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Lovász Local Lemma

Suppose Φ = C1 ∧ C2 ∧ · · ·∧ Cm is a formula in variables

X1, . . . , Xn. (The variables may be Boolean, and the clauses might

be disjunctions of literals, but this is not essential.) Assume that

each clause shares variables with at most d other clauses;

under a uniform random assignment to the variables X1, . . . , Xn

each clause is false with probability at most p.

Then the Lovász Local Lemma (LLL) asserts that, if 4pd 6 1, then

Φ is true with non-zero probability.

The LLL guarantees only an exponentially small probability, so simple

rejection sampling will not, in general, find a satisfying assignment to

Φ efficiently.
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Moser-Tardos resampling algorithm

A remarkable breakthrough is due to Moser and Tardos (2010), who

found an algorithmically efficient version of LLL:

1 Initialize variables X1, . . . , Xn independently at random.

2 While there exists an unsatisfied clause:

pick one and resample all its variables.

Moser and Tardos showed that this algorithm is efficient under the

same condition as LLL.
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Searching versus sampling

Question
Instead of simply finding a satisfying assignment, can we generate one

uniformly at random?

Consider the problem of sampling independent sets in graph. Variables

correspond to vertices. Clauses correspond to edges. A typical clause has

the form ¬Xi ∨ ¬Xj.

The Moser-Tardos algorithm selects an edge with both endpoints in the

current independent set and re-randomises the variables corresponding to

the two endpoints.

For a path of length two (i.e., with three vertices) the empty independent

set is generated with probability 2
9 and not 1

5 as required.

In fact, any efficient algorithm ought to fail, as sampling independent sets

uniformly at random is a computationally hard problem (NP-hard).
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A second example: spanning trees

Goal: Given a graph G with distinguished vertex r, sample a uniform

spanning tree with root r.

In this example,

there is a variable for each vertex v other than r; it points out the

“parent” of r;

there is a clause for every cycle in the graph; it asserts that the

pointers don’t align themselves with that cycle.

Note that the variables do not have to be Boolean, and there may be a lot

of clauses!
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Apply Moser-Tardos

1. For each v 6= r, assign a random arrow

from v to one of its neighbours.

2. While there is a (directed) cycle in the

current graph, resample all vertices

along all cycles.

3. Output.

r

When this process stops, there are no cycles and the result is a

spanning tree.
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Wilson’s “cycle-popping” algorithm

Wilson (1996) showed that the output from the above procedure is

uniform.

What is it about this particular application that caused the output to

be uniform? How does it differ from the independent set example?
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Extremal instances

Definition
We call an instance (formula) Φ = C1 ∧ · · ·∧ Cm extremal if every

pair of distinct clauses Ci and Cj are either independent (Ci and Cj

have no variables in common) or disjoint (Ci and Cj cannot both be

false).

Extremal instances Φ (in some precise sense) minimize the

probability that the formula is true [Shearer 85].

Moser-Tardos is slowest on extremal instances.

However, slowest for searching is best for sampling!

Theorem (Guo, Jerrum and Liu 2017)

For extremal instances, the output of Moser-Tardos is uniform.
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Extremal instances: a second example

Another example which leads to extremal instances is sampling

sink-free orientations of a graph.

In this case, there is a Boolean variable encoding the orientation of

each edge, and there is a clause for each vertex v, enforcing the

condition that at least one edge is oriented away from v.

Moser-Tardos specialises to the “sink-popping” algorithm of Cohn,

Pemantle and Propp (2002).

Mark Jerrum (Queen Mary) Partial rejection sampling Durham, July 2017 9 / 16



Extremal instances: running time

For extremal instances, the expected number of (sequential)

resampling steps is proportional to

Pr(Exactly one clause in Φ is false)

Pr(Φ is true)
.

(The upper bound is due to Kolipaka and Szegedy (2011).)

For sink-free orientations and spanning trees, this expression yields

upper bounds on (sequential) running time of O(n2) and O(nm),

respectively, where n = |V(G)| and m = |E(G)|.
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Beyond extremal instances

So far we have seen partial rejection sampling for extremal instances.

We cannot expect many sampling problems to correspond to

extremal instances.

The way we extend the range of partial rejection sampling is

suggested by the following example.
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Sampling independent sets

1. Randomize each vertex (in/out).

Consider the connected components

induced by the in-vertices.

2. Let Bad be the set of vertices in

connected components of size at

least 2.

3. Resample = Bad ∪ ∂Bad.

4. Resample variables in set Resample.

Check independence.

When the algorithm stops, it yields a uniform independent set.
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Unblocking sets

The key property of the set Resample is that it is unblocking under

the current assignment σ to the variables.

Definition
A set U of variables is unblocking under σ if σ[U] determines the

truth value of all clauses that share variables with U (and not just

the clauses containing only variables from U

The resampling set from the independent set example was

unblocking.

In applications we also require that U is “adapted” to σ.
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Partial rejection sampling

Algorithm 1 Partial Rejection Sampling

PRS(V,Φ) // Φ is a formula on variable set V

Sample, from the product distribution, an assignment σ to the vari-

ables in V

while Bad(σ) 6= ∅ do
S← ⋃

{var(C) : C ∈ Bad(σ)}

Resample all variables in U = Resample(S;σ)

end while

Note 1. The procedure Resample must not probe variables outside

of U while computing U. This is the condition of being adapted.

Note 2. A previous approach to rejection sampling that tries to

preserve randomness is the “Randomness Recycler” of Fill and Huber.
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Partial rejection sampling: correctness
Let σt = (assignment after t iterations), and T = #iterations.

Prove by induction on t that, for all t 6 T , and all subsets B ⊆ Φ of

clauses satisfying Pr(Bad(σt) = B) > 0,

D(σt | Bad(σt) = B) = D(π | Bad(π) = B).

where π denotes a sample from the product distribution.

Note that D(σ0) = D(π), so the induction hypothesis holds when

t = 0. Note also that when t = T the induction hypothesis expresses

correctness of the algorithm.

Theorem (Guo, Jerrum and Liu, 2017)

When PRS halts, its output is uniform over satisfying assignments.
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Sampling satisfying assignments to a k-CNF

formula

Suppose we run PRS on a k-CNF formula Φ of degree d. (There are

k variables per clause and each variable occurs at most d times.)

Theorem (Guo, Jerrum and Liu, 17)

PRS has linear expected running time if d 6 1
6e
· 2k/2, and any two

dependent clauses share at least min{logdk, k/2} variables.

In contrast, uniform sampling of satisfying assignments is NP-hard

even if d > 5 · 2k/2 and dependent clauses share k/2 variables

[Bezáková, Galanis, Goldberg, Guo, Štefankovič, 2016].
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