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Prologue

Figure: R0|1

R0|1 has a single odd coordinate θ, and θ2 = 0, so a power
series terminates immediately:

f (θ) = f (0) + f ′(0)θ.

In essence, this means we should regard θ as infinitesimal.
Thus R0|1 is a single point with an infinitesimal neighborhood,
as depicted above.
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Prologue

We will peer into the superpoint using homotopy theory.

Inside, we will find all the super Minkowski spacetimes of string
theory and M-theory, going up to dimension 11.

Then we will find the strings, Dp-branes and M-branes
themselves, thanks to the brane bouquet of Fiorenza, Sati and
Schreiber.
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M-theory

In the mid-1990s, confronted with mounting evidence, the string
theory community understood they must study extended
objects of dimension > 1.

Witten christened this topic

M-theory

The M arguably stands for “membrane”.
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M-theory

M - theory

SO(32) heterotic
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Figure: Polchinski’s schematic.

In this highly schematic picture, M-theory unites the five 10d
string theories (and 11d supergravity, not shown).
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Figure: Polchinski’s schematic.

Most directly, M-theory is a limit of type IIA string theory which
“grows an extra dimension”.



M-theory

10d spacetime becomes 11d:

type IIA string theory M10  N11 M-theory.

Infinitesimally, 10d Minkowski spacetime becomes 11d:

R9,1  R10,1.

But everything in sight is supersymmetric, so it is more correct
to pass between the appropriate ‘super Minkowski spacetimes’:

R9,1|16+16  R10,1|32

We will see this is mathematically natural and beautiful: it is a
central extension!
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Super Minkowski spacetime

I Rd−1,1|N is the ‘super version’ of Rd−1,1.
I Which is Rd with the metric

η(u, v) = −u0v0 + u1v1 + · · ·+ ud−1vd−1.

I Rd−1,1|N is a super Lie algebra.
I Meaning it is a super vector space:

Rd−1,1|N
even = Rd−1,1, Rd−1,1|N

odd = N

I Equipped with a Lie bracket:

[−,−] : Rd−1,1|N ⊗ Rd−1,1|N → Rd−1,1|N.
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Super Minkowski spacetime

This structure is dictated by representation theory.

I Spin(d − 1,1) is the double cover of the connected Lorentz
group SO0(d − 1,1).

I Rd−1,1 is a representation of Spin(d − 1,1).
I N is a choice of a real spinor representation of

Spin(d − 1,1).
I The bracket is a choice of a Spin(d − 1,1)-equivariant map.



Super Minkowski spacetime

Concretely, the bracket on Rd−1,1|N is:
I The only nonzero part of the bracket is the spinor-to-vector

pairing:
[−,−] : N⊗ N→ Rd−1,1.

I If N is irreducible, this map is unique up to rescaling. If N is
reducible, there is more choice involved.

I Physicists write this bracket using gamma matrices:

[Qα,Qβ] = −2ΓµαβPµ.

and call it an “anticommutator”, because Qα and Qβ are
odd.



Central extensions

Remember that, physically:

I Type IIA string theory lives on R9,1|16+16.
I M-theory lives on R10,1|32.
I The M-theory hypothesis gives a physical process such

that
R9,1|16+16  R10,1|32.

Question
What is this process mathematically?



Central extensions

Remember that, physically:

I Type IIA string theory lives on R9,1|16+16.
I M-theory lives on R10,1|32.
I The M-theory hypothesis gives a physical process such

that
R9,1|16+16  R10,1|32.

Question
What is this process mathematically?



Central extensions

It’s a central extension!

Given
I g a super Lie algebra,
I ω : Λ2g→ R a 2-cocycle, meaning:

ω([X ,Y ],Z )± ω([Y ,Z ],X )± ω([Z ,X ],Y ) = 0,

we can form the central extension:

gω = g⊕ Rc,

with one extra generator c, even and central, and modified Lie
bracket:

[X ,Y ]ω = [X ,Y ] + ω(X ,Y )c.
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Central extensions

In particular:
I R10,1|32 is a central extension of R9,1|16+16.
I The 2-cocycle is

ω = dθα ∧ Γ01···9
αβ dθβ,

where Γ01···9 = Γ0Γ1 · · · Γ9, and (xµ, θα) are the even and
odd coordinates on R9,1|16+16.

Note that this really is a 2-cocycle:
I It is left-invariant (as a form on the super Lie group).
I dω = 0, by the naive calculation.

Moreover, it really does give R10,1|32, by the usual “yoga” of
gamma matrices.
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Central extensions

Notation
Every central extension comes with a projection map:

gω → g

that sets c to zero; we will often write this map to indicate
central extension. For example:

R10,1|32 → R9,1|16+16.



The superpoint

This prompts a number of questions.

Question
What singles out the 2-cocycle

ω = dθ ∧ Γ01···9dθ.

among the other 2-cocycles on R9,1|16+16?

Answer
It is invariant under Spin(9,1).

Question
Are any other dimensions of spacetime due to central
extension?

Answer
All of them! This is our main result.
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The superpoint

At the extreme end, we could start with the superpoint R0|1, and
study its central extensions.

Definition
The superpoint R0|1 is the super vector space consisting of R
in odd degree:

R0|1
even = 0, R0|1

odd = R.

I It has no Lie bracket;
I It has no metric;
I It has no spin structure.

We will discover all structure through central extension.
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The superpoint

R0|1 exactly one 2-cocycle:

dθ ∧ dθ

Extending by this 2-cocycle gives R1|1, the superline, the
worldline of the superparticle:

R1|1 → R0|1.

Can we find more dimensions?
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Maximal invariant central extensions

This is a game with two moves:

I We can extend by all 2-cocycles satisfying a suitable
invariance condition.

I We can double the number of spinors.

This will lead us from the superpoint up to 11 dimensions and
beyond.



Maximal invariant central extensions

We want that “suitable invariance condition” to be invariance
under Spin(d − 1,1), but we don’t have a metric!

Proposition (H.–Schreiber, folklore)
For a super Minkowski spacetime Rd−1,1|N, its connected
automorphism group is:

Aut0(Rd−1,1|N) ' R+ × Spin(d − 1,1)× R-group

where the R-group acts trivially on Rd−1,1.

Thus, we can recover the group Spin(d − 1,1) by considering
the automorphisms of the Lie bracket alone.
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The dimensional ladder
Dimension 3

First, we will double the number of fermionic dimensions:

R0|2

We will write this operation as follows:

R0|2 oo
oo R0|1

Now, R0|2 has two odd generators, θ1 and θ2, and there are
three 2-cocycles:

dθ1 ∧ dθ1, dθ1 ∧ dθ2, dθ2 ∧ dθ2.

Extending by all three we get:

R3|2 −→ R0|2.



The dimensional ladder
Dimension 3

Now something remarkable happens: a metric appears!

Aut0(R3|2) = R+ × Spin(2,1).

Thanks to this metric, we can look for Spin(2,1)-invariant
2-cocycles on R2,1|2. There are none, because the only
Spin(2,1)-invariant map:

2⊗ 2→ R

is antisymmetric.



The dimensional ladder
Dimension 4

Double the number of spinors again:

R2,1|2+2 oo
oo R2,1|2

There is precisely one Spin(2,1)-invariant 2-cocycle, and
extending by this gives:

R3,1|4 −→ R2,1|2+2

Again, the metric is not a choice:

Aut0(R3,1|4) = R+ × Spin(3,1)× U(1).

U(1) is the R-group.

There are no further Spin(3,1)-invariant 2-cocycles.
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The dimensional ladder
Dimension 6

Double the number of spinors again:

R3,1|4+4 oo
oo R3,1|4

Now there are two Spin(3,1)-invariant 2-cocycles.

R5,1|8 −→ R3,1|4+4.

Again, the metric is not a choice:

Aut0(R5,1|8) = R+ × Spin(5,1)× Sp(1).

Sp(1) is the R-group.

There are no further Spin(5,1)-invariant 2-cocycles.
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The dimensional ladder
Dimension 10

Now we have a choice of two different ways to double the
spinors, a type IIA and type IIB:

R5,1|8+8 oo
oo R5,1|8

and
R5,1|8+8 oo

oo R5,1|8

There are no Spin(5,1)-invariant 2-cocycles in type IIB, but on
type IIA there are four:

R9,1|16 −→ R5,1|8+8.

Again, the metric is not a choice:

Aut0(R9,1|16) = R+ × Spin(9,1).

There are no further Spin(9,1)-invariant 2-cocycles.
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The dimensional ladder
Dimension 11

Again, we have a choice of two different ways to double the
spinors, a type IIA and type IIB:

R9,1|16+16 oo
oo R9,1|16

and
R9,1|16+16 oo

oo R9,1|16

There are no Spin(9,1)-invariant 2-cocycles in type IIB, but on
type IIA there is one, the one we started with:

R10,1|32 −→ R9,1|16+16.



Theorem (H.–Schreiber)
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//
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xx
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xx
R0|1+1 oo

oo R0|1



The brane scan

We have seen that 2-cocycles give central extensions.

Fact
The 2nd Chevalley–Eilenberg cohomology group

H2(g)

classifies central extensions of g.

Question
What do higher degree cocycles in H•(g) classify?

Answer (Physics)
Invariant (p + 2)-cocycles on Rd−1,1|N classify some of the
p-branes.

Answer (Mathematics)
Higher degree cocycles classify extensions to L∞-algebras.
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The brane scan

The physical answer
The Lie algebra cohomology of Rd−1,1|N gives rise to particular
p-branes called Green–Schwarz p-branes.

I Write a generating set of left-invariant forms:

eµ = dxµ − θΓµdθ, dθα.

I Find the Spin(d − 1,1)-invariant combinations:

µp = eν1 ∧ · · · ∧ eνp ∧ dθΓν1···νpdθ.

I This is (p + 2)-cocycle if and only if it is closed:

dµp = 0.

I This happens only for special values of d ,N and p.



The brane scan

Figure: M. Duff - Supermembranes: the
first fifteen weeks, 1988



The brane scan

This figure is called the old brane scan.

It fails to show many examples of branes that would be
important later:
I D-branes and the M5-brane.
I Black branes from supergravity.
I Brane intersections.

Where can we find these? To answer, we use some homotopy
theory!
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The brane bouquet

The mathematical answer
I The brane scan (p + 2)-cocycles on Rd−1,1|N:

µp = eν1 ∧ · · · ∧ eνp ∧ dθΓν1···νpdθ.

I Extending by these (p + 2)-cocycles, we get the brane
scan algebras:

stringI = R9,1|16
µI

, stringIIA = R9,1|16+16
µIIA

, stringIIB = R9,1|16+16
µIIB

,

m2brane = R10,1|32
µM2

.

I Because these are not 2-cocycles, the resulting extensions
are not super Lie algebras—they are super L∞-algebras.



The brane bouquet

A super L∞-algebra g is like a Lie algebra, defined on a chain
complex of super vector spaces:

g0
∂←− g1

∂←− · · · ∂←− gn
∂←− · · ·

But the Jacobi identity does not hold:

[[X ,Y ],Z ]± [[Y ,Z ],X ]± [[Z ,X ],Y ] 6= 0.

Instead, it holds up to coherent homotopy: we get infinitely
many identities like this:

[[X ,Y ],Z ]± [[Y ,Z ],X ]± [[Z ,X ],Y ] = ∂[X ,Y ,Z ]+[∂(X ∧Y ∧Z )].

This says the Jacobi identity holds up to a chain homotopy,
given by a trilinear bracket:

[−.−,−] : g⊗ g⊗ g→ g,

satisfying its own Jacobi-like identity up to a 4-linear bracket . . .



The brane bouquet

A super Lie algebra is a super L∞-algebra concentrated in
degree 0:

g0 ←− 0←− 0←− · · ·

Given any (p + 2)-cocycle ω : Λp+2g→ R, we can construct an
L∞-algebra gω as follows:

g←− 0←− · · · ←− R

where
I g is in degree 0, R is in degree p.
I [−,−] is the Lie bracket.
I The (p + 2)-linear bracket, [−, · · · ,−] = ω, is the cocycle.
I All other brackets are 0.

In homotopy theory, this operation is called ‘taking the
homotopy fiber’ of ω.
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The brane bouquet
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The brane bouquet

Thanks to stringI, stringIIA, stringIIB and m2brane, we can find
some of the branes missing from the brane scan.

Fact
The left-invariant forms on gω are generated by the left-invariant
forms on g with one additional (p + 1)-form b such that db = ω.

For example:

I On stringIIA = R9,1|16+16
µIIA , the left-invariant forms are

I from R9,1|16+16:

eν = dxν − θΓνdθ, dθα

I and a 2-form F such that

dF = µIIA.



The brane bouquet

Thanks to F , there are new cocycles on stringIIA.

µDp =

(p+2)/2∑
k=0

cp
k eν1 ∧ · · · ∧eνp−2k ∧dθ∧ Γν1···νp−2k dθ∧F ∧ · · · ∧F .

I cp
k are some coefficients chosen to make dµDp = 0.

I With some theoretical machinery due to
Fiorenza–Sati–Schreiber, we can turn this cocycle into the
Dp-brane action.

I Similarly, we can find a cocycle for the M5-brane on
m2brane.
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