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Overview Part 1–3
� RB Methods for Instationary Problems

� Projection, error estimation, basis generation

� RB Methods for Nonlinear Problems
� Empirical Operator Interpolation
� Applications: Burgers equation, 2PF in porous media

� Adaptivity
� Offline Adaptivity: training set
� Adaptive parameter domain partitioning
� Adaptive time domain partitioning
� Adaptive State space partitioning
� Online N adaptation and online greedy

� Summary and Conclusion
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Motivation of Model Reduction

� Today: High resolution simulation schemes

� Multitude of applications

� High dimensional models (PDEs, ODEs)

� Development of accurate schemes

Adaptive grids, higher order schemes

Parallelization and HPC

� High runtime- and hardware requirements

� Goal: Reduced models

� Smaller model dimension, reduced requirements

� Similar precision, error control

� Automatic reduction, not „manual“

� Realization of complex simulation scenarios

� Multi-query, real-time, „Cool“-computing platforms
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Motivation of Model Reduction

� „Real Time“ Scenarios

� Real-time control of processes

� Graphical user interfaces

� Man-machine-interaction

� Interactive design

� Parameter exploration

� „Cool“ Computing Platforms

� Simple industrial controllers

� Web-applications / Applets

� Ubiquitous Computing: 

Mobile phone, smart devices
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Motivation of Model Reduction

„Multi-Query“, High-Level Simulation Scenarios

� Parameter studies, statistical investigations

� Design, Parameter optimization, inverse problems

� Multiscale Settings: Reduced Models as Microsolvers

� Stochastic PDEs: Monte Carlo with Reduced Models

Homogenized Problem

CP CP CP CP CP CP CP

Homogenized Problem

RP RP RP RP RP RP RP

SPDE u(x, ω)

ū(x) :=
�
Ω u(x, ω)p(ω)

ūn(x) =
1

n
( + + . . . + )RP RP RP
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Motivation of Model Reduction

� Offline/Online Computational Procedure

� Accept computationally intensive „offline phase“ (reduced
model generation, etc.)

� Amortization of runtime cost in view of multiple online 
phases i.e. simulations with reduced model

Multi-query with high dimensional model:

Multi-query with reduced model:

u(µ1) u(µ2) u(µ3)

uN(µ1), . . . , uN(µk)

offline phase online phase

time

time
. . .
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Motivation of RB-Methods

� Parametric problems:

� Parameter domain , parameter vector

� solution , Hilbert space (HS)

� Manifold of solutions „parametrized“ by

� Low-dimensional subspace („RB-Space“)

� Approximation and error bounduN(µ) ∈ XN

P ⊂ Rp

u(µ) ∈ X
M

X

u(µ1)
u(µ2)

u(µ)

XN

uN (µ)
M uN (µ)

u(µ)

∆u(µ)}

µ ∈ P

µ ∈ P

XN ⊂ X
∆u(µ)
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Motivation of RB-Methods

� Simple Example:                  

� Find                        (not a HS) satisfying

� „Snapshots“: 

� Reduced Solution

� Exact approximation:

� is contained in 2-dimensional subspace
(more precisely:        is convex hull of           )

µ ∈ P = [0, 1]

u(µ) ∈ C2([0, 1])
(1 + µ)u′′ = 1 in (0, 1), u(0) = u(1) = 1

u0 := u(µ = 0) = 1
2x

2 − 1
2x+ 1

u1 := u(µ = 1) = 1
4x

2 − 1
4x+ 1

XN = span{u0, u1}

uN(µ) = α0(µ)u0 + α1(µ)u1

α0(µ) =
2

µ+1 − 1, α1(µ) = 2− 2
µ+1

uN(µ) = u(µ) for µ ∈ P

M u0, u1

M
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Motivation of RB-Methods

� Questions that need to be addressed:

� How to construct good spaces ? Can such „procedures“ 
be provably good?

� How to obtain approximation ? Can we do 
better than interpolation?

� Efficiency: How can be computed rapidly?

� Stability with growing N?

� Can we bound the error? Are bounds „rigorous“, i.e. 
provable upper bounds?

� Are error bounds largely overestimating the error or can
the „effectivity“ be bounded?

� For which problem classes is low dimensional 
approximation expected to be successful?

XN

uN(µ) ∈ XN

uN(µ)
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Motivation of RB-Methods
General References on the Topic

� Electronical Book (PR07)
A.T. Patera and G. Rozza: “Reduced Basis Approximation and A
Posteriori Error Estimation for Parametrized Partial Differential
Equations, V 1.0, Copyright MIT 2007, to appear in (tentative
rubric) MIT Pappalardo Graduate Monographs in Mechanical
Engineering.

� RB-Tutorial (Ha14)
B. Haasdonk: Reduced Basis Methods for Parametrized PDEs –
A Tutorial Introduction for Stationary and Instationary Problems.
Chapter in P. Benner, A. Cohen, M. Ohlberger and K. Willcox
(eds.): “Model Reduction and Approximation: Theory and
Algorithms”, SIAM, Philadelphia, 2017.

� Recent RB Books (Rozza&al 2016, Manzoni&al 2016)
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Motivation of RB-Methods

� Websites:

� augustine.mit.edu: MIT-website

� www.morepas.org: german RB activities

� www.modelreduction.org: german MOR Wiki

� www.eu-mor.net: COST EU-MORNET network

� Software:

� rbMIT: http://augustine.mit.edu

� RBmatlab, Dune-rb: www.morepas.org

� pyMOR: http://pymor.org

� Course Material: 

� www.haasdonk.de/data/oberwolfach2014www.haasdonk.de/data/durham2017
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Software

� RBmatlab
� MATLAB discretization and RB-library

� 2d-Grids, adaptive n-D grids

� Linear, Nonlinear Evolution Problems

� FV, FEM, LDG Discretizations, RB Algorithms

� DUNE-RB

� Detailed Parametrized Models, C++ Template lib.

� Extension of Dune-FEM (www.dune-project.org)

� Discrete Function Lists, Parametrized Operators

� Interface to RBmatlab

Download & Documentation: 
www.morepas.org
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Model Problem

� Thermal Block 

� Slight modification of [PR06]

� Heat conduction in solid block

� Computational domain

� Partition in     horiz.,     vert. subblocks

� Parameters: heat conductivity coefficients

� Governing PDE

Ω = (0, 1)2

−∇ · k(µ)∇u = 0 in Ω

Ω1 Ω2

Ω3 Ω4

ΓD

ΓN0

ΓN1

u = 0 on ΓD

k(µ)∇u · n = i on ΓNi, i = 0, 1

B1 = B2 = 2

k(x;µ) =
�

i µiχΩi(x)

Ω =
�p

i=1Ωi p := B1 ·B2
B1 B2

µ = (µi)
p
i=1 ∈ [µmin, µmax]p, µmin =

1
µmax

∈ (0, 1)
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Model Problem

� Weak Form:

� Solution space

� Weak form: find                such that

� Possible output of interest: average bottom temperature

� Compactly written by means of bilinear form           and 
linear forms

X = H1
ΓD
(Ω) := { v ∈ H1(Ω) | v|ΓD = 0}
u(µ) ∈ X

�

Ω

k(µ)∇u(µ) · ∇v
� �� �

a(u(µ),v;µ)

=

�

ΓN1

v

� �� �
f(v;µ)

, v ∈ X

s(µ) :=

�

ΓN,1

u(x;µ)dx = l(u(µ);µ)

a(·, ·;µ)
f(·;µ), l(·;µ) ∈ X′
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Model Problem

� Solution Variety:

� Simple solution structure:
if (or and all      in each
row identical) the solution exhibits
horizontal symmetry, is piecewise
linear, can be exactly represented in a 
finite dimensional space, although the
full problem is infinite dimensional.

µ1 = µ2 = µ3 = µ4

µ1 = µ2 =/ µ3 = µ4

B1 = 1 B1 ≥ 1 µi

Exercise 1: Find and prove an explicit solution

representation in a       -dimensional linear spaceB2
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Model Problem

� Solution Variety:

� Complex solution structure: 
if the solution is in 
general nonsymmetric, 
complexity increasing
with

� Parameter redundancy: manifold is invariant with respect
to scaling of the parameter vector: 

Important insight: More/many parameters do not
necessarily imply complex manifold structure

µ1 =/ µ2 =/ µ3 =/ µ4

µ̄ := cµ ∈ P, c > 0 ⇒ u(µ̄) = 1
c
u(µ).

B1 > 1

B1, B2

Exercise 2: Provide a different parametrization of                 in the thermal block, 

such that the model has arbitrary large number of parameters, but

only 1-dimensional solution manifold. 

k(x;µ)
p > B1 ·B2
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Abstract Problem

� Notation

� Hilbert space (real, separable), scalar product , 
norm       

� Dual space with norm 

� For all             denote Riesz-Representer by :  

� Parameter domain

� bilinear form and linear forms

X ·, ·�

X′

�g�X′ := sup
v∈X\{0}

g(v)

�v� , g ∈ X′

a(·, ·;µ) : X ×X → R f(·;µ), l(·;µ) ∈ X′, µ ∈ P

�v� :=
	
v, v�, v ∈ X

g ∈ X′ vg ∈ X

�g�X′ = �vg�
g(v) = vg, v� , v ∈ X

(Isometry of Riesz-map)

(Representer property)

P ⊂ Rp
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Abstract Problem

� (A1): Uniform Boundedness and Coercivity of 

� is assumed to be coercive, i.e. 

and the coercivity is uniform wrt.    , i.e. there exists with

� is assumed to be bounded (continuous), i.e. 

and boundedness is uniform wrt.   , i.e. there exists a    s.th. 

� Remark:           may possibly be nonsymmetric

a(·, ·;µ)

α(µ) := inf
v∈X\{0}

a(v, v;µ)

�u�2
> 0

µ

µ

ᾱ

α(µ) ≥ ᾱ > 0, µ ∈ P.

a(·, ·;µ)

a(·, ·;µ)

γ̄

γ(µ) ≤ γ̄ <∞, µ ∈ P.
a(·, ·;µ)

γ(µ) := sup
u,v∈X\{0}

a(u, v;µ)

�u� �v� <∞
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Abstract Problem

� (A2): Uniform Boundedness of  

� are assumed to be uniformly bounded wrt.   :

for suitable constants

� Remark: Possible Discontinuity wrt. 

� Example:

is linear and bounded, hence a continuous linear 
functional with respect to x, but it is discontinuous with
respect to     

µf(·;µ), l(·;µ)
f(·;µ), l(·;µ)

�f(·;µ)�X′ ≤ γ̄f , �l(·;µ)�X′ ≤ γ̄l, µ ∈ P.
γ̄l, γ̄f

µ

l(x;µ) := x · χ[1,2](µ)
X = R,P := [0, 2]

µ

l(·;µ)
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Abstract Problem

� (A3): Parameter Separability

� We assume the forms to be parameter separable:

for suitable bilinear, continuous components
coefficient functions , and similar
expansions for with linear functionals and 
coefficient functions and expansion sizes

� Remark: 

� should be preferably small, as they will enter
the online computational complexity. 

� This property also is referred to as „affine“ parameter
dependence (which is slightly misleading)             

a, f, l

a(u, v;µ) =

Qa


q=1

θaq (µ)aq(u, v), u, v ∈ X,µ ∈ P

aq : X ×X → R

θaq : P → R, q = 1, . . . ,Qa

f, l fq, lq
Qf ,Ql

Qa, Qf ,Ql

θfq , θ
l
q
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Abstract Problem

� Sufficient Criteria for (A1), (A2)

Assume that we have parameter separability (A3) then

� If coefficient functions are bounded, then the
forms are uniformly bounded with respect to    :

� If coefficient functions are strictly positive,           
components are positive semidefinite,                         
and             is coercive for at least one , then is
uniformly coercive wrt. 

a, f, l

θaq , θ
f
q , θ

l
q

|θfq (µ)| ≤ C ⇒ �f(·;µ)�X′ ≤
�Qf

q=1C �fq�X′ =: γ̄f

Exercise 3: Prove sufficient criteria for uniform coercivity

aq aq(v, v) ≥ 0, ∀v, q
a(·, ·; µ̄) µ̄ ∈ P a

µ

θaq (µ) ≥ θ̄ > 0, ∀µ, q

µ
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Abstract Problem

� Definition: Full Problem (P)

� For            find a solution and output

such that

� Well-posedness: Existence, Uniqueness & Boundedness

� Assuming (A1),(A2) then a unique solution of (P) exists
and is uniformly bounded

� Proof: Lax Milgram & uniform boundedness/coercivity

µ ∈ P u(µ) ∈ X s(µ) ∈ R

a(u(µ), v;µ) = f(v;µ), ∀v ∈ X

s(µ) = l(u(µ);µ)

�u(µ)� ≤ �f(·;µ)�X′

α(µ)
≤ γ̄f
ᾱ
, |s(µ)| ≤ �l(·;µ)�X′ �u(µ)� ≤ γ̄lγ̄f

ᾱ
.
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Abstract Problem

� (P) Can both represent

� analytical problem, infinite dimensional (interesting from
approximation theoretic viewpoint, manifold properties)

� discretized problem, high dimensional (important for
practical application of RB-methods), also denoted
„detailed problem“ and „detailed solution“

� Examples of Instantiations of (P):

� Thermal Block

Exercise 4: Prove, that the bilinear and linear forms of the thermal block model

are separable parametric, uniformly bounded and uniformly coercive. In 

particular, provide the corresponding constants, coefficients, components.
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Abstract Problem

� Examples of Instantiations of (P)

� Parametric Matrix-Equation: 
For          find a solution of 

Corresponds to (P) by choosing

� Forms by given manifold:
Choose and arbitrary complicated (discontinuous, 
nonsmooth)               Then is the solution of (P) by

� Note: 

� (A1)-(A3) are not addressed here, output is ignored

� (P) can be used for MOR of finite dimensional matrix
equations, (P) may have arbitrary complex solutions

µ ∈ P u(µ) ∈ RH

A(µ)u(µ) = b(µ), A(µ) ∈ RH×H ,b(µ) ∈ RH

X := RH , a(u, v;µ) := uTA(µ)v, f(v) := b(µ)T v, u, v ∈ RH

X
u : P → X. u(µ)

a(v, v′;µ) := v, v′� f(v) := u(µ), v� v, v′ ∈ X
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Abstract Problem

� Solution Manifold

� Finite dimensional manifold for

� Boundedness of Manifold

� Is consequence of the well-posedness-result.

M := {u(µ), |u(µ) solves (P) , µ ∈ P} ⊂ X

Exercise 5: If consists of a single component,                  show, that is

contained in an (at most)         -dimensional linear space.

a Qa = 1 M
Qf

Qa = 1

M⊆ B γ̄f
ᾱ

(0)

Institute of Applied Analysis
and Numerical Simulation

10th August, 2017 B. Haasdonk

Abstract Problem

30 / 181



Abstract Problem

� Lipschitz-Continuity (extension of [EPR10])

� Assume that (A1),(A2),(A3) hold and additionally the
coefficient functions are Lipschitz-continuous, 

� Then the forms are Lipschitz-continuous wrt.  

� and the solutions u and s are Lipschitz-continuous with
respect to 

Exercise 6: Prove the Lipschitz-constants for u and s.

a, f, l µ

|θaq (µ)− θaq (µ′)| ≤ L �µ− µ′�

|a(u, v;µ)− a(u, v;µ′)| ≤ La �u� �v��µ− µ′� , La = L
�

q γaq

�u(µ)− u(µ′)� ≤ Lu �µ− µ′� , Lu =
Lf
ᾱ
+

γ̄fLa
ᾱ2

�s(µ)− s(µ′)� ≤ Ls �µ− µ′� , Ls =
Llγ̄f
ᾱ

+ γ̄lLu

etc.

µ
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Abstract Problem

� Differentiability (cf. [PR06])

� Assume that (A1),(A2),(A3) hold and additionally the
coefficient functions are differentiable wrt.   .

� Then the solution is differentiable with
respect to     and the partial derivatives are
the solution of 

with u-dependent right hand side

� Proof (sketch): Solution of (*) uniquely exists with Lax 
Milgram, and satisfies conditions for being derivative of u.

∂µiu(µ) ∈ X

µ

u : P → X

µ

a(∂µiu(µ), v;µ) = f̃i(v;u(µ), µ), v ∈ X

f̃i(·;u(µ), µ) :=
Qf


q=1

(∂µiθ
f
q (µ))fq(·)−

Qa


q=1

(∂µiθ
a
q (µ))aq(u(µ), ·;µ) ∈ X′.

(∗)
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Abstract Problem

� Remarks

� The partial derivatives are also denoted „sensitivity
derivatives“ and the variational problem (*) the
„sensitivity PDE“. 

� Similar statements are possible for higher order 
derivatives: right hand side of sensitivity PDE depending
on lower order derivatives.

� Sensitivity derivatives are useful for Parameter 
Optimization: RB model for sensitivity PDEs yields gradient
information [DH13,DH13b].

� The more smooth the coefficient functions, the more
smooth the solution manifold

� With increasing smoothness of the manifold, we may hope
and expect better approximability by an RB-approach.
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RB Method

� Reduced Basis / RB-Space

� Let parameter samples be given

� Define „Lagrangian“ RB-Space and Basis

� Remarks:

� RB may be identical to snapshots, or orthogonalized.

� Other MOR-Techniques: A RB-space may also be chosen
completely different/arbitrary, as long as it is a N-dimensional 
subspace: Proper Orthogonal Decomposition (POD) [Vo13], 
Balanced Truncation, Krylov-Supspaces, etc. [An05]

� For now: Simple choice of samples: Random or equidistant
samples, assuming linear independence of snapshots.

� Later: More clever choice: a-priori analysis / greedy

SN = {µ(1), . . . , µ(N)} ⊂ P

XN := span{u(µ(i))}Ni=1 = spanΦN , ΦN := {ϕ1, . . . , ϕN}
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RB Method

� Definition: Reduced Problem (PN)

� For            find a solution and output

such that

� Remarks:

� The above is called „Galerkin“ projection, as Ansatz and test 
space are identical (in contrast to „Petrov-Galerkin“ required
for non-coercive problems)

� Improved output estimation is possible by primal-dual
technique: see later section.   

� „Galerkin Orthogonality“: Error is a-orthogonal to RB-space:            

µ ∈ P uN(µ) ∈ XN sN(µ) ∈ R

a(uN(µ), v;µ) = f(v;µ), ∀v ∈ XN

sN(µ) = l(uN(µ);µ)

a(u− uN , v) = a(u, v)− a(uN , v) = f(v)− f(v) = 0, v ∈ XN
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RB Method

� Well-posedness: Existence, Uniqueness & Boundedness

� Identical statement as for (P), even with same constants: 

� Assuming (A1),(A2), then a unique solution of (PN) exists, 
and is uniformly bounded

� Proof: Lax-Milgram is applicable, as continuity and 
coercivity is inherited to subspaces:

then same argumentation as for (P) applies.

�uN(µ)� ≤
�f(·;µ)�X′

α(µ)
≤ γ̄f
ᾱ
, |sN(µ)| ≤ �l(·;µ)�X′ �u(µ)� ≤ γ̄lγ̄f

ᾱ
.

inf
u∈XN\{0}

a(u, u;µ)

�u�2
≥ inf

u∈X\{0}

a(u, u;µ)

�u�2
= α(µ)

sup
u,v∈XN\{0}

a(u, v;µ)

�u� �v� ≤ sup
u,v∈X\{0}

a(u, v;µ)

�u� �v� = γ(µ)
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RB Method

� Discrete Form of RB Problem

� For given and basis define

� Solve the following linear system for

� Then the solution of (PN) is obtained by

� Proof: This representation of           fulfills (PN) by linearity

µ ∈ P ΦN = {ϕi}Ni=1

uN(µ) = (uNj)
N
j=1 ∈ RN

AN(µ) := (a(ϕj, ϕi;µ))
N
i,j=1 ∈ RN×N

fN(µ) := (f(ϕi;µ))
N
i=1, lN(µ) := (l(ϕi;µ))

N
i=1 ∈ RN

AN(µ)uN(µ) = fN(µ)

uN(µ)

uN(µ) =
N


j=1

uNjϕj, sN(µ) = l(µ)
TuN(µ)
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RB Method

� Algebraic Stability by Using Orthonormal Basis

� If is symmetric and       is orthonormal, then the
condition number of              is bounded (independent of N)

� Proof: symmetry

Let be EV for and set

Orthonormality yields

Definition of        and continuity yields

Hence , similar

cond2(AN(µ)) = �AN(µ)�
��AN(µ)

−1
�� ≤ γ(µ)

α(µ)

a(·, ·;µ) ΦN

AN(µ)

⇒ cond2(AN) = λmax/λmin

u = (ui)Ni=1 λmax u :=
�N

i=1 uiϕi ∈ X

�u�2 =
��

i uiϕi,
�

j ujϕj

=
�

i,j uiuj ϕi, ϕj� =
�

i u
2
i = �u�2

AN

λmax �u�2 = uTANu = a
��

i uiϕi,
�

j ujϕj
�
= a(u, u) ≤ γ(µ) �u�2

λmax ≤ γ(µ) λmin ≥ α(µ)
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RB Method

� Remark: Difference FEM/RB

� Let denote the FEM (or Finite Volume, Discontinuous
Galerkin) matrix

� The RB matrix is small but typically dense
in contrast to the typically sparse but large matrix

� The condition of           does not deteriorate with N (if
using orthonormal basis, e.g. by Gram Schmidt), while the
condition number of        typically grows polynomial in H. 

A(µ)

AN(µ) ∈ RN×N

A(µ) ∈ RH×H

AN(µ)

A(µ)
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RB Method

� Relation to Best-Approximation (Lemma of Cea)

� For all          holds

� Proof: For all            continuity and coercivity result in 

Where follows from Galerkin
orthogonality as

µ ∈ P

�u(µ)− uN(µ)� ≤
γ(µ)

α(µ)
inf

v∈XN

�u(µ)− v�

v ∈ XN

= a(u− uN , u− v) ≤ γ �u− uN� �v − uN�

a(u− uN , v − uN) = 0

v − uN ∈ XN

= a(u− uN , u− v) + a(u− uN , v − uN)� �� �
=0

α �u− uN�2 ≤ a(u− uN , u− uN)
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RB Method

� Remarks:

� „Quasi-optimality“: RB-scheme is as good as best-approximation
up to a constant. 

� Implication: Approximation scheme and space are decoupled: 
Find a good approximating space (without RB-scheme) you are
sure, that the RB-scheme performs well. 

� Similar best-approximation bounds are known for interpolation
techniques (via „Lebesgue“-constant). But for interpolation
techniques (e.g. polynomial) these constants diverge to infinity
for growing dimension of the approximation space.

� In contrast: the bounding constant in RB-approximation does
not grow to infinity with growing dimension. This is a 
conceptional advantage of Galerkin projection over interpolation
techniques.

Exercise 7: Assuming symmetric a, the Lemma of Cea can be sharpened

by a squareroot in the constants. (Hint: Energy norm, introduced soon)
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RB Method

� Error-Residual Relation

� The error satisfies a variational problem with residual as 
right hand side:

� For          we define the residual                  via

Then the error satisfies

� Proof:

� Remark: Residual vanishes on the RB-space:

µ ∈ P r(·;µ) ∈ X′

r(v;µ) := f(v;µ)− a(uN(µ), v;µ), v ∈ X

e(µ) := u(µ)− uN(µ)

a(e(µ), v;µ) = r(v;µ), v ∈ X

a(e, v) = a(u, v)− a(uN , v) = f(v)− a(uN , v) = r(v), v ∈ X

v ∈ XN ⇒ r(v) := f(v)− a(uN , v) = a(uN , v)− a(uN , v) = 0
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RB Method

� Reproduction of Solutions

� If for some then

� Proof:                                    hence

� Remark:

� Reproduction of solutions is a basic consistency property. 
Holds trivially, if error-bounds are available, but for some
more complex RB-schemes this may be all you can get
and a good initial consistency check. 

� Validation of Program Code: Choose Basis by snapshots

Then we expect to be a unit vectoruN(µ(i)) = ei ∈ RN

u(µ) ∈ XN µ ∈ P uN(µ) = u(µ)

e(µ) = u(µ)− uN(µ) ∈ XN

α �e�2 ≤ a(e, e) = r(e) = 0

ϕi := u(µ(i)), i = 1, . . . , N
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RB Method

� Uniform Convergence of RB-approximation

� Assume Lipschitz-continuity of coefficient functions, then

and          are Lipschitz-continuous with
independent of N.

� Assume to be sample sets getting dense in     , 

� Then for all     and „closest“   

� Therefore, we obtain

� Note: Convergence rate linear in       is of no practical use

u(µ) uN(µ) Lu

P{SN}N∈N

µ µ∗ := argminµ′∈SN �µ− µ′�

lim
N→∞

sup
µ∈P

�u(µ)− uN(µ)� = 0

≤ Lu �µ− µ′�+ 0+ Lu �µ− µ′� ≤ 2hNLu

hN := sup
µ∈P

dist(µ,SN), lim
N→∞

hN = 0„fill distance“

�u(µ)− uN(µ)� ≤ �u(µ)− u(µ∗)�+ �u(µ∗)− uN(µ∗)�+ �uN(µ∗)− uN(µ)�

hN
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RB Method

� Coercivity Constant Lower Bound

� We assume to have available a rapidly computable lower
bound for the coercivity constant

� We assume this to be large, w.l.o.g. 

(otherwise simply set )

� Continuity Constant Upper Bound

� We assume to have available a rapidly computable upper
bound for the continuity constant

� We assume this to be small, w.l.o.g. 

(otherwise simply set )

ᾱ ≤ αLB(µ)
αLB(µ) := ᾱ

γUB(µ) ≥ γ(µ), µ ∈ P
γ̄ ≥ γUB(µ)

γUB(µ) := γ̄

0 < αLB(µ) ≤ α(µ), µ ∈ P
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RB Method

� A-posteriori Error Bounds

� For all           holds

� Proof: testing the error-residual eqn. with e yields

division then yields the bound for u.

Bound for output error follows with continuity

� Note: Output bound is coarse, can be improved (see later)

µ ∈ P

�u(µ)− uN(µ)� ≤ ∆u(µ) :=
�r(·;µ)�X′

αLB(µ)

|s(µ)− sN(µ)| ≤ ∆s(µ) := �l(·;µ)�X′ ∆u(µ)

αLB(µ) �e�2 ≤ a(e, e) = r(e) ≤ �r�X′ �e�

|s− sN | = |l(u)− l(uN)| = |l(u− uN)| ≤ �l(·;µ)�X′ ∆u(µ)
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RB Method

� Remark:

� General pattern: Derive error-residual relation, then apply
stability statement to obtain an error bound.

� If u is the continous solution in infinite X, then the bound
is „a-priori“, as the residual norm is not computable.

� In case of RB methods: If u is the FEM solution in finite-
dimensional X, the residual norm is computable, hence the
error bound turns into a computable quantity. 

� It is „a-posteriori“: reduced solution must be available.

� „Rigorosity“: As the bound is a provable upper bound on 
the error, the bound is denoted „rigorous“ in RB methods
(corresponding to „reliable“ error estimators in FEM 
literature)

� RB method with a-posteriori error control is denoted a 
„certified“ RB method
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RB Method

� Vanishing Error Bound / Zero Error Prediction

� If then

� Proof:

� Remark:

� Initial desired property of an error bound: Bound is zero if
the error is zero. This may give hope, that the error bound
is not too conservative, i.e. not too large overestimating
the error.

� The statement is trivial in case of „effective“ error bounds
as seen soon. But if no „effective“ error bounds are
available for a more complex RB scheme, this may be as 
much as you can get, or a useful initial property of an 
error estimator.

� This property is again useful for validating program code

u(µ) = uN(µ) ∆u(µ) = ∆s(µ) = 0

e = 0 ⇒ 0 = a(e, v) = r(v) ⇒ �r�X′ = 0 ⇒ ∆u = 0 ⇒ ∆s = 0
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RB Method

� (Uniform) Effectivity Bound

� The „effectivity“          of           is defined and bounded by

� Proof: Test error eqn. with Riesz-repr.            of residual:

Therefore and  

� Remark

� Upper bound on the effectivity can be evaluated rapidly

� Related notion „efficiency“ in FEM literature.

� „Rigorosity“ of error bound implies ηu(µ) ≥ 1

ηu(µ) ∆u(µ)

vr ∈ X

�vr�2 = vr, vr� = r(vr) = a(e, vr) ≤ γUB(µ) �e� �vr�

ηu(µ) =
∆u(µ)
�e(µ)� =

�vr�
αLB(µ)�e�

≤ γUB(µ)
αLB(µ)

≤ γ̄
ᾱ

ηu(µ) :=
∆u(µ)

�u(µ)−uN(µ)�
≤ γUB(µ)

αLB(µ)
≤ γ̄

ᾱ
, µ ∈ P

�vr�
�e� ≤ γUB(µ)
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RB Method

� Relative Error Bound and Effectivity (cf. [PR06])

� For all           holds

under the condition that

� Remark:

� Relative bounds are typically only valid if the bound is
sufficiently small. If these are not small, the RB space
should be improved.

Exercise 8: Prove this relative error bound and effectivity bound

µ ∈ P

ηrelu (µ) :=
∆rel

u (µ)

�e(µ)� / �u(µ)� ≤ 3 ·
γUB(µ)

αLB(µ)
≤ 3 · γ̄

ᾱ
.

�u(µ)− uN(µ)�
�u(µ)� ≤ ∆rel

u (µ) := 2 · �r(·;µ)�X′

αLB(µ)
· 1

�uN(µ)�

∆rel
u (µ) ≤ 1
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RB Method

� Remark: No Effectivity for Output Error Bound

� Without further assumptions, one cannot expect a 
bounded effectivity for the output error estimator

� Example: Choose and     such that

Then also                                 are nonzero.

Now choose such that

Hence is not well defined.

� (A4) Symmetry:

� For the remainder of this section, we additionally assume, 
that is symmetric.       

XN µ uN(µ) /= u(µ)

e(µ), r(µ),∆u(µ),∆s(µ)

l

l(u− uN) = 0⇒ s(µ)− sN(µ) = l(e) = 0
∆s(µ)

|s(µ)−sN(µ)|

∆s(µ)

a(·, ·;µ)

Institute of Applied Analysis
and Numerical Simulation

10th August, 2017 B. Haasdonk

RB Method

52 / 181



RB Method

� Energy norm

� For symmetric, coercive, continuous we define
the (  -dependent) energy scalar product and norm

� Norm Equivalence

� We have

� Proof: Coercivity and Continuity imply

u, v�µ := a(u, v;µ)

a(·, ·;µ)
µ

�v�µ :=
�
v, v�µ, u, v ∈ X

	
α(µ) �u� ≤ �u�µ ≤

	
γ(µ) �u� , u ∈ X,µ ∈ P

α(µ) �u�2 ≤ a(u, u;µ)
� �� �
=�u�2µ

≤ γ(µ) �u�2
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RB Method

� Energy Norm Error bound and Effectivity [PR06]

� For           holds

� As                this is an improvement by a squareroot

Exercise 9: Prove this energy error bound and effectivity bound

µ ∈ P

�u(µ)− uN(µ)�µ ≤ ∆en
u (µ) :=

�r(·;µ)�X′	
αLB(µ)

ηenu (µ) :=
∆en

u (µ)

�u(µ)− uN(µ)�µ
≤
�
γUB(µ)

αLB(µ)
≤
�
γ̄

ᾱ
, µ ∈ P

γ(µ)

α(µ)
≥ 1
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RB Method

� Remark: Possible Improvement by Changing Norm

� By choosing and setting as new norm on 
X, we get

� The RB-approximation is not affected

� But the error bound and effectivities are improved:

They are optimal in     :      

and (assuming continuity) almost optimal in the vicinity of 

In the following: return to arbitrarily chosen norm on X

µ̄ ∈ P

α(µ̄) = 1 = γ(µ̄)

µ̄

µ̄

�u� := �u�µ̄

∆u(µ̄) = �e(µ̄)� , ηu(µ̄) = 1

Institute of Applied Analysis
and Numerical Simulation

10th August, 2017 B. Haasdonk

RB Method

55 / 181



RB Method

� Improved Output Error Bound & Effectivity, Compliant Case

� Assume that is symmetric and        (the so called
„compliant“ case), then we obtain the improved output error
bound and effectivity

� Remark:

� Proof: Follows later from more general statement

� The bound gives a definite sign on the error:  

� This output error bound is better as it is quadratic in        
while is only linear

� The thermal block is a „compliant“ problem.

f = la(·, ·;µ)

sN(µ) ≤ s(µ)
�r�X′

∆s(µ)

∆′s(µ)

0 ≤ s(µ)− sN(µ) ≤ ∆′s(µ) :=
�r(·;µ)�2X′

αLB(µ)

η′s(µ) :=
∆′s(µ)

s(µ)− sN(µ)
≤ γUB(µ)

αLB(µ)
≤ γ̄

ᾱ
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Experiments

� Thermal Block

� rb_tutorial(1):

Full simulation, solution

variety as seen earlier

� rb_tutorial(2): 

Demo gui for

full simulation:

� rb_tutorial(3)

All steps for generation

of reduced model and 

timing
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Experiments

� Error Estimator and True Error

� rb_tutorial(4): Lagrangian basis for N=5 

� Parameter sweep for

estimator is cheap

� Estimator and error are

zero for samples

� Estimator is upper bound

of true error

� For small parameters larger error, 

hence more samples would be required

SN = (0.1, 0.1, 0.1, 0.1)

(0.5, 0.1, 0.1, 0.1)

(0.9, 0.1, 0.1, 0.1)

(1.3, 0.1, 0.1, 0.1)

(1.7, 0.1, 0.1, 0.1)

B1 = B2 = 2
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Experiments

� Effectivity and Bounds:

� rb_tutorial(5)

α(µ) = min(µi) = 0.1

γ(µ) = max(µi) = µ1

� Effectivities are good, only

order of 10 

� Effectivity upper bound
is verified

� Effectivity undefined for

basis samples (division
by zero)
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Experiments

� Error Convergence:

� rb_tutorial(6):

� Exponential error/bound

convergence observed

� Upper bound very tight

� Numerical accuracy limit

for estimators

� N equidistant samples

� Gram-Schmidt orth.  

� Test-error/estimator: 

maximum over

random test set

µ1 ∈ [0.5, 2]

|Stest| = 100Stest ⊂ P

B1 = B2 = 3, µ = (µ1, 1, 1, 1 . . . , 1)
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Experiments

� Error Convergence:

� Gram-Schmidt orthonormalized basis: rb_tutorial(7)
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Offline/Online Decomposition

� Offline/Online Decomposition

� Offline Phase: 

� Possibly computationally intensive, depending on  

� Performed only once

� Computation of snapshots, reduced basis, Riesz-representers
and auxiliary parameter-independent low-dim. quantities

� Online Phase:

� Rapid, i.e. complexity polynomial in                    , independent 
of 

� Performed multiple times for different parameters

� Assembly and solution of RB-system, computation of error
estimators and effectivity bounds.

uN(µ1), . . . , uN(µk)

offline phase online phase

time

N,Qa,Qf ,Ql

H := dim(X)

H
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Offline/Online Decomposition

� Required: Discretization of (P)

� Space , high dimension

� Inner Product Matrix

� Assume component matrices and vectors

� For any evaluate coefficients & assemble full system

� Solve linear system for

� Obtain solution of (P):

� Remark: 

� Components may be nontrivial for third-party-software!

X = span{ψi}Hi=1 H := dim(X)

K := (ψi, ψj�)Hi,j=1 ∈ RH×H

fq := (fq(ψi))Hi=1 ∈ RH lq := (lq(ψi))Hi=1 ∈ RH

A(µ) :=
�Qa

q=1 θ
a
q (µ)Aq, f(µ) :=

�Qf

q=1 θ
f
q (µ)fq, l(µ) :=

�Ql

q=1 θ
l
q(µ)lq

u(µ) =
�H

i=1 uiψi, s(µ) := lTu

µ ∈ P

u(µ) = (ui)
H
i=1 ∈ RH

Aq := (aq(ψj , ψi))Hi,j=1 ∈ RH×H

A(µ)u(µ) = f(µ)
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Offline/Online Decomposition

� Offline/Online Decomposition of (PN)

� Offline: After the computation of a basis
construct the parameter-independent component matrices
and vectors

� Online: For given evaluate the coefficient functions
and assemble the matrix and vectors

This exactly gives the discrete RB system

stated earlier, that can then be solved and gives

AN,q := (aq(ϕj, ϕi))
N
i,j=1 ∈ RN×N

fN,q := (fq(ϕi))Ni=1 ∈ RN lN,q := (lq(ϕi))Ni=1 ∈ RN

µ ∈ P

AN(µ) :=

Qa


q=1

θaq (µ)AN,q, fN(µ) :=

Qf


q=1

θfq (µ)fN,q, lN(µ) :=

Ql


q=1

θlq(µ)lN,q

AN(µ)uN(µ) = fN(µ)

ΦN = {ϕi}Ni=1

uN(µ), sN(µ)
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Offline/Online Decomposition

� Remark: Simple Computation of Reduced Components

� The reduced component matrices/vectors do not require
any space-integration, if the high dimensional components
are available:

� Assume expansion of reduced basis vectors

With coefficient matrix

� Reduced components are then simply obtained by
matrix-matrix/matrix-vector multiplications

ϕj =
�H

i=1 ϕijψi

ΦN := (ϕij)
H,N
i,j=1 ∈ RH×N

AN,q = Φ
T
NAqΦN , fN,q = Φ

T
Nfq, lN,q = Φ

T
N lq
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Offline/Online Decomposition

� Complexities of (PN)

� Offline:

� Online:                                           independent of H

� Runtime Diagram

� Runtime for simulations

� With (P):  

� With (PN):

� Intersection

� ACHTUNG: RB Payoff only for „multiple“ requests

� RB model offline time only pays off if sufficiently many
reduced simulations are expected.

O(NH2 +NH(Qf +Ql) +N
2HQa)

O(N3 +N(Qf +Ql) +N
2Qa)

t = k · tfull
t = toffline + k · tonline

k∗ =
toffline

tfull−tonline

k

k ≥ k∗

kk∗

t (P)

(PN)
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Offline/Online Decomposition

� Remark: No Distinction between and

� Remember, we did not discriminate in (P) between the
true weak (Sobolev) space solution and the fine FEM 
solution, say (we only do this for this slide). This can
be motivated by two arguments:

� 1. In view of the independency of the online phase on H, 
we can assume arbitrary small, hence H arbitrary
large (just let the offline phase be sufficiently accurate) 
without affecting the online runtime.

� 2. In practice, the reduction error will dominate the overall
error, the FEM error is neglegible

Then it is sufficient to control �uh − uN�
ε := �u− uh� ≪ �uh − uN�

�uh − uN� − ε ≤ �u− uN� ≤ �uh − uN�+ ε uN (µ)

u(µ)

uh(µ)

uh

u

�u− uh�

u uh
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Offline/Online Decomposition

� Requirements for Error and Effectivity Bounds

We require offline/online decompositions of the following

quantities if we want to compute a-posteriori and effectivity

bounds rapidly:

� Dual norm of the residual                  for all error bounds

� Dual norm of output functional for output error
bound

� Norm of RB-solution for relative error bound

� Lower coercivity constant bound for all error and 
effectivy bounds

� Upper bound for continuity constant for
effectivity upper bound

�r(·;µ)�X′

�l(·;µ)�X′

�uN(µ)� ∆rel
u (µ)

∆s(µ)

αLB(µ)

γUB(µ)
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Offline/Online Decomposition

� Parameter Separability of Residual

� Set                        and define via

� Let be solution of (PN)

� Define via

� Let denote the Riesz-representers of       

� Then are parameter separable via

� Proof: By definition and linearity

Qr := Qf +NQa rq ∈ X′, q = 1, . . . ,Qr

. . . , a1(ϕN , ·), . . . , aQa
(ϕN , ·))

uN(µ) =
�N

i=1 uNiϕi

(r1, . . . , rQr
) :=

�
f1, . . . , fQf

, a1(ϕ1, ·), . . . , aQa
(ϕ1, ·),

(θr1, . . . , θ
r
Qr
) :=

�
θf1 , . . . , θ

f
Qf
,−θa1 · uN1, . . . ,−θaQa

· uN1,
θrq(µ), q = 1, . . . ,Qr

. . . ,−θa1 · uNN , . . . ,−θaQa
· uNN

�

vr, vr,q ∈ X r, rq

r, vr

r(v;µ) =

Qr


q=1

θrq(µ)rq(v), vr(µ) =

Qr


q=1

θrq(µ)vr,q, µ ∈ P, v ∈ X
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Offline/Online Decomposition

� Computation of Riesz-Representers

� Recall:                        , 

� For            the coefficient vector of its
Riesz-representer is obtained by
solving the sparse linear system

with right hand side vector

� Proof: For any with coefficient vector
we verify

K := (ψi, ψj�)Hi,j=1X = span{ψi}Hi=1
g ∈ X′ v = (vi)

H
i=1 ∈ RH

vg =
�H

i=1 viψi ∈ X

Kv = g

g = (g(ψi))Hi=1

u =
�H

i=1 uiψi u = (ui)Hi=1

g(u) =
H


i=1

uig(ψi) = u
Tg = uTKv =

�
H


i=1

uiψi,
H


j=1

vjψj

�

= vg, u�
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Offline/Online Decomposition

� Offline/Online Decomposition of Dual Norm of Residual

� Offline: After the offline-phase of (PN) we compute the
Riesz-representers of the residual components

and define the matrix

� Online: For given and RB-solution compute
the residual coefficient vector and

� Proof: G is symmetric as                            , then

µ ∈ P

vr,q ∈ X
rq ∈ X′

uN(µ)

θr(µ) := (θr1(µ), . . . , θ
r
Qr
(µ))

�r(·;µ)�X′ =
	
θr(µ)TGrθr(µ)

rq(vr,q′) = vr,q, vr,q′�

�r(·;µ)�2X′ = �vr�2 =
��Qr

q=1 θ
r
q(µ)vr,q,

�Qr

q′=1 θ
r
q′(µ)vr,q′


= θr(µ)

TGrθr(µ)

Gr := (rq(vr,q′))
Qr

q,q′=1 ∈ RQr×Qr
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Offline/Online Decomposition

� Offline/Online Decomposition for

� Completely analogous as for dual norm of residual:

� Offline: compute the Riesz-representers of the
output functional components and define

� Online: For given compute the output coefficient
vector and 

�l(·;µ)�X′

vl,q ∈ X
lq ∈ X′

µ ∈ P
θl(µ) := (θl1(µ), . . . , θ

l
Ql
(µ))

�l(·;µ)�X′ =
	
θl(µ)TGlθl(µ)

Gl := (lq(vl,q′))
Ql

q,q′=1 ∈ RQl×Ql
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Offline/Online Decomposition

� Offline/Online Decomposition for

� Offline: After the basis generation, compute the reduced
inner product matrix

� Online: For given and RB solution with
coefficient vector we obtain

� Remark

� Simple computation via basis matrix multiplication:

�uN(µ)�

KN := (ϕi, ϕj�)Ni,j=1 ∈ RN×N

µ ∈ P uN(µ)

uN(µ) ∈ RN

�uN(µ)� =
	
uN(µ)TKNuN(µ)

KN := ΦT
NKΦN
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Offline/Online Decomposition

� „Min-Theta“ Approach for Coercivity Lower Bound

� One approach that can be applied in certain cases:

� Assume that the components satisfy

and the coefficients fulfill

Let such that is available.

� Then we have

with the lower bound

� (No symmetry required)

aq(u, u) ≥ 0, q = 1, . . . , Qa

θaq (µ) > 0, q = 1, . . . ,Qa

µ̄ ∈ P α(µ̄)

0 < αLB(µ) ≤ α(µ), µ ∈ P

αLB(µ) := α(µ̄) · min
q=1,...,Qa

θaq (µ)

θaq (µ̄)
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Offline/Online Decomposition

� Computation of        for (P)

� In offline-phase some evaluations of        may be required, 
e.g. for Min-theta or other procedures.

� Let and                            be given.

Define symmetric part , then

� Proof: Assume , use substitution in  

Hence, alpha minimizes Rayleigh-quotient, i.e. 

and                are similar thus have identical :

α(µ)

α(µ)

K := (ψi, ψj�)Hi,j=1A := (a(ψj, ψi;µ))Hi,j=1

As :=
1
2(A+AT )

α(µ) = λmin(K
−1As)

K = LLT v = LTu

α(µ) = inf
u∈X

a(u, u)

�u�2
= inf
u∈RH

uTAsu

uTKu
= inf
v∈RH

vTL−1AsL
−Tv

vTv

α(µ) = λmin(L
−1AsL

−T )

K−1As L−1AsL
−T λmin

LT (K−1As)L
−T = LTL−TL−1AsL

−T = L−1AsL
−T
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Offline/Online Decomposition

� Remark: Prevent Inversion of K:

� Inversion of K frequently badly conditioned, fill-in-effect, 
etc., hence prevention of inversion is recommended:

� Reformulation as generalized Eigenvalue problem:

and determine smallest generalized eigenvalue

� Remark: Computation of Continuity Constant & Bound

� Similar: Computation of continuity constant via largest
singular value of suitable matrix.

� Then one can formulate max-theta approach for a 
continuity constant upper bound

K−1Asu = λu ⇔Asu = λKu

Exercise 10: Formulate a Max-Theta approach for a continuity constant upper

bound , under the assumptions, that is symmetric, all           

are positive semidefinite,                    and            is available for one

γUB(µ) a(·, ·;µ) aq(·, ·)
θaq (µ) > 0 γ(µ̄) µ̄ ∈ P
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Offline/Online Decomposition

� Complexities of Error Estimators

(Including Min-theta)

� Offline:

� Online:                                        independent of H

� Very clear: Online quadratic dependence on               , 
this can become prohibitive in case of too large 
expansions

� Remark: Successive Constraint Method [HRSP07] 

� Alternative to Min-Theta

� Offline: Computation of many

� Online: solution of a small linear program for computing
coercivity lower bound (or similar continuity upper bound)

O(H3 +H2(Qf +Ql +NQa) +H(Qf +NQa)2 +HQ2l )

O((Qf +NQa)2 +Q2l +Qa)

∆u(µ),∆s(µ)

Qa,Qf ,Ql

α(µ(i)), i = 1, . . . ,M
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Basis Generation

� Recall: „Lagrangian“ Reduced Basis

� Let parameter samples be given

� Define „Lagrangian“ RB-Space and Basis

� Remarks:

� Good approximation globally in     is possible, subject to 
suitably distributed points.

� This is in contrast to local approximation, e.g. first order 
Taylor basis as used in early RB literature [FR83]:  

� Central Questions: 

� How to select sample points? How good will the basis be? 
For which problems will it work?

SN = {µ(1), . . . , µ(N)} ⊂ P

XN := span{u(µ(i))}Ni=1 = spanΦN , ΦN := {ϕ1, . . . , ϕN}

ΦN := {u(µ(0), ∂µiu(µ(0), . . . , ∂µpu(µ(0))))}

P
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Basis Generation

� Optimal RB Space

� Highly nonlinear optimization problem for N-dimensional 
space, practically infeasible

� Modifications for practical „Greedy Procedure“:

� Iterative relaxation: Instead of one optimization problem
for complete basis, incrementally search „next best 
vector“ and extend existing basis

� Instead of optimization over parameter space perform
maximum search over training set of parameters

� Allow general error indicator as substitute for

(using ) 

E(XN) := sup
µ∈P

�u(µ)− uN(µ)�

∆(Y,µ) ∈ R+
�u(µ)− uN(µ)� XN := Y

XN := arg min
Y⊂X

dim(Y )=N

E(XN)
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Basis Generation

� Greedy Procedure [VPRP03]

� Let be a given training set of parameters and

a given error tolerance. Set

and define iteratively

� while

� end while

Finally set

Strain ⊆ P
εtol > 0 Φ0 := ∅,X0 := {0}, S0 := ∅

εn := max
µ∈Strain

∆(Xn, µ) > εtol

Sn+1 := Sn ∪ {µ(n+1)}
ϕn+1 := u(µ(n+1))

µ(n+1) := arg max
µ∈Strain

∆(Xn, µ)

Φn+1 := Φn ∪ {ϕn+1}
Xn+1 := Xn + span{ϕn+1}

N := n+ 1
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Basis Generation

� Remarks:

� First use of Greedy in RB in [VPRP03]

� In literature also frequently first „search“ is skipped by
arbitrarily choosing

� The training set is mostly chosen as random or structured
finite subset of

� Orthonormalization by Gram-Schmidt can be added in loop

� Termination: Simple criterion: If for all           and all 
subspaces holds

then the Greedy algorithm terminates in at most
steps. Reason: No sample will be selected twice. 

� Basis is hierarchical: 

µ(1)

Y ⊂ X
u(µ) ∈ Y ⇒ ∆(Y,µ) = 0

|Strain|

Φn ⊂ Φm, n < m

P

µ ∈ P
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Basis Generation

� Choice of Error Indicators

� i) Orthogonal projection error as indicator

Motivation: If projection error is small then with „Cea“ 
also RB-error is small

-Expensive to evaluate, high dimensional operations

-All snapshots for all training parameters must be
computed and stored,           thus limited.

+Termination criterion trivially satisfied

+Approximation space decoupled from RB scheme

+Can be applied without RB-scheme and without a-
posteriori error estimators

∆(Y, µ) := infv∈Y �u(µ)− v� = �u(µ)− PY u(µ)�

|Strain|
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Basis Generation

� Choice of Error Indicators

� ii) True RB error as indicator

Motivation: This directly is the error measure used in 

-Expensive to evaluate, high dimensional operations

-All snapshots for all training parameters must be
computed and stored,             thus limited.

+Termination criterion satisfied in case of „Reproduction
of Solutions“ property

+Can be applied without a-posteriori error estimators

∆(Y, µ) := �u(µ)− uN(µ)�

E(XN)

|Strain|
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Basis Generation

� Choice of Error Indicators

� iii) A-posteriori error estimator as indicator:

Motivation: Minimizing this ensures that true RB-error
also is small, if bounds are „rigorous“ 

+Cheap to evaluate, only low dimensional operations

+Only N snapshots must be computed,            can be
very large.

+Termination criterion satisfied in case of „Vanishing
Error Bound“ and „Reproduction of Solutions“ property

-If a-posteriori error bound is overestimating the RB 
error much then the space may be not good

∆(Y, µ) := ∆u(µ) (or energy or relative error bounds)

|Strain|
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Basis Generation

� Goal-Oriented Indicators:

� When using output-error or output error estimators

in the greedy procedure, the procedure is called „goal
oriented“. The basis will be possibly quite small, very
accurately approximating the output, but not necessarily
approximating the field variable well.

� When using field-oriented indicators

in the greedy procedure, the basis may be larger, well 
approximating both the field variable and the output.

∆(Y, µ) := |s(µ)− sN(µ)|

∆(Y, µ) := ∆u(µ),∆rel
u (µ),∆en

u (µ)
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Basis Generation

� Monotonicity

� In general

� This means, that greedy error sequence may be
non monotonic

� If relation to best-approximation holds

at least a boundedness or even asymptotic decay can be
expected

� Monotonicity, however, can be proven in special cases:

Exercise 11: Prove that the Greedy algorithm produces monotonically

decreasing error sequences if

i)                                                  , i.e. indicator chosen as orth. projection error

ii) in compliant case (               symmetric and          )  and                                  , 

i.e. indicator chosen as energy error estimator.

(εn)n≥1
∆(Y, µ) := �u(µ)− PY u(µ)�

∆(Y, µ) := ∆en
u (µ)a(·, ·;µ) l = f

∆(Xn, µ) ≤ ε \⇒ ∆(Xn+1, µ) ≤ ε

∆(Xn, µ) ≤ C infv∈Xn
�u(µ)− v�

(εn)n≥1
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Basis Generation

� Remark: Overfitting, Quality Measurement

� In terms of statistical learning theory,           is a „training
set“ of parameters and      is the „training error“

� must represent well, should be chosen as large 
as possible

� If training set is chosen too small or unrepresentative
„overfitting“ will occur, i.e.

� => Low training error is a necessary but not a sufficient
criterion for a good model (example „notepad“)

� => Never compare models only by training error. Use
error on independent „test-set“ instead.

Strain
εN

Strain P

maxµ∈P ∆(XN , µ)≫ εN
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Basis Generation

� Practice/Theory Gap: 

� Rb_tutorial(8):

� So Greedy is a well performing heuristic procedure

� Formal convergence statements for analytical foundation?

� Greedy with random

� Estimator

� Gram-Schmidt orth.  

�Test-error/estimator: 

maximum over

random test set

� Exponential error decay

observed

B1 = B2 = 2, µ ∈ P = [0.5, 2]4

Strain ⊂ P

Stest ⊂ P |Stest| = 100

|Strain| = 1000

∆(Y, µ) := ∆u(µ)
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Basis Generation

� Kolmogorov n-width

� Maximum approximation error of best linear subspace

� Decay indicates „approximability by linear subspaces“ 

� is a monotonically decreasing sequence

� Examples

� Unit balls: bad approximation, no decay

� „Cereal Box“: good approximation, exponential decay

dn(M) := inf
Y⊂X

dim(Y )=n

sup
u∈M

�u− PY u�

M = {u | �u� ≤ 1} ⊂ H1([0, 1]) dn(M) = 1, n ∈ N

�

i∈N

[−2−i, 2−i] ⊂ l2(R) dn(M) ≤ C · 2−n, n ∈ N

dn(M)

(dn(M))n∈N

Institute of Applied Analysis
and Numerical Simulation

10th August, 2017 B. Haasdonk

Basis Generation

92 / 181



Basis Generation

� Greedy Convergence Rates [BCDDPW10], [BMPPT09]

� If is well approximable by linear spaces, then the
Greedy procedure will provide a quasi-optimal subspace:

� Let be compact and the greedy selection
criterion guarantee (for suitable )

� Then we can obtain algebraic convergence:

� Or exponential convergence:

(For suitable constants)

Strain = P
γ ∈ (0, 1]

���u(µ(n+1))− PXn
u(µ(n+1))

��� ≥ γ sup
u∈M

�u− PXn
u�

M

dn(M) ≤Mn−α, n > 0 ⇒ εn ≤ CMn−α, n > 0

dn(M) ≤Me−anα , n > 0 ⇒ εn ≤ CMe−cnβ , n > 0
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Basis Generation

� Strong vs. Weak Greedy

� If it is a „Strong Greedy“

� If it is a „Weak Greedy“    

� Strong Greedy can be realized by

� Error Estimator Results in Weak Greedy!

� Thanks to Cea, Effectivity and error bound properties: 

� Hence, weakness factor

���u(µ(n+1))− PXn
u(µ(n+1))

��� = inf
v∈XN

���u(µ(n+1))− v
���

≥ α(µ)

γ(µ)

���u(µ(n+1))− uN (µ(n+1))
��� ≥ α(µ)

γ(µ)ηu(µ)
∆u(µ

(n+1))

=
α(µ)

γ(µ)ηu(µ)
sup
µ∈P

∆u(µ) ≥
α(µ)

γ(µ)ηu(µ)
sup
µ∈P

�u(µ)− uN (µ)�

≥ α(µ)

γ(µ)ηu(µ)
sup
µ∈P

�u(µ)− PXN
u(µ)� ≥ ᾱ2

γ̄2
sup
µ∈P

�u(µ)− PXN
u(µ)� .

∆(Y, µ) := ∆u(µ)

γ = 1

γ < 1

∆(Y, µ) := �u(µ)− PY u(µ)�

γ = (ᾱ/γ̄)2 ∈ (0, 1]
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Basis Generation

� Problem Reformulation

� For which instantiations of (P) do we get exponential 
decaying Kolmogorov n-width?

� Clearly not for all (P): imagine a „sphere filling curve“

� Positive example given by ([MPT02],[PR06]), specialization
for the thermal block:

� Global Exponential Convergence for p=1 

� Consider (P) to be the thermal block with

and single parameter

� Let and      be sufficiently large

� Choose logarithmically

equidistant and       the corresponding RB-space

� Then

µmin = µ(1) < . . . < µ(N) = µmax

�u(µ)− uN(µ)�µ
�u(µ)�µ

≤ e−
N−1

N0−1 , µ ∈ P,N ≥ N0.

M

B1 = 2, B2 = 1, µ1 = 1

µ = µ2 ∈ P
P := [µmin, µmax] N0

XN
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Basis Generation

� Training Set Treatment

� Multistage greedy [Se08]

Decompose in coarser sets

Run Greedy on coarsest set, then start greedy on next

larger set with first basis as starting basis, etc.

� Adaptive Extension [HDO11]

Stop greedy when overfitting

Locally extend training set

� Full Optimization: [UVZ12]

� Optimization in greedy loop

� Randomization [HSZ13]

� In each greedy step new
random training set

S
(0)
train ⊂ . . . ⊂ S

(m)
train := Strain.

Large coarse

train set

Adaptive

refined
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Basis Generation

� Parameter Domain Partitioning

� Complex problems may require infeasibly large basis
can not simultaneously be satisfied

� Solution: Partitioning of P, one basis per subdomain

� hp-RB [EPR10]: 

� adaptive bisection

� P-Partitioning: [HDO11]: 

� adaptive hexahedral
refinement

N ≤ Nmax, εN ≤ εtol
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Basis Generation

� Gramian Matrices Revisited

� For                   we define the Gramian matrix

� We have seen such matrices play an important role in 
offline/online decomposition

� They allow to perform some further operations
independent of H

� They have some nice properties: exercise

{ui}ni=1 ⊂ X
G := (ui, uj�)ni,j=1 ∈ Rn×n

Exercise 12: Show that the following holds for the Gramian matrix:

i) G is symmetric and positive semidefinite

ii) 

iii)               are linearly independent is positive definite

rank(G) = dim(span({ui}ni=1))
{ui}ni=1 ⇔ G
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Basis Generation

� Orthonormalization: Gram Schmidt

� Useful for improving condition of the RB system matrix

� Let basis be given with Gramian matrix

Set                   with being a Cholesky factor of        

Define the transformed basis by

Then is the Gram-Schmidt orthonormalization of

KN

KN = LLTC := (LT )−1 L

ϕ̃j :=
�N

i=1Cijϕi

Φ̃N := {ϕ̃i}Ni=1 ⊂ X

Φ̃N

ΦN = {ϕi}Ni=1 ⊂ X

ΦN

Exercise 13: Prove that the above indeed performs Gram-Schmidt 

orthonormalization, i.e. set for

And show that ϕ̄j = ϕ̃j, j = 1, . . . , N

i = 1, . . . , N

ϕ̄i := vi/ �vi�vi := ϕi −
�i−1

j=1 ϕ̄j, ϕi� ϕ̄j
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Primal-Dual RB Approach

� Recall:

� For nonsymmetric, noncompliant case, we could only
obtain an output-error estimator , that only scaled
linear with , and we showed the impossibility of 
obtaining effectivity bounds without further assumptions

� In contrast, for the compliant case, the output error
estimator scaled quadratically in         and we
obtained effectivity bounds.

� Goal of this section: 

� Improved output estimation for general nonsymmetric
and/or noncompliant case by primal-dual techniques

(but still no output effectivity bounds)

� (P) and (PN) are still required as „primal“ problems

�r�X′

�r�X′

∆s(µ)

∆′s(µ)
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Primal-Dual RB Approach

� Definition: Full „Dual“ Problem (Pdu)

� For            find a solution satisfying

� Remark:

� Obviously, the (negative) output functional is used as 
right hand side and the „arguments“ are exchanged on 
the left. 

� Well-posedness (existence, uniqueness and stability) 
follow identical to „primal“ Problem (P) 

� The dual problem only is required formally as reference, 
to which the dual error will be measured. Additionally, it
can be used in practice to generate dual snapshots.

µ ∈ P udu(µ) ∈ X

a(v, udu(µ);µ) = −l(v;µ), ∀v ∈ X
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Primal-Dual RB Approach

� Dual RB Space

� We assume to have a dual RB-space

that approximates the dual solutions well,

possibly

� Possible choice (without guarantee of success!)

� Alternatives: Greedy procedure for (Pdu) using snapshots
of the full dual problem; Further alternative: combined
approach; details explained at end of this section.

Xdu
N ⊂ X, dimXN = Ndu

udu(µ)

Ndu /= N

Xdu
N = XN
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Primal-Dual RB Approach

� Definition: Primal-Dual Reduced Problem (PN)

� For            find the solution of (PN), 
a solution satisfying

and the corrected output

� Remarks:

� Well-posedness holds again via Lax-Milgram

� „dual-weighted-residual“ treatment as in goal-oriented
FEM literature

µ ∈ P uN(µ) ∈ XN

′

uduN (µ) ∈ Xdu
N

s′N(µ) := l(uN(µ);µ)− r(uduN (µ);µ)

s′N(µ) ∈ R

a(v, uduN (µ);µ) = −l(v;µ), ∀v ∈ Xdu
N
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Primal-Dual RB Approach

� Dual A-posteriori Error and Effectivity Bound

� We introduce the dual residual

and obtain the a-posteriori error bound

with effectivity bound

� Proof: Completely analogous to the primal problem

rdu(·;µ) ∈ X′

rdu(v;µ) := −l(v;µ)− a(v, uduN (µ);µ)), v ∈ X

��udu(µ)− uduN (µ)
�� ≤ ∆duu (µ) :=

��rdu(·;µ)
��
X′

αLB(µ)

ηduu (µ) :=
∆duu (µ)��udu(µ)− uduN (µ)

�� ≤
γUB(µ)

αLB(µ)
≤ γ̄

ᾱ
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Primal-Dual RB Approach

� Improved Output A-posteriori Error Bound

� For           holds

� Proof:

Then

µ ∈ P

|s(µ)− s′N(µ)| ≤ ∆′s :=
�r(·;µ)�X′

��rdu(·;µ)
��
X′

αLB(µ)

s− s′N = l(u)− l(uN) + r(uduN ) = l(u− uN) + r(uduN )
= −a(u− uN , udu) + f(uduN )� �� �

a(u,uduN )

−a(uN , uduN )

= −a(u− uN , udu − uduN ) =: −a(e, edu)

|s− s′N | ≤ |a(e, edu)| = |r(edu)| ≤ �r�X′

��edu
��

≤ �r�X′ ∆duu ≤ �r�X′

��rdu
��
X′
/αLB
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Primal-Dual RB Approach

� Remark: Squared Effect

� We see the desired „squared“ effect by the product of the
residual norms.

� Remark: No Effectivity for Output Error Bound

� Without further assumptions, one cannot get output
effectivity bounds for , as            may be zero, while

, hence the quotient is not well defined. 

� Example: Choose

then

but

� Reminder: „compliant“ case gave output effectivity bounds

∆′s

∆′s s− s′N
∆′s /= 0

vl ⊥ vf ∈ X, XN = Xdu
N ⊥ {vf , vl}

a(u, v) := u, v� , f(v) := vf , v� , l(v) := −vl, v�
u = vf , udu = vl, uN = 0, uduN = 0

s− s′N = −a(e, edu) = vf , vl� = 0

e = vf , edu = vl ⇒ r /= 0, rdu /= 0 ⇒ ∆′s /= 0
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Primal-Dual RB Approach

� Remark: Dual Problem is Redundant for Compliant Case

� For the compliant case, we claimed

� The right ineq. is exactly a consequence of the primal-dual
error bound, as                        and              : 

With and symmetry we obtain

and therefore

Further, 

� The left ineq. Follows by coercivity:

� The primal-dual approach only can lead to improvements
in the non-compliant case, otherwise the simple primal
approach is sufficient.

0 ≤ s(µ)− sN(µ) ≤ ∆′s(µ) :=
�r(·;µ)�2X′

αLB(µ)

�r�X′ =
��rdu

��
X′ sN = s′N

l = f u = −udu, uN = −uduN
r = −rdu ⇒ �r�X′ =

��rdu
��
X′

r(uduN ) = −r(uN) = 0⇒ s′N = sN

s− sN = s− s′N = −a(e, edu) = a(e, e) ≥ 0
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Primal-Dual RB Approach

� Remark: Output Effectivity Bound for Compliant Case

� For the compliant case we claimed

� Proof: Cauchy-Schwarz and norm equivalence:

� Then we conclude using definitions

η′s(µ) :=
∆′s(µ)

s(µ)− sN(µ)
≤ γUB(µ)

αLB(µ)
≤ γ̄

ᾱ

�vr�2 = vr, vr� = r(vr) = a(e, vr) = e, vr�µ ≤ �e�µ �vr�µ ≤ �e�µ
√
γUB �vr�

⇒ �r�X′ = �vr� ≤ �e�µ
√
γUB

η′s =
∆s

s− sN
=
�r�2X′ /αLB
a(e, e)

=
�r�2X′

αLB �e�2µ
≤
γUB �e�2µ
αLB �e�2µ

≤ γ̄

ᾱ
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Primal-Dual RB Approach

� Remarks: Offline/Online, Basis Generation

� Offline/online procedure analogous to primal problem

� Use of error estimation for basis generation: 

� Run separate greedy procedures for using
with the same tolerance. Then the maximal 

primal and dual residuals will have similar order, 
indeed leading to a „squared“ effect in the output error
estimator

� Alternative is a combined generation of primal and dual 
space: Run a greedy with the error bound and 
enrich both spaces simultaneously with corresponding
snapshots of currently worst parameter.

XN ,X
du
N

∆u,∆duu

∆′s

∆′s
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Quadratically Nonlinear Problems

� Example Reference [VPP03], [VRP03]

� Definition: Full Quadratical Problem (Q)

� For            find a solution and output
satisfying

� with continuous trilinear/bilinear/linear forms, 
continuity constants , etc.              

� All forms being parameter separable

� being symmetric w.r.t. first two arguments

µ ∈ P u(µ) ∈ X s(µ) ∈ R

s(µ) = l(u(µ);µ)

a(u(µ), u(µ), v;µ) + b(u(µ), v;µ) = f(v;µ), ∀v ∈ X

a, b, f, l

a(u, v,w;µ) = a(v, u,w;µ), ∀u, v,w ∈ X
a(. . .)

γa, γb
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Quadratically Nonlinear Problems

� Examples

Find                    as solution of

� Diffusion Eqn. with Nonlinear Reaction

� Viscous Burgers Equation

� Nonlinear Diffusion

� In 1D: Continuity of          thanks to continuous
embedding

u(µ) ∈ H1
0 (Ω)

−µ1∆u+ µ2u2 = q =⇒ µ1

�

Ω

∇u · ∇v
� �� �

b(u,v;µ)

+µ2

�

Ω

u2v

� �� �
a(u,u,v;µ)

=

�

Ω

qv

� �� �
f(v;µ)

−µ1∆u+∇ · (cu2) = q =⇒ µ1

�

Ω

∇u · ∇v
� �� �

b(u,v;µ)

+

�

Ω

u2(c · ∇v)
� �� �

a(u,u,v;µ)

=

�

Ω

qv

� �� �
f(v;µ)

H1
0 (Ω)→ L4(Ω)

a(. . .)
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Quadratically Nonlinear Problems

� Well-posedness

� Existence/Uniqueness in general unclear: Multiple or no 
solutions possible

� Existence/Uniqueness of the full problem will be concluded
a-posteriori after successful RB solution

� For simplicity: Assume well-posedness of full/reduced
problem and its linearizations.
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Quadratically Nonlinear Problems

� Root finding formulation

� solves for

� Derivative

� Solution of (Q) via Newton-Loop

� Choose and set k=0

� Repeat

� Compute as solution of                               , i.e.

� Update solution and increment k

� Until convergence

F (u(µ), v;µ) := a(u(µ), u(µ), v;µ) + b(u(µ), v;µ)− f(v;µ)
u(µ) ∈ X

DF |u : X → X′

F (u(µ), ·;µ) := 0 ∈ X′

DF |u(h) = lim
δ→0

1

δ
(F (u+ δh)− F (u)) = 2a(u, h, ·) + b(h, ·)

hk DF |uk(hk) = −F (uk)

uk+1 := uk + hk

u0 ∈ X

2a(uk, hk, v) + b(hk, v) = −a(uk, uk, v)− b(uk, v) + f(v), v ∈ X

��uk+1 − uk
�� < εtol
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Quadratically Nonlinear Problems

� Definition: Reduced Quadratical Problem (QN)

� For            find a solution and output
satisfying

� Analogous Solution Steps:

� Again formulation as Root-finding problem

� Solution via Newton-loop, assuming solvability in each
iteration and obtaining convergence.

uN(µ) ∈ XN

sN(µ) ∈ R
µ ∈ P

a(uN(µ), uN(µ), v;µ) + b(uN(µ), v;µ) = f(v;µ), ∀v ∈ XN

sN(µ) = l(uN(µ);µ)

Institute of Applied Analysis
and Numerical Simulation

10th August, 2017 B. Haasdonk

Quadratically Nonlinear RB Approach

116 / 181



Quadratically Nonlinear Problems

� Offline Phase:

� Compute parameter independent component projections
and reduced Gramian matrix:

� Obviously 3D-Tensors required: Size of N and Q*

considerably more critical

fN,q := (fq(ϕi))Ni=1 ∈ RN

lN,q := (lq(ϕi))Ni=1 ∈ RN

AN,q := (aq(ϕi, ϕj, ϕk))
N
i,j,k=1 ∈ RN×N×N

BN,q := (bq(ϕj, ϕi))Ni,j=1 ∈ RN×N

KN := (ϕi, ϕj�)Ni,j=1 ∈ RN×N

Institute of Applied Analysis
and Numerical Simulation

10th August, 2017 B. Haasdonk

Quadratically Nonlinear RB Approach

117 / 181



Quadratically Nonlinear Problems

� Online Phase:

� For given perform linear combination of operators

� Choose

� Repeat

� Compute as solution of       

� Update solution and increment k

� Until convergence

� set

µ ∈ P

AN(µ) :=

Qa


q=1

θaq (µ)AN,q, similarly BN(µ),fN(µ), lN(µ)

u0N ∈ RN

hkN ∈ RN

uk+1
N := uk

N + hkN

uN(µ) := uk
N , sN(µ) = l

T
NuN

�

2
N


n=1

ukN,n · (AN)n,:,: +BN

�

hkN = −
N


n,m=1

ukN,nu
k
N,m(AN)n,m,:−BNu

k
N+fN

(uk+1
N −uk

N)
TKN(u

k+1
N −uk

N) < ε2tol
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Quadratically Nonlinear Problems

� Existence of Solution for (Q)

� Let be a reduced solution of (QN)

� Define the dual norm of the residual

� and have a generalized stability constant

� If the validity criterion holds, i.e.                       

� then there exists a unique

solution of (Q).

� Proof: Brezzi Rappaz Raviart (BRR) Theory

� Verify assumptions of Thm 2.1 in [CR97] 

uN(µ) ∈ XN

ε := �a(uN(µ), uN(µ), ·;µ) + b(uN(µ), ·;µ)− f(·;µ)�X′

8εγa
β2N

≤ 1

u(µ) ∈ B(uN , 2ε/βN)

0 < βN(µ) ≤ 1/
��(DF |uN )−1

��
X′,X
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Quadratically Nonlinear Problems

� Comments

� We directly obtain an error bound

� can be replaced by computable lower bound

� If the validity criterion is not satisfied, the reduced basis should
be improved to lower the residual norm.

� Also effectivity of the bound can be proven

� The „trilinearform“ technique in principle generalizes to higher
order polynomial nonlinearities in PDEs, that can be written as 
multilinear form. Limitation arises due to 

� Memory constraints for storing the tensors

� online computation time for the increasingly demanding
linear combinations.

�u(µ)− uN(µ)� ≤ ∆u(µ) := 2ε/βN

∆u(µ)/�u(µ)− uN(µ)� ≤ ρ(µ) :=
4

βN
(2γa �uN�+ γb)

βN(µ)
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RB-Methods for Evolution Problems



Institute of Applied Analysis
and Numerical Simulation

10th August, 2017 B. Haasdonk

RB for Param. Evolution
� Initial value problems (Porsching&Lee ’87)
� Control of NS (Ito&Ravindran ’98)
� POD (Volkwein, Hinze, Kunisch, ...)
� Linear, Nonlinear Parabolic problems (Grepl&Patera 2005),

(Rovas&al,...)
� Instationary Burgers (Nguyen&al 2009), (Jung&al 2008)
� Linear FV (HO08)
� EOI: Empirical Operator Interpolation, Nonlinear Finite

Volumes (HO08b), (DHO13)
� Space-time Galerkin Procedures (Urban&Patera, ...)
� GNAT (Carlberg, Farhat, Amsallem 2012)
� DEIM (Chaturantabut&Sorensen 2009)
� PMOR (Benner, Gugercin, Willcox, Stykel, Antoulas, ...)
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RB-Method for Evolution Schemes

� Parametric PDE:

� Parameter                  : material-, 
geometry-, control-parameter

� For            find solution of 

with suitable initial and boundary conditions

� Idea: 

� Approximate manifold by linear 

spaces spanned by „snapshots“

µ ∈ P

XN

u(·, t;µ) ∈ X

v(µ)

∂tu(µ) +∇ · (v(µ)u(µ)− d(µ)∇u(µ)) = 0 in Ω× [0, T ]
d(µ)

X u(·, t;µ)

uN(·, t;µ)

XN ⊂ span(u(·; tn,µn))

µ ∈ P ⊂ Rp
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RB-Method for Evolution Schemes

� Reduced Basis
� RB-Space of dimension

� Reduced Basis 

� Basis generation: 
� Taylor-RB spaces [FR83]

� Lagrange-RB spaces [MPT02]

� POD, Krylov, Greedy-schemes, Optimization

� Example:

� References: [NP80],[PL87],[PR07]

ϕ1

ϕ6

XN ⊂ X N

ΦN = (ϕ1, . . . , ϕN )T

ΦN := {u(µ0), ∂µiu(µ0), . . .}

ΦN := {u(µ1), u(µ2), . . .}

u0+ 5 POD-
Modes of a 
Trajectory

N = 6
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RB-Method for Linear Evolution Schemes

� Parametrized linear evolution equation [HO08]

For                   find                                      

s. th.

� Space/time discrete implicit/explicit scheme

Ref: Haasdonk, Ohlberger: Reduced basis method for finite volume approximations of parametrized
linear evolution equations, M2AN, 42(2):277-302, 2008.

For                        find                                 s. th.

µ ∈ P ⊂ Rp

µ ∈ P ⊂ Rp

u : [0, T ]→ X ⊂ L2(Ω)

∂tu(t) + L(µ)[u(t)] = 0

u(0) = u0(µ)

{ukh}
K
k=0 ⊂ Xh ⊂ L2(Ω)

u0h := Ph[u0(µ)]

(Id + ∆tLIh)[u
k+1
h ] = (Id −∆tLE

h )[u
k
h] + ∆tbkh
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RB-Method for Linear Evolution Schemes

� RB-Spaces

� Reduced Operators

� Orthogonal projection

� Implicit/explicit space discretization operators

� RB-Evolution-Scheme in Operator Form

see also: 
[GP05]

XN ⊂ span(uh(·; t,µ)) ⊂ Xh N := dimXN ≪ dimXh

PN : Xh →XN

LEN := PN ◦ LEh LIN := PN ◦ LIh bkN := PN [bkh]

µ ∈ P ⊂ Rp {ukN}
K
k=0 ⊂ XN ⊂ Xh

u0N := PN [u0h(µ)]
�
Id + ∆tLIN

�
[uk+1N ] =

�
Id−∆tLE

N

�
[ukN ] + ∆tbkN

For                        find                                 s. th.
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RB-Method for Linear Evolution Schemes

� Error-Analysis by Residuals
� Definition of residuals

� Norms are computable during RB-simulation

� With auxiliary matrices, vectors and scalars

��Rk+1
h

��2
L2(Ω)

:= 1
(∆t)2

�
(ak+1)TKIIa

k+1 − 2(ak+1)TKIEa
k

+(ak)TKEEa
k +m− 2(ak+1)TmI + 2(ak)TmE

�

(KIE)nm :=
�
Ω
LIh,∆t[ϕn]L

E
h,∆t[ϕm]

(KEE)nm :=
�
ΩL

E
h,∆t[ϕn]L

E
h,∆t[ϕm]

m :=
�
Ω b

2
h

(mI)n :=
�
Ω
LIh,∆t[ϕn]bh

�
m

k
E

�
n
:=
�
Ω L

E
h,∆t[ϕn]bh

(KII(t
k,µ))nm :=

�
Ω L

I
h,∆t(t

k,µ)[ϕn]L
I
h,∆t(t

k,µ)[ϕm]

Rk+1
h (µ) := 1

∆t

�
LI
h,∆t(t

k,µ)[uk+1N ]− LE
h,∆t(t

k,µ)[ukN ]− bh(t
k,µ)

�
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RB-Method for Linear Evolution Schemes

� Thm: A-Posteriori L²-Error Estimator [HO08]    

� Let constants be given such that

and initial data satisfy

� Then for all times the following estimate holds

� The bound is effectively computable by

Ph[u0(·;µ)] ∈ XN

��ukN(µ)− ukh(µ)
��
L2(Ω)

≤ ∆k
N(µ)

���LEh,∆t(t
k,µ)

��� ≤ CE

���LIh,∆t(t
k,µ)−1

��� ≤ CI

CI , CE ∈ R
+

∆k
N(µ) :=

�k−1
n=0∆t

��Rn+1
h

�� (CE)
k−1−n(CI)

k−n
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RB-Method for Linear Evolution Schemes

� Basis generation: POD-Greedy [HO08]

� Based on „Greedy“ for stationary RB problems [VPRP03]

� Choose finite training parameter set

� Iterative extension of initial basis

� Thm [Ha11]: Almost optimal Error Decay

While

1. Find

2. Compute detailed trajectory

3. Orthogonalize trajectory

4. Add principal components of proj. error as basis vectors

Mtrain ⊂ P

µ∗ := argmaxµ∈Mtrain
∆N (µ)
uh(µ

∗)

ΦN+k = ΦN ∪ POD(eh, k)

ΦN0 ⊂ Xh

ε := maxµ∈Mtrain
∆N (µ) > εtol

eh := uh(µ
∗)− PXN (uh(µ

∗))

dn(F) ≤Mn−α ⇒ σT,n(FT ) ≤ CMn−α.
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RB-Method for Linear Evolution Schemes

� Full Offline/Online-Decomposition:

� Online-Phase: fast RB-simulation + error estimation, 
complexity completely independent of 

� Offline-Phase: Precomputation of reduced basis and auxiliary
quantities involving „expensive“ operations of complexity
polynomial in

� Offline/Online for Operators:

� Assumption of separable parameter dependence:

Components: 

parameter-

independent

Coefficients:

space-independent

OfflineOnline

H := dimXh

dimXh

(L(tk,µ))nm :=
�
Ω
L(tk,µ)[ϕn]ϕm⇒L(tk,µ)[·] =

�Q
q=1 θ

q(tk,µ)Lq[·]

=
�Q

q=1 θ
q(tk,µ)

�
Ω L

q[ϕn]ϕm

=
�Q

q=1 θ
q(tk,µ)(Lq)nm
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RB-Method for Linear Evolution Schemes

� Evolution Equation: Scalar Advection-Diffusion

� Geometry and Data

� „Gas diffusion layer“

� Velocity field precomputed

� Diffusivity:

� Initial data:

� Neuman-boundary: noflow, outflow

� Dirichlet-boundary: 

� Parameter 

k

u0 = cinit sin(ωxx)

bdir = βχΓ1 + (1 − β)χΓ2

µ = (cinit, β, k) ∈ [0, 1]× [0, 1] × [0, 5 · 10−8]

∂tu(µ) +∇ · (v(µ)u(µ)− d(µ)∇u(µ)) = 0 in Ω× [0, T ]

u(µ) = bdir(µ) in Γdir × [0, T ]

(v(µ)u(µ)− d(µ)∇u(µ)) · n = bneu(u;µ) in Γneu × [0, T ]

u(µ, 0) = u0(µ) in Ω
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RB-Method for Linear Evolution Schemes

� Evolution Scheme: Linear Finite Volume Method

� Examples of Solution Variety (                     )

µ = (0, 1, 5 · 10−8)T

µ = (1, 0, 0)T

t
t = Tmaxt = 0

u0i :=
1

|Ti|

�

Ti

u0(µ)dx uk+1i = uki −
∆tk
|Ti|

	

j∈N (i)

hkij(u
k
h, u

k+1
h ;µ)

hkE,ij(µ)(u
k) := 1

2 |eij |
�
v(cij) · nij(u

k
j + uki )−

1
λ
(ukj − uki )

�

hkI,ij(µ)(u
k+1
H ) := −d(sij)

|eij |
|si−sj|

(uk+1j − uk+1i )

H = 400× 80
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RB-Method for Evolution Schemes

� Sample Selection

� 5x5x5 train set

� Nmax=100

� Basis

. . .

cinit

β

k
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RB-Method for Evolution Schemes

� Test Error Convergence

� Max. rel. Projection error Max. rel. RB error

� Offline Runtimes

721.61225x5x5Weak POD-Greedy

Weak POD-Greedy

Strong POD-Greedy

458.78603x3x3

884.70673x3x3

Runtime (sec)Train set
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RB-Method for Linear Evolution Schemes

� Runtimes: 
� Detail- vs. RB-simulation with 20 basis vectors

� Online-Demo

for Parameter-Variation
� N=123 basis vectors

� variable in 

� < 1e-7 on

5x5x5 parameter-grid

µ = (cinit, β, k)

[0, 1]× [0, 1] × [0, 5 · 10−8]

∆K
N (µ)
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RB-Method for Nonlinear Schemes [HO08b,DHO10]

� Parametrized evolution equation

For                 find                              s. th.

� Discrete implicit/explicit Newton scheme

u(0) = u0(µ)

µ ∈ P ⊂ Rp u : [0, T ]→X ⊂ L2(Ω)

uk+1h := u
k+1,νmax(k)
h

uk+1,0h := ukh uk+1,ν+1h := uk+1,νh + δk+1,ν+1h

with Newton iteration

For                  find                               s. th.µ ∈ P ⊂ Rp {ukh}
K
k=0 ⊂ Xh ⊂ L2(Ω)

∂tu(t) +L(µ)[u(t)] = 0

u0h := Ph[u0(µ)]

�
Id +∆tDLIh|uk+1,ν

h

�
[δk+1,ν+1h ] = ukh − uk+1,νh −∆t

�
LIh[u

k+1,ν
h ] +LEh [u

k
h]
�
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RB-Method for Nonlinear Schemes

� Reduced Operators:

L²-orthogonal projection

� Reduced Implicit/Explicit Evolution Scheme:

with Newton iteration

For                  find                           s. th.µ ∈ P ⊂ Rp

PN : Xh →XN

RB evolution operators

{ukN}
K
k=0 ⊂ XN ⊂ Xh

uk+1N := u
k+1,νmax(k)
N

uk+1,0N := ukN uk+1,ν+1N := uk+1,νN + δk+1,ν+1N

u0N := PN [u0h(µ)]

�
Id +∆tDLI

N (µ)|
u
k+1,ν
N

�
[δk+1,ν+1N ] = ukN−u

k+1,ν
N −∆t

�
LI
N (µ)[uk+1,νN ] +LE

N (µ)[ukN ]
�

LIN := PN ◦ IM ◦ LIh

LEN := PN ◦ IM ◦ LEh
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RB-Method for Nonlinear Schemes

� Empirical Operator Interpolation (EOI) [HOR07]

� Approximation of                by linear combinations

via collateral basis and „magic points“

� Separable parameter dependency obtained

� Generation of basis and points by snapshots & greedy

� Theory/analysis:

� Convergence statements für EI [BMNP04], [CS09]

� RB-schemes: Conservation [DHO12], error bounds [HOR07] 

Lh(µ, t
k)

Lh[u](x) ≈ IM (Lh)[u](x) :=
�M

m=1 Lh[u](xm)ξm(x)

ξM = {ξm}
M
m=1 ⊂ Xh

M << dim(Xh)

{xm}
M
m=1 ⊂ Ω
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RB-Method for Nonlinear Schemes

� Offline/Online Decomposition for EI-Operators:

� Offline/Online Decomp. for EI-Operator Derivatives:

OfflineOnline

OfflineOnline

�
Ω
IM (Lh(µ, t))[uN ]ϕn =

�M

m=1 Lh(µ, t
k)[uN ](xm)

�
Ω
ξmϕn

=
�M

m=1D(Lh(µ, t
k)[·](xm))|uN [δN ]

�
Ω
ξmϕn

�
Ω
D(IM (Lh(µ, t)))|uN [δN ]ϕn

Required online: partial evaluation of Jacobian matrix
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RB-Method for Nonlinear Schemes
� EI-Offline: Collateral Reduced Basis Generation

� Finite training set of operator evaluation snapshots

� Accumulatively collect interpolation functions and points

� For notation: nodal basis ξM = {ξm}
M
m=1

for

1. have CRB-functions and points

2. search worst approximated training example:

3. get interpolation residual

4. define next interpolation point and CRB basis function

m = 1, . . . ,M
{qi}

m−1
i=1 {xi}

m−1
i=1

xm := arg sup
x∈XH

|rm(x)| qm := rm/rm(xm)

(or )�·�L2

Ltrain = {Lh(µ, t
k)[ukh(µ)]|k = 0, . . . ,K,µ ∈Mtrain} ⊂ Xh

rm := vm − Im−1[vm]

vm := arg max
v∈Ltrain

�v − Im−1[v]�L∞(Ω)
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RB-Method for Nonlinear Schemes

� EI-Online: Local Evaluations

� Problem: point evaluations in online phase require full
computation of the operator:

� Solution: Restriction to „localized operators“, 

i.e. small domain of dependence, e.g. FV-discretizations

� Online-Phase:

� Requires Offline: numerical subgrid, local representation of 

local evaluation

xm

ΦN

local reconstruction of

from coefficients

ukN
a
k Lh(µ, t

k)[ukN ](xm)
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RB-Method for Nonlinear Schemes

� Thm: A-Posteriori L²-Error Estimator (explicit linear case)

� Assumption:    has Lipschitzconstant

initial data

and

� Then for all times the following estimate holds

� The bound is effectively computable by

with EI error estimator

� Implicit, nonlinear case: [DHO10], cont. time DEIM [WSH13]

CE

∆k
N,M(µ) :=

�k−1
k′=0∆tC

k−1−k′

E

�
|θk

′

M+1(µ)| �qM+1�L2 +
���Rk′(µ)

���
L2

�

��ukN(µ)− ukh(µ)
��
L2(Ω)

≤ ∆k
N,M(µ)

Ph[u0(µ)] ∈ XN

Id−∆tLEh (µ, t
k)

LE
h (µ, t

k)[ukN ] ∈ XM+1

θk
′

M+1(µ) := L
E
h (µ, t

k′)[uk
′

N ](xM+1)− IM [LEh (µ, t
k′)[uk

′

N ]](xM+1).
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Nonlinear Conservation Laws

� Convection, explicit FV Discretization (HO08b)

� RB scheme: Empirical Interpolation + Collateral RB

t = T, p = 1 t = T, p = 2

0.0

1.0
t = 0

Subgrid + EI points

Approximation Dimension Mean Runtime [s]

detailed H = 7200 10.69
reduced N = 20,M = 30 0.45
reduced N = 40,M = 60 0.60
reduced N = 70,M = 105 0.84
reduced N = 100,M = 150 1.06

∂tu(µ) +∇ · (vu(µ)
p) = 0 in Ω× [0, T ]

uh(p, t)
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Experiments

� Nonlinear 2D Burgers equation

� Left & right: Dirichlet values

� Top & bottom: noflow Neumann conditions

� Discretization: 

� Cartesian Grid, Explicit FV, Engquist-Osher flux

� RB Parameter variation:

u(·, 0;µ) = u0(µ) in Ω

ul, ur

µ = (ul, ur, v) ∈ [−1, 1]3

∂tu(µ) +∇ · ((v, 0)
Tu(µ)2) = 0 in Ω× [0, T ]

initial initialend end

ul = 0, ur = 0.5, v = 0.9 ul = 0.5, ur = 1.0, v = −0.5
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Experiments

� Empirical Interpolation:

� : 3x3x3 complete time trajectories

� interpolation points:

� Subgrid for online phase: 

Ltrain

Dimension redundancy

of problem is detected

2D => 1D

small subset of 

detailed grid (200/10000)

M = 100

Institute of Applied Analysis
and Numerical Simulation

10th August, 2017 B. Haasdonk

Nonlinear Conservation Laws

146 / 181



Experiments

� Nonlinear 2D Burgers equation

� Explicit FV discretization: Engquist-Osher flux

� RB-Parameter variation:

u(·, 0;µ) = u0(µ) in Ω

∂tu(µ) +∇ · (v(µ)u(µ)
2) = 0 in Ω× [0, T ]

(v(µ)u(µ)2) · n = 0 in Γneu × [0, T ]

φ = 0, clow = 1

µ = (φ, clow) ∈ [−π
4
, 0]× [−1, 1]

φ = −π
4 , clow = 1 φ = 0, clow = −1 φ = −π

4
, clow = −1
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Two-Phase Flow in Porous Media (DHO12)

� Global Pressure Formulation

� Implicit FV-Discr. (Michel 2004)

� RB & EI of Nonlinear Operators

t = 0.25

t = 0.5

∂ts+∇ · (f(s)u− v(s)∇s) = q1

u = −M(s)∇ψ

∇(M(s)∇ψ) = q1 + q2

Interpolation error Interpolation DOFs Runtimes and Accuracies

s

u·n, ψ
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RB for Variational Inequalities [HSW11]

� RB for Variational Inequalities

� Parametrized saddle point problems

� RB Scheme: Parametrized QP

� Analysis: Stability, L-Continuity, 

Error Bounds

� Applications: Contact Mechanics

Option Pricing

a(u, v;µ) + b(v, λ) = f(v;µ), v ∈ X

b(u, η − λ) ≤ g(η − λ;µ), η ∈M
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Offline Adaptivity: Train Set Refinement

Haasdonk, B. & Ohlberger, M.: P. Díez and K. Runesson (Eds.), Basis Construction for Reduced
Basis Methods By Adaptive Parameter Grids, Proc. International Conference on Adaptive 
Modeling and Simulation, ADMOS 2007, CIMNE, Barcelona, 2007, 116-119. 

Haasdonk, B.; Dihlmann, M. & Ohlberger, M.: A Training Set and Multiple Basis Generation 
Approach for Parametrized Model Reduction Based on Adaptive Grids in Parameter Space, 
Mathematical and Computer Modelling of Dynamical Systems, 2011, 17, 423-442.
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Offline Adaptivity: Train Set Refinement

� Problems of (POD-)Greedy

� Tends to overfit for small
training sets

� Infeasible for overly large 
training sets

� Infeasible in absence of 
error estimators

� Remedy

� Automatic training set adaptation

� Related: 

� multistage greedy [Se08]

� train set randomization [HSZ13]

� Optimization in greedy loop [UVZ14]
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Offline Adaptivity: Train Set Refinement

� Solution Part I: Greedy Search + Early Stopping
� Choose as gridpoints of parameter mesh

� Early stopping of Greedy procedure if overfitting detected

� Overfitting control by ratio of training/validation error

Mtrain ⊂ P

Mtrain
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Offline Adaptivity: Train Set Refinement

� Solution Part II: Adaptive Training Set Extension
� Compute element error indicators

� Mark & refine fraction of elementsΘ ∈ (0, 1]

e

c(e)

V (e)

η(e) :=



max

µ∈V (e)∪{c(e)}
∆(µ,ΦN )

�
+ γs(e)
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Experiments

� Evolution Equation: Scalar Advection-Diffusion

� Geometry and Data

� „Gas diffusion layer“

� Velocity field precomputed

� Diffusivity:

� Initial data:

� Neuman-boundary: noflow, outflow

� Dirichlet-boundary: 

� Parameter 

k

u0 = cinit sin(ωxx)

bdir = βχΓ1 + (1 − β)χΓ2

µ = (cinit, β, k) ∈ [0, 1]× [0, 1] × [0, 5 · 10−8]

∂tu(µ) +∇ · (v(µ)u(µ)− d(µ)∇u(µ)) = 0 in Ω× [0, T ]

u(µ) = bdir(µ) in Γdir × [0, T ]

(v(µ)u(µ)− d(µ)∇u(µ)) · n = bneu(u;µ) in Γneu × [0, T ]

u(µ, 0) = u0(µ) in Ω
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Experiments

� Qualitative Results in 2D Parameter Domain

� Parameter domain

� Basis size , random validation set

� Resulting error (estimator) : plot of 

� Overfitting in uniform-fixed grid (standard greedy search)

� Improved uniform error distribution by adaptive approach

uniform-fixed uniform-refined adaptive-refined,

µ = (β, k) ∈ [0, 1]× [0, 5 · 10−8]

N = 130

Θ = 0.05

|Mval| = 10, ρtol = 1.0

log∆(µ,ΦN)
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Experiments

� Quantitative Results in 3D Parameter Domain

� Full 3D parameter domain

� Random test set

� Maximum test error

� Flattening of test error curve in uniform-fixed approach

� Improved convergence for adaptive approach

max. test error decrease

P := [0, 1]× [0, 1]× [0, 5 · 10−8]

|Mtest| = 1000

max
µ∈Mtest

∆(µ,ΦN)

µ = (cinit, β, k)
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Experiments

� Quantitative Results in 3D Parameter Domain

� Improved equal distribution of test error
� Considerable gain in computation time for fixed accuracy

ratio of max./min. test error max. test error over train time
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P-Partitioning
[Haasdonk, Dihlmann, and Ohlberger, 2011]

B. Haasdonk, M. Dihlmann, and M. Ohlberger (2011). “A Training Set and Multiple Basis Generation Approach for
Parametrized Model Reduction Based on Adaptive Grids in Parameter Space”. In: Mathematical and Computer Modelling of
Dynamical Systems 17, pp. 423–442.



Offline Adaptivity: P-partition

� (POD-)Greedy in Case of Large Solution Variety:
� Large basis required for good accuracy

� ROM may be inpractically large (small, but dense
matrices!)

� No simultaneous prescription of accuracy and online 
runtime

� Idea: Parameter Domain Partitioning
� Decompose Parameter domain in Subdomains

� Single (POD-)Greedy basis per Subdomain

� Online: Select corresponding submodel

� Adaptive Parameter-Domain Partition
� hp-RB [EPR09,EKP11]: bisection

� P-partition [HDO11,ES11]: structured

� Implicit partitioning [Wieland‘13]
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Offline Adaptivity: P-partition

� Adaptive P-Partition [HDO11]

� Goal: bases with desired accuracy & online runtime: 

� (adaptive POD)-Greedy Basis per parameter-subdomain. 

� If not then refine subdomain

� Early Stopping Greedy by error decay extrapolation

� Increased offline cost, improved online time vs. accuracy

ǫtol,Nmax

(ǫextrapol ≤ ǫtol) ∧ (N ≤ Nmax)
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Offline Adaptivity: P-partition

� Verification of Online Efficiency:

� Considerably reduced online 
computation time with equal 
accuracy

� Further orders of magnitude 
improvement by combination 
with adaptive training set 
extension

online time / test-error
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T-Partitioning
[Dihlmann, Drohmann, and Haasdonk, 2011]

M. Dihlmann, M. Drohmann, and B. Haasdonk (2011). “Model Reduction of Parametrized Evolution Problems using the
Reduced basis Method with Adaptive Time-Partitioning”. In: Proc. of ADMOS 2011.



Offline Adaptivity: T-partition

� Time-dependent problems
� High solution variety over time, large RB required
� „final“ snapshots may be very different from „initial“ snapshots

� Idea
� Time as prior knowledge, is simple & robust scalar „feature

extraction“
� Partitioning of time-axis in subintervals
� RB-space by POD-Greedy per subinterval
� Rigorous treatment of basis change in scheme and error-

estimators
� Adaptive Partitioning, Early stopping greedy

� Related
� T-partitioning for EIM [DOH11]
� Local bases [AZF12]
� Implicit Partitioning EIM [Wi13]
� Localized DEIM [PBWB13]
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Offline Adaptivity: T-partition

� POD-Greedy with Adaptive T-Partitioning [DDH11]

� Individual POD-Greedy spaces on time-subintervals

� Extension of RB-Scheme and error estimators

� Adaptive T-partitioning:

XNi

T0

�
u
k(i)
Ni−i

− u
k(i)
Ni

, ϕn,i


= 0 ∆k

N(µ) :=
k	

n=1

Ck−n
E (∆t �Rn

h(µ)�+ ||R̃
n(µ)||)

τ1 TT τ2

εtol,global εtol,global

εtol,1N = Nmax

N = Nmax

N < Nmax

0 0

bisection
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Offline Adaptivity: T-partition

� Experiments:

� Advection problem (1-parameter)

� FV-Discretization: 4096 DOFs

� Explicit Euler time integration: 512 time steps

� Adaptive reduced basis settings:

�

� Testing the reduced model by performing reduced
simulations for 20 randomly chosen parameters

εtol,global = 0.01,Nmax = 45
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Offline Adaptivity: T-partition

� Exemplary Results:

� Error estimator approximating linear „target curve“

� Simultaneous prescription of online-runtime and accuracy!

test error estimator over time online runtime vs. accuracy
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State Space Partitioning
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State Space Partitioning
� Projection-Error-Based Local ROM (PEBL-ROM) [AH16]

� Projection Error instead of Euclidean Error for Clustering
� Binary tree generation similar to hp-RB procedure

(Eftang&al.)

� Improvements over K-Means Clustering (Amsallem& al ’12/’15)
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Online Adaptivity: Basis Adaptation

Ref: Haasdonk, B. & Ohlberger, M.: Space-Adaptive Reduced Basis Simulation for Time-Dependent 
Problems, Proc. MATHMOD 2009, 6th Vienna International Conference on Mathematical 
Modelling, 2009. 

Kaulmann, S. & Haasdonk, B.: Online Greedy Reduced Basis Construction Using Dictionaries. In 
In Moitinho de Almeida, José Paulo Baptista and Diez, Pedro and Tiago, Carlos and Parés, Núria
(Eds.), VI International Conference on Adaptive Modeling and Simulation (ADMOS 2013), 2013, 
365-376
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Online Adaptivity: Basis Adaptation

� Usually: Fixed Basis Size in Time

� Model either too precise (costly) or too coarse (but rapid)

� Identical basis size may be inappropriate for different 
parameters

� Suboptimal in view of „minimal computational cost for
desired accuracy“

� Idea: N-adaptation over time

� Automatic adaptation of basis size over time

� Guarantee prescribed error threshold

� Dimension choice by growth of a-posteriori error estimator

� Note: No projection error by basis change!
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Experiments: time-variant

� Geometry and Data
� Domain
� Dirichlet values: amplitudes
� Initial values: sinusoidal, amplitude
� Velocity:
� Diffusivity:
� Neumann-boundary: outflow
� Parameter

� Examples of Solution Variety

v = (1, 1)T

Ω = [0, 1]2, t ∈ [0, 2]

d

µ = (c1, c2, d) ∈ [0, 1]3

µ = (1, 0, 1)T µ = (0, 1, 0)T

udir(t,µ) = c1 sin(−πt)χ[0,1)(t)

+c2 sin(−16πt+ π)χ[1,2)(t)

c1

c1, c2

t = Tmaxt = 0

t = Tmaxt = 0
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Experiments: time-variant

� Results:

error-estimator dimension

computation time versus true error

Attaching to target, detecting varying model difficulty over time

µ = (1, 1, 1)T

N-adaptive computationally

faster than N-fixed for high

accuracies
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Online Adaptivity: Basis Adaptation

� Extensions:

� Nearest Neighbour in Parameter Space for Local Basis 
Generation [Stamm&Maday‘13] 

� Online Greedy [KH13]

� Dictionary D of Snapshots

� Online Greedy Basis Generation by iteratively
extending basis by dictionary element that realizes
maximum error estimator decrease

� Efficient „Simultaneous“ computation of all extended
RB solutions and error bounds

� Online Orthonormalization of Basis
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Online Adaptivity: Basis Adaptation
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Online Adaptivity: Basis Adaptation

� Experiments: 3D Thermal Block
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Summary and Conclusion
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Summary and Conclusion
� RB for Linear Coercive Problems

� Compliant case: analysis, error-control, basis-generation,
offline/online procedure, software, experiments

� Extension to non-compliant case by primal-dual approach

� RB for Polynomial Nonlinearities
� Tensor approach enables efficiency by offline-online

decomposition
� A-posteriori well-posedness and error statements

� RB for Parametric Time-dependent PDEs
� Empirical Interpolation for Nonlinearities
� Basis generation: POD-Greedy procedure

+ Convergence Rates
� Inequality Constraints can be included
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Summary and Conclusion
� Adaptivity in Basis Generation

� Offline: Train set refinement allows equidistribution of model
error and offline runtime improvement

� Adaptive partitioning approaches: simultaneous accuracy
and online-runtime control

� Online: Parameter/time-dependent small bases assembly
promising for “nonlinear approximation”

� Extensions not Addressed Here
� Noncoercive (inf-sup stable) problems, (Navier)-Stokes
� Geometry param., domain decomposition, multiphysics
� Optimization, optimal control, feedback
� Multiscale problems, stochastic problems
� True error certificates
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Thank you!

For more information see www.morepas.org
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Conferences in Stuttgart
� MORCOS 2018 � SimTech 2018
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