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Key reference:

Howard Elman and David Silvester

Collocation methods for exploring perturbations in linear stability analysis

http://eprints.ma.man.ac.uk/2533/

Durham Symposium 2017 2 of 27



HISTORY

∂~u

∂t
+ ~u · ∇~u− 1

R ∇
2~u+∇p = ~f

∇ · ~u = 0

1822 1883

George Stokes (1819–1903) Osborne Reynolds (1842–1912)
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https://en.wikipedia.org/wiki/Sir_George_Stokes,_1st_Baronet
https://en.wikipedia.org/wiki/Osborne_Reynolds


HYDRODYNAMIC STABILITY

steady solution

~u · ∇~u− 1
R∇

2~u+∇p = 0 in D

∇ · ~u = 0 in D

perturbation model

~v(~x, t) = ~u(~x) + eλt δ~u(~x), q(~x, t) = p(~x) + eλt δp(~x)

unsteady perturbation evolution

D(~u, δ~u)− 1
R∇

2δ~u+∇δp = −λ δ~u in D

−∇ · δ~u = 0 in D

difference term

D(~u, δ~u) = ~v · ∇~v − ~u · ∇~u

= ~u · ∇δ~u+ δ~u · ∇~u+ eλt δ~u · ∇δ~u
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LINEARISED STABILITY

steady-state linear eigenvalue problem

− 1
R∇

2δ~u+ ~u · ∇δ~u+ δ~u · ∇~u+∇δp = −λ δ~u in D

−∇ · δ~u = 0 in D
linear algebra 1

RA+N +W BT

B 0

 α

β

 = −λ

 M 0

0 0

 α

β


Important points

◦ for a (fixed) given value of R, If R(λ) < 0 for all eigenvalues, then the flow

problem is linearly stable.

◦ linear instability =⇒ nonlinear instability.

◦ a Hopf bifurcation (breakdown to a periodic flow) is a critical value R∗ for

which R(λ∗) ≤ 0 with λ∗ = ±θi.
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Abstract of talk

Eigenvalue analysis is a well-established tool for stability analysis of dynamical

systems. However, there are situations where eigenvalues miss important

features of physical models. For example, in models of incompressible fluid

dynamics, there are examples where linear stability analysis predicts stability

but transient simulations exhibit significant growth of infinitesimal

perturbations.
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− 1
R∇

2δ~u+ ~u · ∇δ~u+ δ~u · ∇~u+∇δp = −λ δ~u in D

−∇ · δ~u = 0 in D

Pseudospectra

Question: how sensitive are the eigenvalues λ to perturbations in the base flow? 1
RA+N +W BT

B 0

 α

β

 = −λ

 M 0

0 0

 α

β


Answer: construct randomly perturbed problem(s) 1

RA+N +W + S BT

B 0

 α

β

 = −λ

 M 0

0 0

 α

β


Key points

♥ The perturbed base velocity is (discretely) divergence-free: ∇h · δ~uh = 0

♥ The perturbation is required to be nondissipative: −S = ST

♣ Computationally expensive!
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SURROGATE MODEL

Eigenvalue problem

J(~u∗h)v = −λMv

Let ~u∗h + δ~uh be a perturbation of the discrete steady solution ~u∗h.

Idea: generate perturbations δ~uh = δ~uh(ξ) in a systematic way, depending on

some (other) parameters ξ := (ξ1, . . . , ξm).

Let g(ξ) be the rightmost eigenvalue of the perturbed problem

Ĵ(~u∗h, δ~uh(ξ))v = −λMv

and define g(l)(ξ) to be a (cheap-to-compute) surrogate approximation
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SURROGATE MODEL II

Eigenvalue problem

J(~u∗h)v = −λMv

Let ~u∗h + δ~uh be a perturbation of the discrete steady solution ~u∗h.

Idea: generate perturbations δ~uh = δ~uh(ξ) in a systematic way, depending on

some (other) parameters ξ := (ξ1, . . . , ξm).

Let g(ξ) be the rightmost eigenvalue of the perturbed problem

Ĵ(~u∗h, δ~uh(ξ))v = −λMv

and define g(l)(ξ) to be a (cheap-to-compute) surrogate approximation

Pseudospectral experiment: study values of g(l)(ξ)

by sampling ξ using sparse grid collocation. In all

experiments: we use the spinterp package (Klimke

& Wohlmuth).
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http://www.ians.uni-stuttgart.de/spinterp/


SURROGATE MODEL III

Eigenvalue problem

J(~u∗h)v = −λMv

Let ~u∗h + δ~uh be a perturbation of the discrete steady solution ~u∗h.

Idea: generate perturbations δ~uh = δ~uh(ξ) in a systematic way, depending on

some (other) parameters ξ := (ξ1, . . . , ξm).

Idea2: define

~uh(~x, ω) = ~u∗h(~x) + σ

m∑
j=1

√
µj ∇h × φj(~x)︸ ︷︷ ︸

∇h· ( )=0

ξj(ω)

where ξm : Ω→ [−1, 1] are i.i.d. bounded random variables and {(µj , φj)}mj=1

are the dominant eigenpairs of the correlation matrix

Cij = exp
(
− 1

4‖~xi − ~xj‖
2
`2

)
,

where ~xi,~xj are vertices of the rectangular grid.
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Computational results
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What have we learned?

♥ The critical eigenvalues are reasonably stable.

♥ New relatively cheap method for pseudospectra is predictive.
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What have we learned?

♥ The critical eigenvalues are reasonably stable.

♥ New relatively cheap method for pseudospectra is predictive.

What’s next?

Poiseuille flow in a finite channel (of length L)
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