
> —, th
logM — &k, en

s P(G-I|<i)>1-2M".

If

. ||f—HMf||Lﬁ §(1+\/§)v1€n‘§A||f—v||L% with prob. > 1 —2M™".

. R 2 . _ 2 2 —r
E[If = M5 £y ] < On inf IIf = vllfz +201f13; M

where 115, f = Tlxr f - 1yo_y<3y and Car = (1+ g7 ) 2225 1.
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Sufficient number of points - uniform measure

= Uniform measure: ;n = U (Hf\il I‘i)
[Chkifa-Cohen-Migliorati-Nobile-Tempone 2015) When sampling from the same
distribution (v = p and w = 1), then

Al < Kyp < (AP

Hence, (unweighted) discrete least square is stable and
optimally convergent under the condition
Mo AP

>
logM — kK,

(quadratic proportionality).
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Sufficient number of points - optimal measure

[Cohen-Migiorati 2017 FOr arbitrary p, when sampling from the optimal
measure
Al
dv*
—(y) = =  Kpu = A
( ) 10 ‘A’ Z ¢] Aw | |

Hence, weighted discrete least squares stable and optimal with
M S |A] (i tionality)
— > — inear proportionality).
log M — Prop Y
Sampling algorithms from the optimal distribution are available
(marginalization (cohen-Migiorati 20171, aCCeptance rejection
[H.-Nobile-Tempone-Wolfers, 2017])
However, the optimal distribution depends on A. Not good for
adaptive algorithms
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Sufficient number of points - Chebyshev measure

= Alternatively, for uniform measure 4 (or more generally a
product measure p = ® 1M, with p1; doubling measure, i.e.
pi(21) = Lpji(I)) one can sample from the arcsin (Chebyshev)
distribution.

M
lgM Ky

Kaw < CN|A,

Still linear scaling but with a constant exponentially dependent
on V.

Advantage: the sampling measure does not depend on A.
Good for adaptivity.
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Multilevel least squares approximation

In practice f(y) = Q(u(y)) can not be evaluated exactly as it
requires the solution of a differential equation.

= We introduce a sequence of approximations f,,,, n; € N with
increasing cost, s.t.

Elggo Hf - f”e”Lﬁ =0,

(or possibly a stronger norm)
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increasing cost, s.t.

Elggo Hf - fw”Li =0,
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= Similarly, we introduce a sequence of nested downward closed
sets
Apy CApy CoooC Ay Ce

such that

li inf - = 0.
ik, Wl
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Multilevel least squares approximation

In practice f(y) = Q(u(y)) can not be evaluated exactly as it
requires the solution of a differential equation.
We introduce a sequence of approximations f,,,, n; € N with
increasing cost, s.t.

Elggo Hf - fw”Lﬁ =0,

(or possibly a stronger norm)
Similarly, we introduce a sequence of nested downward closed
sets
Ay CAypy Co.C Ay, C

such that

lim inf —v =0.

k—00 vEVy,, If HL%
Correspondingly, for each Amk we introduce a welghted
discrete least squares projector HMk using m—k =O(|An,])
random points. 8/20




Multilevel least squares approximation

Multilevel formula: given maximum level L € N

SLf = Z (ﬁMk - ﬁMkﬂ)(fne - fnzq)
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Multilevel least squares approximation

Multilevel formula: given maximum level L € N

Spf = z (ﬂMk - ﬁMkﬂ)(fW - fneﬂ)
= 1QIML e(fw fni 1)

= In the multilevel formula one might consider more general
index sets (k,¢) € Z C R% However, one can always recast to
k + ¢ < L by properly choosing {n,} and {my}.
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= In the multilevel formula one might consider more general
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Multilevel least squares approximation

Multilevel formula: given maximum level L € N

Spf = Z (ﬁMk - ﬁM}cﬂ)(fne - fneﬂ)
k+¢<L
L A
= H]\/[L—Z (fw - fw_l)’
/=0

In the multilevel formula one might consider more general
index sets (k,¢) € Z C R% However, one can always recast to
k + ¢ < L by properly choosing {n,} and {my}.

Question: How to properly choose {n,} and {my}?

Issue: Since the least squares projection is random, we have
to ensure that it is stable and optimally convergent on all
levels. (Need union bound on failure probabilities)
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Assumptions for ML

= For the Multilevel algorithm to be effective, we have to rely on
certain “mixed regularity”.

= Let (F, |- ||lF) = (L2, |2 ) be a normed vector space of
“smooth” functions (e.g. Holder / Sobolev / analytic regularity).

10120




Assumptions for ML

= Assumption 1 (regularity): f, f,, € F forall £ € N
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Assumptions for ML

= Assumption 1 (regularity): f, f,, € F forall £ € N
= Assumption 2 (PDE discretization): the sequence {f,,} is
s.t.

If = facllzz Sng™  1f = Fadlle Sng™

and, for a single y € I', the cost of computing fy,(y) is
Work(fn,) Sn,.
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Assumptions for ML

Assumption 1 (regularity): f, f,, € F forall £ € N
Assumption 2 (PDE discretization): the sequence {f,,} is
s.t.

If = Faclle Sng % F = fuelle S0
and, for a single y € I', the cost of computing fy,(y) is
Work(fn,) Sn,.

Assumption 3 (polynomial approximability): the sequence
{Am, }is st.

dim (Vi ) = A, | S m,
Jnf If = vl S Smp N flle, VfEF,

Amy,

(Alternatively l‘glf If = vllz S mi Il fllp,  Vf€F).
ve

Amy,
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Tuning the ML least squares algorithm

We now choose

14
ng = Cex , £=0,...
‘ p(7+ﬁs)

mk:CeXp< i ), k=0,...
o+ ap

mg < Mk
kr ~— logMy = k'

g
2my

12120
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,L (space discr.)
,L (Polynomial approx.)

, L (sample size with r = L)




Tuning the ML least squares algorithm

We now choose

14
ng = Cex , £=0,...
‘ p(wrﬁs)

mk:CeXp< i ), k=0,...
o+ ap

g
Mk

< M
kr ~— logMy = k'

g
2my

By taking » = L we guarantee that

k=0,...

,L (space discr.)
,L (Polynomial approx.)

, L (sample size with r = L)

L
1 1
P(3k: “Il>=) < P —I>=) <L°L,
( |G H>2>_k§:0 (”Gk H>2>N
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Complexity result

Theorem ([H.-Nobile-Tempone-Wolfers 2017])

Given € > 0 and Bs = [Bw, we can choose L € N such that

||f—SLf||L§ <e, with prob. > 1 — (! leg el
Work(Stf) < e *loge|'log | loge|,
with

A =max (o/op,v/Bs),

2 if v/Bs < o/,
t=43+4+0/ap ify/Bs =0/,
1 if v/Bs > 0/ap.
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Complexity result

Theorem ([H.-Nobile-Tempone-Wolfers 2017])

Given € > 0 and Bs = [Bw, we can choose L € N such that

If = Scflizz <e  withprob. > 1— Ce'osllogel
Work(Stf) < e *loge|'log | loge|,
with

A =max (o/op,v/Bs),

2 if v/Bs < o/,
t=43+4+0/ap ify/Bs =0/,
1 if v/Bs > 0/ap.

Analogous result holds in expectation with oy, replaced by c..
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Improved complexity in the case v/(s > o/«

In the case v/Bs > o/ and B, > 5 the complexity can be
improved by taking

mk:CeXp< L(Bw_ﬂs)).

0‘—|-Oép Oé(’y+185)
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Improved complexity in the case v/(s > o/«

In the case v/Bs > o/ and B, > 5 the complexity can be
improved by taking

mk:CeXp< L(/Bw_/Bs)).

o+a, ofy+06s)
In this case the complexity result becomes
If =Spfllizz <e  with prob. > 1 — Ceoslloae,
Work(Sr.f) < € *|loge|' log|logel,
A= L <1 - 55) z
Buw B

which always improves the single level rate Agy, = ﬁl + =

with t = 1 and

o
a
14120
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Application to random elliptic PDEs

Consider
)Vu(y)) =g, inDCR?

—div(a(y
=0, on 0D

ul(y)

with y € F [—1,1]" and Q linear bounded functional in L?(D)
(e.g. Qu) = [pu).
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Application to random elliptic PDEs

Consider
)Vu(y)) =g, inDCR?

—div(a(y
=0, on 0D

ul(y)

with y € F [—1,1]" and Q linear bounded functional in L?(D)
(e.g. Qu) = [pu).
Goal: approximate f(y) = Q(u(y)).
Assumptions:
0 < amin < alx,y) < amaz, V(X,y)€DXT.
= g and D sufficiently smooth.
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Application to random elliptic PDEs

Let u, be a finite element approximation of order > 1 with maximal element
diameter h = n=" and £ (y) = Q(un(y)).

= Ifa € C"(D x T'), then

If = fallez@ry S R, If = faller—1r) S h?.

s lfaeC™(DxT)={v:DxT = R: ||0;95v]copxr) < 00,
V|r[y <7, |s|1 < s}, then

Ilf — faller <A Vp=0,...,s.
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ML least squares complexity - mixed regularity

Consider the coefficient

a(x,y) =1+ |3 + [lyl; € ¢~ (D) ® C*~HH(D).

= smoother space: F' = C*~L}(T);

= spatial approximation: continuous finite elements of degree r,
> error: |[f = fullz = O (n=CH)) = ||f = fullgs-1a =

511) :63 =r+1

» cost: Work(f,) = n? with optimal sover = ~ =d;

= Polynomial approximation: Vj, = P,,= polynomial space of

total degree m,

» error: || f —Ip,, fllpee = O (M%), = =5

> cost: dim (Vy,,) = ("N) S m”, = o=N.

17120




ML least squares complexity - mixed regularity

= Complexity of single level method
_d _N 1
Workg = O (e 1 s loge ) .
= Complexity of multilevel method

Workm = O <67 max{ 747,57 } (loge™ 1)t> ,

with
) |frjrll>%,
t=93+ 4, if =0
2, if 4 < &

= In our experiment: d =2,7r=1,s =3 and N =2,3,4,6.
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Work Estimate

Work Estimate
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Conclusions

= We have derived a multilevel discrete least squares method for
polynomial approximation of an output quantity of interest of
a random PDE.
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Conclusions
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a random PDE.

The method uses the classical “Combination technique” and
sparsifies sequences of polynomial approximations, obtained
by weighted discrete least squares, and sequences of spatial
discretizations of the underlying PDE.
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polynomial approximation of an output quantity of interest of
a random PDE.

The method uses the classical “Combination technique” and
sparsifies sequences of polynomial approximations, obtained
by weighted discrete least squares, and sequences of spatial
discretizations of the underlying PDE.

In particular, we have proposed a way to select the number of
sample points on each level to guarantee the overall stability
and accuracy of the ML formula with high probability.
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by weighted discrete least squares, and sequences of spatial
discretizations of the underlying PDE.

In particular, we have proposed a way to select the number of
sample points on each level to guarantee the overall stability
and accuracy of the ML formula with high probability.
Complexity analysis carries over to infinite dimensional
problems (different choice of polynomial spaces).
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Conclusions

We have derived a multilevel discrete least squares method for
polynomial approximation of an output quantity of interest of
a random PDE.

The method uses the classical “Combination technique” and
sparsifies sequences of polynomial approximations, obtained
by weighted discrete least squares, and sequences of spatial
discretizations of the underlying PDE.

In particular, we have proposed a way to select the number of
sample points on each level to guarantee the overall stability
and accuracy of the ML formula with high probability.
Complexity analysis carries over to infinite dimensional
problems (different choice of polynomial spaces).

We are currently working on adaptive algorithms for infinite
dimensional problems.
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Thank you for your attention.
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Sketch of the proof

= Bound on Mj: use that M}, < long < 2:1’“ and Kk, =~ 1/(L+1)

2 _ko
My, < —mj log My S (L+ 1)e +er
KL

< (L +1)log(L +1)e™ 57 (k + 1)
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Sketch of the proof

= Bound on Mj: use that v/ M < long < 2;”’“ and Kk, = 1/(L+1)

2 ko
My, < H—mg log My, < (L + 1)e“i%
L
< (L +1)log(L +1)e™ 57 (k + 1)
= Bound on total work:

L
WOI‘k(SLf) 5 Z ML_gnZ
=0

5(L+1)1og(L+1)eaL3szjexp{—z< c___7 )}(L—€+1)

=0 o —Qp 7+/BS

hence, distinguish three cases v/ <,=,> o/q,
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Sketch of the proof

= Bound on the error in probability:

L
1f = Sefllez = IIf = fr+ D> (Id = Tar, ) (fe = fe-1)lez

=0
L
<0 = Fellos + S A= Tiar, llrrs e — foalle
=0
Lg Lo & o B
< e"AFhs + e_cr-%a ex Y/ — s
~ Z p{ <0+ap '7"’/88)}

£=0

Again split the three cases v/, <,=,> 0/, and notice that the
: _ LBw . -
first term e” 7+5: is always negligible as 3, > fs.
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