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The mixing time

The mixing time

Take a lazy random walk Xn on a finite connected graph G = (V ,E ).

Can easily generalise to graphs with conductances, and even to non-reversible
chains to some extent.

Total variation mixing time:

tmix = max
x∈V

min{n ≥ 0 : max
A⊂V
|Px(Xn ∈ A)− π(A)| ≤ 1/4}.

There are of course many ways to bound the mixing time. We will look at
conductance-based bounds.
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The mixing time

An example: the dumbbell graph

Starting from the left-hand side, it takes us time � n2 to reach the
right-hand side.

The invariant measure of the right-hand side is 1/2, so it seems clear (and it
is easy to prove) that the mixing time is at least cn2.
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Conductance

Conductance

The conductance of a set A ⊂ V measures how easy it is to exit A when starting
in A.

Φ(A) =
Pπ(X0 ∈ A,X1 ∈ Ac)

π(A)π(Ac)
.

Note that if A is the left-hand side of the dumbbell graph, then Φ(A) � 1/n2.

First guess: tmix � maxA⊂V 1/Φ(A) ?
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Conductance

A second example: the path of length n

Unfortunately our guess is not correct. Again it takes time � n2 to reach the
right-hand side of this graph, so tmix ≥ cn2. . . but maxA⊂V 1/Φ(A) � n.
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Conductance

The Lovász/Kannan/Fountoulakis/Reed/Morris/Peres
bound

Let φ(r) = min{Φ(A) : A connected, r/2 ≤ π(A) ≤ r}.

Theorem (Fountoulakis, Reed)

tmix ≤ C

dlog π−1
mine∑

j=1

1

φ(2−j)2
.

This built on work of Lovász and Kannan. A similar bound was given by
Morris and Peres using evolving sets, which in particular works for
non-reversible chains.
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Conductance

The L/K/F/R/M/P bound applied to the dumbbell

Recall that if A is the left-hand side of the dumbbell graph, then
Φ(A) ∼ 1/n2, and tmix � n2.

The L/K/F/R/M/P bound is

tmix ≤ C

dlog π−1
mine∑

j=1

1

Φ(2−j)2
.

This gives tmix . n4.
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Bottleneck sequences

Bottleneck sequences

Take θ ∈ (0, 1]. Say that S1, . . . ,Sk is a θ-bottleneck sequence if

∅ 6= S1 ⊂ S2 ⊂ . . . Sk 6= V ;

Sj and Sc
j are both connected for each j = 1, . . . , k;

Pπ(X0 ∈ Sj ,X1 ∈ Sj+1 \ Sj) ≥ θPπ(X0 ∈ Sj ,X1 ∈ Sc
j ) for all j = 1, . . . , k.
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Bottleneck sequences

Bounding the mixing time

Let Sθ(G ) be the set of all θ-bottleneck sequences for the graph G .

Theorem (Addario-Berry, R.)

For any θ ∈ (0, 1),

tmix ≤ C max
(S1,...,Sk )∈Sθ(G)

k∑
j=1

1

Φ(Sj)
.

For the dumbbell graph, this gives tmix . n2.

For the path, it also gives tmix . n2.
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Robustness of mixing

Robustness of mixing

Gady Kozma asked whether the mixing time is a geometric property. In particular,
is the mixing time robust under rough isometry for bounded degree graphs?

Two graphs G , H are roughly isometric with constant r if there exists a function
f : G → H such that

1
r dG (x , y)− r ≤ dH(f (x), f (y)) ≤ rdG (x , y) + r ;

for all h ∈ H, there exists x ∈ G with d(f (x), h) ≤ r .

If G and H are roughly isometric (with constant r) and have bounded degree, are
their mixing times within a constant factor (depending only on r , not the graphs)?
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Robustness of mixing

The mixing time is NOT robust

The answer is no—the mixing time is not robust under rough isometry.

Ding and Peres constructed a graph where replacing some edges by two
edges end to end decreases the mixing time by an unbounded factor.

Nonetheless, we may ask: are there large classes of graphs such that the
mixing time is robust under rough isometry?

We start with trees. (Peres and Sousi already proved that the mixing time is
robust under rough isometry on trees, but trees give an illuminating
application of our bottleneck sequence tools.)
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Robustness of mixing

Bounding the mixing time on trees

Recall our first result: for any θ ∈ (0, 1),

tmix ≤ C max
(S1,...,Sk )∈Sθ(G)

k∑
j=1

1

Φ(Sj)
.

It is also easy to show (an application of Moon’s lemma, or prove directly by
induction) that on trees,

tmix ≥ c max
(S1,...,Sk )∈S1(G)

k∑
j=1

1

Φ(Sj)
.

(Recall: θ-bottleneck sequences “eat at least θ proportion of the boundary”.)

But on trees, if S and Sc are both connected, then the boundary of S is exactly
one vertex, so the two bounds agree. And they are robust under rough isometry.
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Robustness of mixing

Graphs roughly isometric to trees

A horrible but elementary argument shows that for any graph G that is roughly
isometric (with constant r) to a tree T ,

tmix(G ) ≥ ctmix(T ).

What about an upper bound?
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Robustness of mixing

An example when the bottleneck sequence bound is not
tight: the beanstalk graph
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Robustness of mixing

The bottleneck sequence game

We attempt to improve our upper bound by introducing a two-player game.

Fix constants α, β, γ ∈ (0, 1).

We have two players, Crawler and Dasher. The “board” is the subsets of V , and
each player has a counter on the board which they take turns to move.

Both players begin from ∅. Crawler chooses a “target” vertex s. Crawler plays
first, and the game ends once Dasher’s position includes s.

Crawler: From (C ,D), C ′ valid if

• C ⊂ C ′, C ′ \ C ⊂ Dc , C ′ connected

• Pπ(X0 ∈ C ,X1 ∈ (D ∪ C ′)c)
≤ γPπ(X0 ∈ C ,X1 ∈ Dc)

Dasher: From (C ,D), D ′ valid if

• D ∪ C ⊂ D ′, (D ′)c connected

• ∂D ′ is α-near to C

• D ′ is a β-adjustment of C

• If s ∈ D ′ then s is α-near to C and
D ′ = V (G ).
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Robustness of mixing

The bottleneck sequence game bound

Theorem (Addario-Berry, R.)

For any α, β, γ ∈ (0, 1), there exists a strategy for Crawler such that for any valid
moves by Dasher,

tmix(G ) ≤ C
k∑

j=1

1

Φ(Dj)
.

Note this bound holds for all graphs, not just tree-like graphs.

Now play the game on a graph G that is roughly isometric (with constant r) to a
tree T (both with bounded degree).

We devise a strategy for Dasher such that whatever moves Crawler makes,

k∑
j=1

1

Φ(Dj)
≤ C ′(r)tmix(T )
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Robustness of mixing

The mixing time is robust on bounded degree graphs that
are roughly isometric to trees

Theorem (Addario-Berry, R.)

If G is roughly isometric (with constant r) to a tree T , and both have degree at
most ∆, then

c(r ,∆)tmix(T ) ≤ tmix(G ) ≤ C (r ,∆)tmix(T ).
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