The Cross Gramian
An Overview and Open Problems

P. Benner, S. Grundel, C. Himpe

Simulation of Energy Systems Team (SES)
Computational System and Control Theory Group (CSC)
Max Planck Institute Magdeburg (MPI MD)

LMS EPSRC Durham Symposium on Model Order Reduction
2017–08–12
1. Obligatory Notation

2. Cross Gramian Flavors

3. Cross Gramian Related Open Problems
 - I. Galerkin projection error bound
 - II. \mathcal{H}_2 optimized cross Gramian
 - III. Nonlinear cross Gramians

4. Cross Gramians for Gas Transport
Nonlinear Parametric Input-Output Systems:

\[
\begin{align*}
\dot{x}(t) &= f(x(t), u(t), \theta) \\
y(t) &= g(x(t), u(t), \theta)
\end{align*}
\]

Linear Input-Output System:

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t)
\end{align*}
\]

- $M := \text{dim}(u(t))$
- $N := \text{dim}(x(t))$
- $Q := \text{dim}(y(t))$
- $P := \text{dim}(\theta)$
Reduced Nonlinear Input-Output Systems:

\[
\dot{x}_r(t) = f_r(x_r(t), u(t), \theta_r)
\]
\[
y_r(t) = g_r(x_r(t), u(t), \theta_r)
\]

Reduced Linear Input-Output System:

\[
\dot{x}_r(t) = A_r x_r(t) + B_r u(t)
\]
\[
y_r(t) = C_r x_r(t)
\]

- \(n := \text{dim}(x_r(t)) \ll \text{dim}(x(t))\)
- \(p := \text{dim}(\theta_r) \ll \text{dim}(\theta)\)
- \(\|y(\theta) - y_r(\theta_r)\| \ll 1\)
Reduced Nonlinear Input-Output Systems:

\[
\begin{align*}
\dot{x}_r(t) &= V_1 f(U_1 x_r(t), u(t), \Pi_1 \theta_r) \\
y_r(t) &= g(U_1 x_r(t), u(t), \Pi_1 \theta_r)
\end{align*}
\]

Reduced Linear Input-Output System:

\[
\begin{align*}
\dot{x}_r(t) &= (V_1 A U_1) x_r(t) + (V_1 B) u(t) \\
y_r(t) &= (C U_1) x_r(t)
\end{align*}
\]

- \(U_1 \in \mathbb{R}^{N \times n}, V_1 \in \mathbb{R}^{n \times N}, V_1 U_1 = 1, x_r(t) = V_1 x(t)\)
- \(\Pi_1 \in \mathbb{R}^{P \times p}, \Lambda_1 \in \mathbb{R}^{p \times P}, \Lambda_1 \Pi_1 = 1, \theta_r = \Lambda_1 \theta\)
- Hyperreduction is a different story.
Hankel Operator

Evolution Operator (infinite rank!)\(^1\)

\[S(u) := C \int_0^\infty e^{At} Bu(t) dt \]

Controllability Operator:

\[C(u) := \int_0^\infty e^{At} Bu(-t) dt \]

Observability Operator:

\[\mathcal{O}(x_0) := C e^{At} x_0 \]

Hankel Operator (finite rank!)\(^2\):

\[H := \mathcal{O} \circ C \]

\(^1\) A.C. Antoulas. *Approximation of Large-Scale Dynamical Systems*. Vol. 6 of Advances in Design and Control, SIAM, 2005.

Hankel Operator (maps past inputs to future outputs):

\[H := O \circ C \]

Cross Gramian\(^3\) (note it’s generally not a Gramian matrix!):

\[W_X := C \circ O = \int_0^\infty e^{At} BC e^{At} \, dt \]

\[\Leftrightarrow AW_X + W_X A = -BC \]

- \(\lambda_i(A) < 0 \)
- \(M \overset{!}{=} Q \)
- \(\text{tr}(W_X) = \text{tr}(H) \)
- \(W_X : \mathbb{R}^N \rightarrow \mathbb{R}^N \)

\(^3\)K.V. Fernando. **Covariance and Gramian matrices in control and systems theory.** University of Sheffield, 1983.
Relation to Balanced Truncation

Symmetric System:

\[OC = (OC)^* \Rightarrow W_X^2 = CC^*O^*O = WCW_O \]

Cross Gramian is equivalent to balanced truncation.

State-Space Symmetric System:

\[A = A^T, \quad C = B^T \Rightarrow CO = CC^* = O^*O \]

All system Gramians are equal.
Approximate balancing4 via singular value decomposition:

\[W_X \overset{\text{SVD}}{=} UDV \]

Direct Truncation (Galerkin projection):

\[U_1 := U_{:,1:n}, \quad \sum_{i=1}^{n} D_{ii} < \varepsilon \]

\[V_1 := U_{1}^\top \]

Non-Symmetric Cross Gramian

Cross Gramian of a square MIMO as sum of SISOs:

\[
W_X = \sum_{i=1}^{M} \int_{0}^{\infty} e^{At} B_{:,i} C_{:,i} e^{At} \, dt
\]

Non-Symmetric Cross Gramian \(^5\) (Cross Gramian of average system):

\[
W_Z := \sum_{i=1}^{M} \sum_{j=1}^{Q} \int_{0}^{\infty} e^{At} B_{:,i} C_{:,j} e^{At} \, dt
\]

\[
= \int_{0}^{\infty} e^{At} \left(\sum_{i=1}^{M} B_{:,i} \right) \left(\sum_{j=1}^{Q} C_{:,j} \right) e^{At} \, dt
\]

- Motivated by Decentralized Control
- Stability Preserving (since all SISO systems are symmetric)

Primal-Dual System:

\[
\begin{pmatrix}
\dot{x}(t) \\
\dot{z}(t)
\end{pmatrix} =
\begin{pmatrix}
A & 0 \\
0 & A^T
\end{pmatrix}
\begin{pmatrix}
x(t) \\
z(t)
\end{pmatrix} +
\begin{pmatrix}
B \\
C^T
\end{pmatrix}
\begin{pmatrix}
u(t) \\
v(t)
\end{pmatrix}
\]

→ \(W_C = \begin{pmatrix}
W_C & W_X \\
W_X^T & W_O
\end{pmatrix} \)

- Primal Impulse Response: \(g_x(t) = e^{At} B \)
- Dual Impulse Response: \(g_z(t) = e^{A^T t} C^T \)

Empirical Linear Cross Gramian\(^6\):

\[
W_X = \int_0^\infty (e^{At} B)(e^{A^T t} C^T)^T dt \approx \int_0^\infty x(t)z(t)^T dt =: W_Y
\]

Empirical Cross Gramian7:

\[
\hat{W}_X := \frac{1}{M} \sum_{m=1}^{M} \int_{0}^{\infty} \Psi_{ij}^m(t) dt \in \mathbb{R}^{N \times N}
\]

\[
\Psi_{ij}^m(t) = (x_i^m(t) - \bar{x}_i^m)(y_j^m(t) - \bar{y}_j^m) \in \mathbb{R}
\]

- \(x^i(t)\) is a state trajectory with a perturbed \(i\)-th input.
- \(y^m(t)\) is an output trajectory with a perturbed \(m\)-th initial state.
- Applicable to nonlinear systems: only \(x^i(t)\) and \(y^m(t)\) required.
- Equal to linear cross Gramian for linear systems.
- Efficient empirical non-symmetric cross Gramian.

Augmented System:

\[\begin{pmatrix} \dot{x}(t) \\ \dot{\theta}(t) \end{pmatrix} = \begin{pmatrix} f(x(t), u(t), \theta(t)) \\ 0 \end{pmatrix} \]

\[y(t) = g(x(t), u(t), \theta(t)) \]

Joint Gramian\(^4\) (Empirical Cross Gramian of the Augmented System):

\[W_J = \begin{pmatrix} W_X & W_M \\ 0 & 0 \end{pmatrix} \]

Cross-Identifiability Gramian (Schur Complement of Symmetric Part of \(W_J \)):

\[W_I := -W_M^T W_X^{-1} W_M \]
Empirical Gramians

- Applicable to any system that can be simulated:
 - Nonlinear systems
 - Parametric systems
 - Time-varying systems
- Basic idea is averaging.
- Simple computation.
- Allows high-dimensional parameter spaces.
- Enables combined state and parameter reduction\(^8\).

More info on empirical Gramians:

Combined reducibility for the nonlinear RC cascade benchmark9.

9MORwiki. \textbf{Nonlinear RC Ladder}. http://modelreduction.org/index.php/Nonlinear_RC_Ladder
Combined reducibility for the hyperbolic network model10.

Combined reducibility for the EEG dynamic causal model11.

Combined reducibility for the fMRI dynamic causal model12

I. Direct Truncation Error Bound
II. H_2 Optimized Cross Gramian
III. Empirical Cross Gramian vs Nonlinear Cross Gramian
(I.) Distributed Cross Gramian

Column-wise cross Gramian computation:

\[\hat{W}_X = \left(w_{X,1} \ldots w_{X,N} \right) \]

\[w_{X,j} = \frac{1}{M} \sum_{m=1}^{M} \int_{0}^{\infty} \psi_{jm}^{i}(t)dt \in \mathbb{R}^{N} \]

\[\psi_{jm}^{i}(t) = (x_{i}^{m}(t) - \bar{x}_{i}^{m})(y_{j}^{m}(t) - \bar{y}_{j}^{m}) \in \mathbb{R} \]

- Only for empirical cross Gramians \((W_X, W_Y, W_Z, W_J)\)!
- Overcome curse of dimensionality \((W_X \in \mathbb{R}^{N \times N})\).

Hierarchical Approximate Proper Orthogonal Decomposition\(^{13}\)

- Direct distributed computation (of \(U_1\))
- Direct incremental computation (of \(U_1\))
- More on the HAPOD, (see S. Rave’s talk on 2017-08-15, 12:00)

(I.) Direct Truncation Error Bound

Mean Projection Error Bound:

\[\| W_X - U_1 U_1^T W_X \|_2 \leq \sqrt{\sum_{i=1}^{n} \sigma_i(W_X)^2} \]

State Error Bound\(^{14}\):

\[\| x(t) - x_r(t) \|_2 \leq c(\| x_0 - U_1 U_1^T x_0 \| + \int_{0}^{\infty} \| R(t) \|_2 \, dt) \]

Tangential Interpolation (using directions: r^i and l^j):

$$V_1 := \bigoplus_i C(s_i)r^i, \quad U_1 := \bigoplus_j l^j O(s_j).$$

Frequency Domain Cross Gramian:

$$W_X = \frac{1}{2\pi} \int_{-\infty}^{\infty} (\omega \mathbb{1} - A)^{-1} BC(\omega \mathbb{1} - A)^{-1} d\omega$$

Tangential Cross Gramian:

$$W_{X,rl} := (Cr)(lO) = \frac{1}{2\pi} \int_{-\infty}^{\infty} (\omega \mathbb{1} - A)^{-1} BrlC(\omega \mathbb{1} - A)^{-1} d\omega$$

$$= \int_0^\infty e^{At} (Br)(lC) e^{At} dt$$

$$\rightarrow r_i = l_j = 1 \forall i, j \Rightarrow W_{X,rl} = W_Z$$
Tangential Cross Gramian:

\[
W_{X,rl} = \int_{0}^{\infty} e^{At} BrlC e^{At} \, dt
\]

- What are the “best” directions \(r \) and \(l \)?
- What are desirable properties of \(BrlC \)?
- Can (simplified) balanced gains\(^{15}\) help:

\[
d_i := |\tilde{b}_i \tilde{c}_i| \sigma_i(H)
\]

Control-Affine Nonlinear System:

\[
\dot{x}(t) = f(x(t)) + g(x(t))u(t) \\
y(t) = h(x(t))
\]

Nonlinear Cross Gramian\(^{16}\) (Solution to a nonlinear Sylvester equation):

\[
\frac{\partial \Phi}{\partial x} f(x) + f(\Phi(x)) = -g(\Phi(x))h(x)
\]

Explicit nonlinear cross Gramian definition:

\[\Phi(x_0) := C \circ O(x_0) = ? \]

\[C(u) = \chi(t), \quad \dot{\chi}(t) = -f(\chi(t)) - g(\chi(t))u(t) \]
\[O(t) = h(x(t)), \quad \dot{x}(t) = f(x(t)) \]

- Is there an empirical formulation of the nonlinear cross Gramian?
- Is the empirical cross Gramian an approximation to the nonlinear?
1D (Simplified) Isothermal Euler Equations17:

\[
\frac{\partial p}{\partial t} = - \frac{\partial q}{\partial x} \\
\frac{\partial q}{\partial t} = -c^2 \frac{\partial p}{\partial x} - \frac{\lambda}{2D} \frac{q|q|}{p}
\]

- System properties: hyperbolic, nonlinear, coupled.
- Finite difference spatial discretization: DAE.
- Analytic index reduction to implicit ODE.
- Structured projections18:
 - Pressure cross Gramian
 - Mass-flux cross Gramian

Summary

Cross-Gramian-Related Open Problems:

I. Direct Truncation Error Bound
II. H_2 Optimized Cross Gramian
III. Empirical vs Nonlinear Cross Gramian

Acknowledgment:
Supported by the German Federal Ministry for Economic Affairs and Energy, in the joint project: “MathEnergy – Mathematical Key Technologies for Evolving Energy Grids”, sub-project: Model Order Reduction (Grant number: 0324019B).