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A question by SDP software developer

. . . mostly already answered by Tobias Damm

Balanced truncation and (non-)linear matrix inequalities?

In the unreduced world of linear systems, one way to find
Gramians is by solving system of linear matrix inequalities (LMI)

AT P + PA ≺ 0, P � 0

or by solving the linear semidefinite optimization problem

min
P

trace(P) s.t. AT P + PA + BBT 4 0, P � 0

by available SDP software (MOSEK, SeDuMi, PENSDP. . . )
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A question by SDP software developer
In balanced truncation, working with Lyapunov inequalities
(rather than equalities) can improve error bounds:

–D. Hinrichsen and A. J. Pritchard. “An improved error estimate for
reduced-order models of discrete-time systems.” IEEE Transactions
on Automatic Control 35.3 (1990): 317-320.

–H. Sandberg. “An extension to balanced truncation with application
to structured model reduction.” IEEE Transactions on Automatic
Control 55.4 (2010): 1038-1043.
by solving

min
P

trace(P) s.t.
AT P + PA + BBT 4 0, P � 0
P = diag(PN ,P1, . . . ,Pq)

–see alsoTobias Damm’s talk.

Are these techniques known/used/useful in model order
reduction?
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A comment by SDP software developer
Software also available for
–bilinear matrix inequalities (BMI) e.g. the static output
feedback stabilization problem of the type

(A + BFC)T P + PT (A + BFC) ≺ 0, P � 0

–polynomial matrix inequalities (PMI) e.g.

Q1 + x1x3Q2 + x2x3
4 Q3 < 0

(the above SOF can be reformulated as PMI without the large
matrix variable)
–(general) nonlinear matrix inequalities

A(x ,Y ) < 0

PENBMI, PENNON, PENLAB (open source Matlab)
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A comment by SDP software developer

For LMIs, SeDuMi is no longer state-of-the-art software.

Matlab’s Robust Control Toolbox solver is slow.

Try
– MOSEK
or
– PENSDP with iterative solvers
or
– SDPLR, the low rank solver by Samuel Burer

using

YALMIP or direct interface (YALMIP can be slow for big
problems!)

Michal Kočvara (University of Birmingham) Durham Symposium 2017 5 / 37



A comment by SDP software developer
SDP solver complexity (one iteration of PENSDP, augmented
Lagrangian method)

Matrix assembly:
dense data matrices: O(m3n + m2n2)
→sparse data matrices: O(m3 + K 2n2) K = maxi(nnz(Ai))
sparse matrices, iterative solver: O(m3 + Kn)

Linear system solution:
→dense Cholesky: O(n3)
sparse Cholesky: O(nκ),1 ≤ κ ≤ 3
iterative solver: O(n2)

SeDuMi sparse data: one iteration O(m3), total O(m3.5)

min
x∈Rn

c>x subject to
n∑

i=1

xiAi − B � 0 (Ai ,B ∈ Rm×m)
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The talk starts now. . .
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Structural optimization

The goal is to improve behavior of a mechanical structure while
keeping its structural properties.

Objectives/constraints:
weight, stiffness, vibration modes, stability, stress

Control variables:
thickness/density (VTS/SIMP)
material properties (FMO)
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Topology optimization

Aim:

Given an amount of material, boundary conditions and external
load f , find the material distribution so that the body is as stiff
as possible under f .

E(x) = ρ(x)E0 with 0 ≤ ρ ≤ ρ(x) ≤ ρ

E0 a given (homogeneous, isotropic) material
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Topology optimization, example

Pixels—finite elements
Color—value of variable ρ, constant on every element
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Equilibrium

Equilibrium equation:

K (ρ)u = f , K (ρ) =
m∑

i=1

ρiKi :=
m∑

i=1

G∑
j=1

Bi,jρiE0B>i,j

f :=
m∑

i=1

fi

Standard finite element discretization:

Quadrilateral elements

ρ. . . piece-wise constant

u. . . piece-wise bilinear (tri-linear)
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TO primal formulation

min
ρ∈Rm, u∈Rn

f T u

subject to
(0 ≤) ρ ≤ ρi ≤ ρ, i = 1, . . . ,m

m∑
i=1

ρi ≤ 1

K (ρ)u = f

. . . large-scale nonlinear non-convex problem
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SDP formulation of TO
The TO problem

min
ρ∈Rm, u∈Rn, γ∈R

γ

subject to

f T u ≤ γ, K (ρ)u = f∑
ρi ≤ 1, ρ ≤ ρi ≤ ρ, i = 1, . . . ,m

can be equivalently formulated as a linear SDP:

min
ρ∈Rm, γ∈R

γ

subject to(
γ f T

f K (ρ)

)
� 0 (positive semidefinite)∑

ρi ≤ 1, ρ ≤ ρi ≤ ρ, i = 1, . . . ,m .

Helpful when vibration/buckling constraints present
Michal Kočvara (University of Birmingham) Durham Symposium 2017 13 / 37



SDP formulation of TO
The TO problem

min
ρ∈Rm, u∈Rn, γ∈R

γ

subject to

f T u ≤ γ, K (ρ)u = f∑
ρi ≤ 1, ρ ≤ ρi ≤ ρ, i = 1, . . . ,m

can be equivalently formulated as a linear SDP:

min
ρ∈Rm, γ∈R

γ

subject to(
γ f T

f K (ρ)

)
� 0 (positive semidefinite)∑

ρi ≤ 1, ρ ≤ ρi ≤ ρ, i = 1, . . . ,m .

Helpful when vibration/buckling constraints present
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TO with a vibration constraint
Self-vibrations of the (discretized) structure—eigenvalues of

K (ρ)w = λM(ρ)w

where the mass matrix M(ρ) has the same sparsity as K (ρ).

Low frequencies dangerous→ constraint λmin ≥ λ̂

Equivalently: V (λ̂; ρ) := K (ρ)− λ̂M(ρ) � 0

TO problem with vibration constraint as linear SDP:

min
ρ∈Rm, γ∈R

γ

subject to(
γ f T

f K (ρ)

)
� 0

V (λ̂; ρ) � 0∑
ρi ≤ 1, ρ ≤ ρi ≤ ρ, i = 1, . . . ,m .
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Dimensions in Semidefinite Optimization

min
x∈Rn

c>x

subject to
n∑

i=1

xiA
(k)
i − B(k) � 0 , k = 1, . . . ,p

where
x ∈ Rn, A(k)

i , B(k) ∈ Rm×m

Majority of SDP software
BAD . . . n large, m large many variables, big matrix

OK . . . n small, m large rare
GOOD . . . n large, m small many variables, small matrix
GOOD . . . n large, m small, p large many small matrix constraints
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Dimensions in Semidefinite Optimization

min
x∈Rn

c>x

subject to
n∑

i=1

xiA
(k)
i − B(k) � 0 , k = 1, . . . ,p

where
x ∈ Rn, A(k)

i , B(k) ∈ Rm×m

So we may want to replace
BAD . . . n large, m large, p=1

by
GOOD . . . n large, m small, p large many small matrix constraints
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SDP formulation of TO by DD

Both (
γ f T

f
∑
ρiKi

)
� 0

and
V (λ̂; ρ) � 0

are large matrix constraints dependent on many variables
. . . bad for existing SDP software

Can we replace them by several smaller constraints
equivalently?
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Chordal decomposition
S. Kim, M. Kojima, M. Mevissen and M. Yamashita, Exploiting
Sparsity in Linear and Nonlinear Matrix Inequalities via Positive
Semidefinite Matrix Completion, Mathematical Programming,
2011

Based on:

A. Griewank and Ph. Toint, On the existence of convex
decompositions of partially separable functions, MPA 28, 1984

J. Agler, W. Helton, S. McCulough and L. Rodnan, Positive
semidefinite matrices with a given sparsity pattern, LAA 107,
1988

See also:

L. Vandenberghe and M. Andersen, Chordal graphs and
semidefinite optimization. Foundations and Trends in
Optimization 1:241–433, 2015
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Chordal decomposition

G(N,E) – graph with N = {1, . . . ,n} and max. cliques
C1, . . . ,Cp.

Sn(E) = {Y ∈ Sn : Yij = 0 (i , j) 6∈ E ∪ {(`, `), ` ∈ N}

SCk
+ = {Y � 0 : Yij = 0 if (i , j) 6∈ Ck × Ck}

Theorem 1: G(N,E) is chordal if and only if
for every A ∈ Sn(E), A � 0, it holds that
∃Y k ∈ SCk

+ (k = 1, . . . ,p) s.t. A = Y 1 +Y 2 + . . .+Y p.

Every psd matrix is a sum of psd matrices that are non-zero
only on maximal cliques.

So A(x) � 0 replaced equivalently by Y k (x) � 0, k = 1, . . . ,p.
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Graph representation of matrix sparsity

Chordal sparsity graph, overlapping blocks

0

0
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Chordal decomposition
Theorem 1: G(N,E) is chordal if and only if
for every A ∈ Sn(E), A � 0, it holds that
∃Y k ∈ SCk

+ (k = 1, . . . ,p) s.t. A = Y 1 +Y 2 + . . .+Y p.

Let K =


K (1)

1,1 K (1)
1,2 0

K (1)
2,1 K (1)

2,2+K (2)
1,1 K (2)

1,2

0 K (2)
2,1 K (2)

2,2

 with K (1),K (2) dense.

Then K � 0⇔ K = Y 1 + Y 2 such that

Y 1=

K (1)
1,1 K (1)

1,2 0
K (1)

2,1 K (1)
2,2+S 0

0 0 0

 < 0, Y 2=

0 0 0
0 K (2)

2,2−S K (2)
1,2

0 K (2)
2,1 K (2)

2,2

 < 0

Even if K (1),K (2) not dense, we just assume that S is dense.
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Chordal decomposition
Let A ∈ Sn, n ≥ 3, with a sparsity graph G = (N,E).
Let N = {1,2, . . . ,n} be partitioned into p ≥ 2 overlapping sets

N = I1 ∪ I2 ∪ . . . ∪ Ip .

Define Ik ,k+1 = Ik ∩ Ik+1 6= ∅ , k = 1, . . . ,p − 1 .

Assume A =

p∑
k=1

Ak , with Ak only non-zero on Ik .

Corollary 1: A � 0 if and only if
∃Sk ∈ SIk,k+1 , k = 1, . . . ,p − 1 s.t.

A =

p∑
k=1

Ãk with Ãk = Ak−Sk−1+Sk (S0 = Sp = [ ])

and Ãk � 0 (k = 1, . . . ,p).
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We can choose the partitioning N = I1 ∪ I2 ∪ . . .∪ Ip !
Using the original theorem:

0

0

6 max. cliques of size 3, 5 additional 2× 2 variables

Using the corollary:

0

0

2 “cliques” of size 5, 1 additional 2× 2 variable
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We can choose the partitioning N = I1 ∪ I2 ∪ . . .∪ Ip !

When we know the sparsity structure of A, we can choose a
“regular” partitioning.
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SDP formulation of TO by DD
(

K (ρ) f
f> γ

)
� 0 and V (λ̂; ρ) � 0

are large matrix constraints dependent on many variables.

FE mesh, matrix K (ρ) and its sparsity graph:

0

0
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Chordal decomposition


K (1)

II K (1)
IΓ 0 0

K (1)
ΓI K (1)

ΓΓ +K (2)
ΓΓ K (2)

ΓI 0

0 K (2)
IΓ K (2)

II f
0 0 f> γ

=


K (1)
II K (1)

IΓ 0 0

K (1)
ΓI K (1)

ΓΓ +S 0 0
0 0 0 0
0 0 0 0

+


0 0 0 0

0 K (2)
ΓΓ −S K (2)

ΓI 0

0 K (2)
IΓ K (2)

II f
0 0 f> γ


Even though K (1) and K (2) are sparse, we need to assume that
S is dense.
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In this way, we can control the number and size of the maximal
cliques and use the chordal decomposition theorem.

New result: For the matrix inequality(
K (ρ) f
f> γ

)
� 0

the additional matrix variables S are rank-one; this further
reduces the size of the solved SDP problem.
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Numerical experiments

SDP codes tested: PENSDP, SeDuMi, SDPT3, Mosek

Results shown for Mosek: not the fastest for the original
problem but has highest speedup

Mosek:
– new version 8 much more reliable than version 7
– called from YALMIP
– difficult (for me) to control any options
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Numerical experiments
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Numerical experiments
Regular decomposition, 40x20 elements, Mosek 8.0
Basic problem (no vibration constraints)

no of no of size of no of CPU speedup
doms vars matrix iters total per iter total /iter

1 801 1681 53 2489 47 1 1

2 844 882 66 778 12 3 4
8 1032 243 57 49 0.86 51 55

32 1492 73 55 11 0.19 235 244
50 1764 51 54 8 0.14 323 329

200 3544 19 45 5 0.10 553 470

34 22997 11. . . 260 42 1206 29 2 2

Automatic decomposition using software SparseCoLO
by Kim, Kojima, Mevissen and Yamashita (2011); see page 16
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Numerical experiments
Regular decomposition, 40x20 elements, Mosek 8.0
Problem with vibration constraints

no of no of size of no of CPU speedup
matrices vars matrix iters total per iter total /iter

2 801 1681 64 3894 61 1 1

16 1746 243 59 127 2.15 31 28
64 3384 73 54 27 0.50 144 122

100 4263 51 55 25 0.45 155 136
400 9258 19 37 18 0.49 216 125

and without again, for comparison:

1 801 1681 53 2489 47 1 1

8 1032 243 57 49 0.86 51 55
32 1492 73 55 11 0.19 235 244
50 1764 51 54 8 0.14 323 329

200 3544 19 45 5 0.10 553 470
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Numerical experiments

Regular decomposition, 120x60 elements, Mosek 8.0
Basic problem (no vibration constraints)

no of no of size of no of CPU speedup
doms vars matrix iters total per iter total /iter

1 7200 14641 178 5089762 28594 1 1

50 9524 339 85 1475 17.4 3541 1648
200 12904 99 72 209 2.9 24355 9851
450 16984 51 67 107 1.6 47568 17905
800 21764 33 61 82 1.3 62070 21271

1800 33424 19 44 77 1.6 66101 18196

estimated; 508976 sec ≈ 2 months
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Numerical experiments
Regular decomposition, Mosek 8.0
Basic problem (no vibration constraints)
“best” decomposition speedup (subdomain = 4 elements)

ORIGINAL DECOMPOSED speedup
problem no of size of CPU no of size of CPU

vars matrix total vars matrix total

40x20 801 1681 2489 3544 19 8 311
60x30 1801 3721 31835 8164 19 25 1273
80x40 3201 6561 252355 14684 19 23 10972

100x50 5001 10201 1298087 23104 19 46 28219
120x60 7201 14641 5091862 33424 19 77 66128
140x70 9801 19881 16436180 45664 19 115 142923
160x80 12801 25921 45804946 59764 19 206 222354

complexity c·sizeq q = 3.5 q = 1.33

times estimated; 45804946 sec ≈ 18 months
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CPU time, original versus decomposed
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.

THE END
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