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The Data Assimilation
Problem
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Data Assimilation
Aim:
Find the best estimate (analysis) of the
expected states of a system, consistent with

both observations and the system dynamics
given:

 Numerical prediction model

« QObservations of the system (over
time)

« Background state (prior estimate)

« Estimates of error statistics
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Significant Properties: ”-V‘.* %

« Very large number of unknowns (108 — 109)
« Few observations (105 —108)  ~
« System nonlinear unstable/chaotic

* Multi-scale dynamics
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System Equations

Xit1l — Mz(xz) = S(tf,;_l_l, ti, X/L') States

y, = Hl.[xl(.k)] + M, Observations

n: ~ N(0,R) Noise
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Best Unbiased Estimate
min J(x,)= %(XO -x")'B '(x, —x")

+ZOZ(H,-[XZ~]—Y,- ) R (H[x]-y,)
subject to x, =5(t,2,,X,)

x” - Background state (prior estimate)

y. - Observations

H_. - Observation operator

B - Background error covariance matrix
R. - Observation error covariance matrix
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Sequential and Variational
Assimilation Techniques

University of .
g Reading Department of Mathematics



Sequential and Variational
Assimilation Techniques
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Sequential Assimilation
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Sequential Filter

Predict: x! = S(ti, ti—1,x% )

2

Correct: x! =x; + K;(H;[x!] — yi)

where K, = B,H; (H;BH] + R;)"
H; = the linearized observation operator
and B, = &{(x —x;)(x; —xj)" } .
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Difficulties:

* Need to propagate covariance
matrices at each step

* Need to solve large inverse problem
at each step.

Solutions:

* Approximate covariances — use ensemble
methods

 Use iterative methods and truncate
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Ensemble Square Root Filter (EnRF)

At time f; we have an ensemble of forecast states

generated by the model, initiated from perturbed analysis
states at time t,_,. The ensemble is given by

(X1. b, 7 | XN) c R*N
We define the ensemble mean and covariance using
1 N
=
1
Pt‘- = — X-’XJFT
N=—1
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EnSRF

Then the analysis at time ¢, is given by

where

K = _\%X’f}{’f Hf(\—HX”"x” HT + R)™

Obtain the analysis ensemble for the next forecast from

Xa — X.f” A Xn XF“ = X”T

where Y is a square root found from X’
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EnSRF

Problems: arise because the covariance is not full rank,
which leads to

» spurious long range correlations
« filter collapse
« filter divergence

Treatments:

* inflation of variances
 localization methods

* regularization methods
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Variational Assimilation
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Variational Assimilation

Aim: Find the initial state x,@ (analysis) such that the distance
between the state trajectory and the observations is lr)ninimized,
subject to x,2 remaining close to the prior estimate X"

|
Observation
— O
- ~
- ~ O —
Analysis |~ ® "\ =
NG g /7\
Background SN =~ O
P
> Time
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4DVar Assimilation
min J(x,)= %(xo —x") B (x,—x)
F2(H[x]-y) R H[x]-y,)
subjectto  Xit1 = M;(x;) = S(tiy1. 6. X;)

Solve iteratively by gradient optimization methods.
Use adjoint methods to find the gradients.

3DVar if n=0 4DVar if n>1
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Difficulties:

Time constraints — solve In real time

* Need to build adjoints
« Conditioning of the problem

Treatment:

@ Universi!:y of
Reading

Precondition using control variable transforms
Use incremental method = Gauss Newton

Use approximate linearization
(See Gratton, Lawless and Nichols, SIOPT, 2007)

Solve on short windows and cycle sequentially
Solve in restricted space (lower resolution)
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Incremental 4D-Var

Temperature f

@ Observation
’ _‘ ......... . ““‘ ’ IS .
’ ““““ \ : OR .. —
. ‘t“ ‘o" ¢ Y Tt ’ Ry
AnaIySIS V“““ . “‘ \ .............. ,..:‘.‘-‘.‘.‘...
s . & R P e )
........--“u‘ R ,. \
Background
x b

>  Time
Solve by iteration a sequence of linear least squares problems
that approximate the nonlinear problem.
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Incremental 4D-Var

Set xf)o) (usually equal to background)

Fork=0, ..., K find: x =8(t,1,,x{")

Solve inner loop linear minlmlzatlon problem:

~ (e (K 1, (k : 1. (K ,
TP xy)] = g(oxé“ — [x" = %)) B (5% — [x — %0 M])

N
1 A o
5 § (Hox™ — d"YTR (H,0x ) — @M

subjectto | dxj1, = Mox;| d, =y, —H[x"]

1
C kD) () (k)
Update:  x, ' =X, +0X,
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Low Order Models in Incremental 4DVar

Find: restriction operators U,; € R"*" and prolongation
operators V;€ R™“" with U/'V, =1
V,;U/ a projection.

r<<N, and

) 2

Define: areduced order systemin [R"
N A (ke A s i (ke
{j}[(“ — M;QXE“, d,-; — H,;{)X.E )

1+ 1

where VEN/I;UF, ICLU@T approximate M ,H;
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Reduced Order Assimilation Problem

The reduced order inner loop problem is to minimize

JM [f}iiiaﬁ ]*
}( EXL“ Ulj} [X" — x””'j])l{Ué BoUp)™ (”X{[|H Ud LXF - X[:[H]}

N
1 ok § " |
= § : (H; V%" —d;”) "Ry (H; V,0%;" — d}”)

subject to the | reduced order system

and set (ﬁx” Vuﬁx”

Universitv of (See Lawless et al, Monthly Weather Review, 2008)
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Projection Operators

A variety of ways are used for choosing the projection
operators:

Low resolution model of full nonlinear system

Use ensemble filter method to provide a low order basis.

POD methods to determine a low order basis (EOFs).

Use balanced truncation / rational interpolation to
find projections (feasible for linear Tl systems).
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Recent Developments

Derive some of the coefficients from an ensemble (Berre
and Desroziers, 2010): hybrid-Var
(Use some ensembles for low order covariance basis)

Direct use of localised ensemble perturbations to define
covarianc.. ensemble-Var (EnVar)

Combine ensemble and climatological covariances:
hybrid-EnVar

Use ensemble trajectories to define time-evolution of
covariances: 4D-Ensemble-Var (4DEnVar)

Ensembles of 4DEnVar: (En4DVar)
Lorenz, 2013
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Application and Numerical
Results
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Model Reduction
Aims:

* Find approximate linear system models
using optimal reduced order modeling
techniques to improve the efficiency of the
Incremental 4DVar method.

+ Test feasibility of approach in comparison
with low resolution models using balanced
truncation with a nonlinear model of shallow

water flow.
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Balanced Truncation

Find: ¥ suchthat Y 'PQWV = ¥?
where X is diagonal and

P = MPM' + B,

Q = M/QM+H'R'H

Then: near optimal projections are given by

L
Ul =[1,,0] 0", V=u

0
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1D Shallow Water Model

Nonlinear continuous equations

Du oo oh
—t_—=-g_—
Dt ox Ox
D(In @) N ou

D¢ OX

. D 0 9,
with = —+U—
Dt ot ox

=0

We discretize using a semi-implicit semi-Lagrangian
scheme and linearize to get linear model (TLM).
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Numerical Experiments
Error Norms

Test matrices:

M ¢ [R#00x400 from linear model
H ¢ R200x400 observations at every other point
y P
L . o .
Bj € [R400x400 quite realistic test matrix
Sxg— B\ - (lift) .
Error norm nrm = 180=9% Iz Oxé ) .=V
[0x0][2
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Errors between exact and approximate analysis
for 1-D SWE model
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Comparison of Error Norms

Low resolution vs Reduced order models

reduced order | low resolution
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Eigenvalues of (a) full, (b) low resolution (c) reduced order
system matrices
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Summary of experiments

e Reduced rank linear models obtained by optimal
reduction techniques give more accurate analyses
than low resolution linear models that are currently
used in practice.

e Incorporating the background and observation
error covariance information is necessary to
achieve good results

e Reduced order systems capture the optimal
growth behaviour of the model more accurately
than low resolution models

e (Can be extended to unstable systems
(See Boess et al, CAF, 2011)
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Conclusions
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Conclusions

The use of model reduction in data assimilation is
generally based on low rank approximations to the
prior error covariances, which leads to a low rank set
of basis vectors.

+ This reduces the degrees of freedom in the
optimization problem.

- Does not necessarily reduce the work needed to
integrate the dynamical model

|deally want both, and that the low rank system
minimizes the expected error between the outputs
from the full system and those from the reduced model.
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Future

Many more challenges left! +
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