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Outline

 The Data Assimilation-Linked ECosystem
model (DALEC)

* A dynamical systems approach
e Sensitivity analysis
e Data assimilation

* Model and data resolution matrices

Constraining DALEC v2 using multiple data streams and
ecological constraints: analysis and application — Delahaies,
Nichols and R, Geophys. Model Dev. 2017

National Centre for

Earth Observation
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DALEC EV

DALEC Evergreen Model

® [he Gross Primary Production (GPP) function (G(Ck(t),t)) represents
a daily accumulation of photosynthate which is based on the Aggregated

Canopy Model (ACM) (Williams et al., 1997)

® GPP is a complicated function that depends on C%, a variety of
parameters, and on the daily drivers:

€ maximum temperature
4 minimum temperature

& irradiance

® DALEC is a ‘simple’ model, but is essentially at the heart of all the more
complex models

® Our aim is to understand the dynamical behaviour of this model




Pools and Parameters

@ 5 carbon pools
[ (_'f (:11"1 C'YH“J (-_‘.E' 1 ET'.'E' }

@ |1 parameters (p1,...,p11)

#

@ 3 meteorological drivers
(Temp ,rad,CO2)

Parameters used in DALEC EV

Description Value

Daily decomposition rate 0.0000044100

Fraction of GPP respired 0.52

Fraction of NPP allocated to foliage 0.29

Fraction of NPP allocated to roots 0.2011

Daily turnover rate of foliage 0.0028

Daily turnover rate of wood 0.00000206

Daily turnover rate of roots 0.003

Daily mineralisation rate of litter 0.02

Daily mineralisation rate of =oil and organic matter 0.00000265

Parameter in exponential term of temperature

dependent parameter 0.0693

Nitrogen use efficiency parameter in ACM 7.4




Canopy Model and Leaf Area Index

The aggregated canopy model (ACM) predicts the gross primary production (GPP) at
a daily time step

GPP = ACM(Lai,pyy,Temp,rad,CO?2),

where

Lai = Cy /LMA.

ACM is based on the more complex soil-plant-atmosphere (SPA) model calibrated
across a wide range of driving variables to produce a simple model that maintains the
essential behaviour of the fine scale model.




Towards Differential Equations

The daily map for the carbon pools are given by

= (1 —=ps)C¢(n)+p3(1 —p2) GPP(C¢(n),p11,n)

(1 =p1)Cr(n) +pa(l = p3)(1 = p2) GPP(Cy(n),p11,n)

(1 =p6)Cy(n) + (1 —pa)(1 = p3)(1 —p2) GPP(Cy(n),p11,n)
= (1 —=(ps+p1)T(p1o,n))Ci(n)+psCs(n)+p7Cr(n)
= [1—=poT(p10,n)|Cs(n) +peCw(n) +p1T(p10,n)Ci(n)

The net ecosystem exchange (NEE) defined as the difference between Gross primary
production and respiration

NEE = Ra+ Rh1 + Rh2 — GPP,
can be expressed as

NEE(n) = (1 —p2)GPP — pgT (p1o,n)Ci(n) — poT (p10,n)Cs(n).




DALEC Dynamics

If the drivers are made periodic with period 1 year, then the carbon
pools evolve to a periodic solution

Note that the pools evolve on different timescales

The qualitative behaviour is parameter dependent

Darbor pools
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Periodic Solutions

® We find periodic solutions as fixed points of an annual map, which
satisty C;(0) = C§(365)

® Cr =0 is always a stable fixed point

e If Ct =0, then all the other pools converge to zero as well — one dead
forest!

® Non-zero fixed points of Ct can
be found numerically

® p: is the rate at which foliar car-
bon goes into the litter

® If the needles drop at a high
enough rate, then there is not
sufficient carbon to sustain the
tree and it will die




Limit Points

® [he Cf equation depends only on ps (the rate at which foliar carbon
goes into the litter) and py(1 — p3) (the fraction of GPP allocated to the
foliar carbon)

® We can find fixed points of Ct as a function of these two parameters

@ [his gives a line of limit points

Forest |ives/dies, |depending on
indtial corafitions)
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@ Maximum growth would be achieved by allocating as much carbon as
possible to the wood and roots, keeping the foliar carbon to a minimum




Sensitivity

0 f Pi ( Pi
op;i 10

P 0.0000044 -0.00065
0, 0.52 _ 8.2
D3 0.29 _ 25
)y 0.41 0.48
Ps 0.0028 i 3.4

Parameter Value

D 0.0000021 0.000038
7 0.0030 0.95
Ds 0.020 0.43
Do 0.0000027 0.11
D10 0.069 0.34
D11 7.4 . 3.8




Sensitivity

» From LAl measurements one can only estimate

(i) the turnover rate of foliar carbon (ps),
(i) the fraction of GPP allocated to foliar carbon (p3(1 — p2)).
(i) p11 (parameter in GPP).

» NEE is only sensitive to some of the parameters and
hardly at all to the decomposition rate of litterfall, py, and
turnover rate of wood, ps.

CHAOS 25, 000000 (2015)

A dynamical systems analysis of the data assimilation linked ecosystem
carbon models

Anna M. Chuter, Philip J. Aston,® Anne C. Skeldon, and lan Roulstone
Department of Mathematics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom



gional lux stimation E periment

( )

A. Fox et al. (2009) Agricultural and Forest Meteorology 149,
Aims
@ To compare the strengths and weaknesses of various data assimilation techniques
for estimating carbon model parameters and predicting carbon fluxes.
e To quantify errors and biases introduced when extrapolating fluxes.
Experiments
@ Nine participants using Monte Carlo methods and EnKF,

@ Assimilation of both real and synthetic NEE and LAT observations over a two
year period.

Results

@ parameters directly linked to GPP and respiration were best constrained and
characterised.

@ parameters related to the allocation to and turnover of fine root/wood pools.




riational Data Assimilation

_ |
(x5, B =)+ 30
i=1

Find

min.J(x)

Xy

Subject to the strong constraint that the model states are a solution to the
numerical model and that the tangent linear hypothesis holds.

Adjoint variable A:
cJ

CXy




model trajectory (first guess)

model trajectory (analysis)

observation




Inverse Problem and
Data Assimilation

At the heart of incremental-4DVAR lies a linear inverse problem Ax = b, the least
square solution is given by

x* = argmin|[Ax —b[|* =} —L—v
=1

using a singular value decomposition A = ULV with £ = diag(o1,...,

When the data b is contaminated with noise the least square solution can be
unreliable. Given X and b such that Ax = b we have

I8 _ 1801
] o

where
@ dSx=x"—xand 8b=b—b.

@ K(A) = 01/0y is the condition number of A.




Well-posedness

A generic inverse problem consists in finding a n-dimensional
state vector x such that

h(x) =y

for a given N-dimensional observation vector y, including
random noise, and a given model h. The problem is well

posed in the sense of Hadamard (1923) if the three following
conditions hold:

1) a solution exists,
2) the solution is unique, and
3) the solution depends continuously on the input data.



An ill-posed problem

051 5.2% 10— 1.3 % 10— 1.5 x 10—

0.29 29 % 102 8.4 1011 1.0 108

25 10 465109 | 9210~
30 10— L 100 5.2 10°

P10 6.93 % 10— 1.9 % 10~ 211075 | 22x10— | 64
P11 . 0.74 141010 | 2450078 | 1ox10 | 49

k| [ - | - [ 24x107 T T rsx10F ] rox10f ] 22007 |

Table: The condition number is the same for each simulation x(A) ~ 1.1 x 10%*. 8x is the
perturbation used to generate the observations. The row REg gives the relative error for
observations without noise, the column RE; (resp. REz, RE3) gives the relative error for the

analysis for observations with a gaussian noise with variance ¢ = 1.1 x 10-1e (resp.
c=10x107,6=50x10"").




Model Reduction?
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Linear Analysis

Considerable theoretical insights into the nature
of the inverse problem, and the ill-posedness,
can be obtained by studying a linearisation of
the operator h. A first approximation to the
Inverse problem consists in finding a
perturbation z which best satisfies the linear
equation

Hz =d

where H Is the tangent linear operator for h and
d Is a perturbation of the observations.



* Finding a solution z amounts to
constructing a generalized inverse H9
such that formally

Z=HYd
* Assuming a true state z* exists,
possibly unknown, then we can define
an operator N called the model

resolution matrix which relates the
solution z to the true state

Z =HIHz* =Nz*




"his matrix N gives a practical tool to analyse
the resolution power of an inverse method,
that Is its ability to retrieve the true state,
Including or not any regularization method

The closer N is to the identity the better the
resolution.

The trace of the matrix defines a natural
notion of information content (IC).

Similarly a data resolution matrix can be
defined to study how well data can be
reconstructed and its diagonal elements
naturally define a notion of data importance.
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Model Resolution
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Reduced Model




EDCs




Constraining DALEC2 using multiple data streams
and ecological constraints: analysis and application

S . + )
Sylvain Delahaies', Tan Roulstone!. and Nancy Nichols?

IDepartment of Mathematics, University of Surrey, Guildford, UK.
*Department of Mathematics, University of Reading, Reading, UK.

Correspondence to: S. Delahaies (s.b.delahaies @surrey.ac.uk)

Future Work

* Sensitivity analysis of TRIFFID/JULES (Met O
model)

e Sensitivity analysis of visible radiance, near
infrared radiance and vegetation index, to the
model parameters of the two-stream Sellers
approximation of radiative transfer (with NPL)



