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BaSiC idea [Haag,Kastler; Brunetti,Fredenhagen,Verch; .. .]

o Algebraic quantum field theory is an axiomatic approach to QFT on globally
hyperbolic Lorentzian manifolds (= spacetimes)
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BaSiC idea [Haag,Kastler; Brunetti,Fredenhagen,Verch; .. .]

o Algebraic quantum field theory is an axiomatic approach to QFT on globally
hyperbolic Lorentzian manifolds (= spacetimes)

¢ A theory is described by a covariant functor 2 : Loc — Alg

— A(M) — A(M")

@ algebra map

spacetime embedding

subject to physically motivated axioms:

(i) Einstein Causality: (i) Time-Slice:
causally disjoint Cauchy morphism
[2A(M1), A(Mz)] = {0} AM) =2 A(M')
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The underlying algebraic structure
¢ Input data:

e A triple (C, L, W) consisting of a category C with orthogonality relation
1 C Mor C x; Mor C (symmetric & o-stable subset) and 1/ C Mor C
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The underlying algebraic structure

¢ Input data:
e A triple (C, L, W) consisting of a category C with orthogonality relation
1 C Mor C x; Mor C (symmetric & o-stable subset) and 1/ C Mor C
e A target category M (bicomplete closed symmetric monoidal)
Def: The category of M-valued AQFTs on (C, L, W) is the full subcategory
qft(C, L, W) € Mon(M)€ of functors 2 : C — Mon(M) satisfying

1. L-commutativity: For all (¢1 S o2 c2) €L

A(f1)A(f
A1) ® A(ez) — ) ooy @ ()

‘21(f1)®‘2l(f2)l lu‘;”

A(c) @ A(c) A(c)

e
2. W-constancy: For all f € W, 2(f) is isomorphism
Prop: Localization L : C — C[W ] induces equivalence of categories
qft(C, L, W) = qft(C[W ], L.(L),0)
NB: The relevant categories are QFT(C, 1) := qft(C, L,0)
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Operadic formulation
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Motivation

o | will now show that for each orthogonal category (C, L) there exists a
colored operad O(c, 1) such that

QFT(C, 1) = Alg(Oc,1))
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o | will now show that for each orthogonal category (C, L) there exists a
colored operad O(c, 1) such that

QFT(C, 1) = Alg(Oc,1))

o Why is that important and useful?

1. Our previous definition of QFT(C, 1) C Mon(M)© as a full subcategory is
not very useful for universal constructions.

E.g. (i) Do (co)limits exist in QFT(C, 1)?

(ii) Do constructions similar to left Kan extensions
Lanp : Mon(M)€ — Mon(M)P exist for QFT categories?

Answer to (i) is positive and (ii) is done via operadic Kan extensions!

2. Given a target model category M (e.g. M = Ch(k)), can we do homotopy
theory in QFT(C, L)? (That's important for studying gauge theories.)

Homotopy theory of operads and their algebras is well understood!
[Berger,Moerdijk; Hinich; Spitzweck; .. .]
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Colored operads and their algebras

o Colored operads O are like “multicategories”:
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Colored operads and their algebras

o Colored operads O are like “multicategories”:
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Colored operads and their algebras

o Colored operads O are like “multicategories”:

Category (1 in / 1 out) Vs Colored operad (n in / 1 out)
d d
C? a1’ en

o (D-algebras are like “representations”:

C/

represent ( n a(o)

é e, R A, 2 4,
=1

c1cen

o Important construction: For every colored operad map ¢ : O — P, there
exists an adjunction

¢ = Alg(0) = Alg(P) : ¢

with ¢* pullback of P-algebras and ¢ operadic left Kan extension.
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The AQFT operads [BeniniAS Woike]

o For (C, L) orthogonal category, define Cy-colored operad O (¢ ) by

/

C c C
Generators: f 1 l |
‘ /N
C @ c c

Relations: Functoriality + Monoid + Compatibility + 1-commutativity
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C c C
Generators: f 1 l |
‘ /N
C @ c c

Relations: Functoriality + Monoid + Compatibility + 1-commutativity

c c
c c c
e He
He = 1 = He =
X A A e
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The AQFT operads [BeniniAS Woike]

o For (C, L) orthogonal category, define Cy-colored operad O (¢ ) by
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Generators: f 1 l |
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C @ c c

Relations: Functoriality + Monoid + Compatibility + _-commutativity

’ ’ ’

c , c c
C
f l f
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@ Q) C C C C
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The AQFT operads [BeniniAS Woike]

o For (C, L) orthogonal category, define Cy-colored operad O (¢ ) by

/

C c C
Generators: f 1 l |
‘ /N
C @ c c

Relations: Functoriality + Monoid + Compatibility + | -commutativity

c
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The AQFT operads [BeniniAS Woike]

o For (C, L) orthogonal category, define Cy-colored operad O (¢ ) by

/

[ C

c
I
1. He
| X
0

Generators: f

C c ¢

Relations: Functoriality + Monoid + Compatibility + | -commutativity

C
C
_ e .
He = f 3 forall f1 L fo
fi 2
C1 C2
1 C2

C

Thm: The assignment (C, L) — O(c, 1) is functorial on the category of orthogonal
categories. There exists a natural isomorphism of categories

Alg(O(c,1)) = QFT(C, 1)
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Adjunctions between QFT categories

I Every orthogonal functor F : (C, L) — (C’, 1) defines operad map
Or : Oc,1) = Ocr, 1) and hence adjunction between algebra categories.
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Or : Oc,1) = Ocr, 1) and hence adjunction between algebra categories.

o The following instances are interesting/useful for AQFT:

Abelianization

The orthogonal functor idg : (C, () — (C, L) defines full reflective subcategory
Ab : Mon(M)€® —— QFT(C, 1) : U

= Structural result for the full subcategory QFT(C, L) C Mon(M)©
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Adjunctions between QFT categories
I Every orthogonal functor F : (C, L) = (C’, L) defines operad map
Or : Oc,1) = Ocr, 1) and hence adjunction between algebra categories.
o The following instances are interesting/useful for AQFT:

Local-to-Global /Descent

Let Loce C Loc be full subcategory of spacetimes diffeomorphic to R™.
Embedding j : (Locg,j*(L)) — (Loc, L) defines full coreflective subcategory

ext : QFT(Locg,j*(L)) —— QFT(Loc, L) : res

= A theory 2 € QFT(Loc, 1) is determined locally on spacetimes diffeomorphic
to R™ if and only if ey : extres = A

Rem: ext: QFT(Locg,j*(L)) - QFT(Loc, 1) is operadic refinement of
Fredenhagen's universal algebra construction
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Homotopy theory of AQFTs
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Higher structures in gauge theory

¢ Gauge theory = higher spaces of fields

D’ A Z
o g/». g
° ° 0/39 Q
0 @ A A"
“ordinary” field theory gauge theory
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Higher structures in gauge theory

¢ Gauge theory = higher spaces of fields

o’
°

A Z

§ e :/g

o L] Q C]
P @ A A"

“ordinary” field theory gauge theory

o Technically, these are described by (higher) stacks
PSh(Man, Set) — PSh(Man, Grpd) — --- < PSh(Man,sSet)
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o Technically, these are described by (higher) stacks
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¢ Quantum gauge theory = higher algebras of observables

o E.g. differential graded algebras dgAlg(k) := Mon(Ch(k)) in BRST/BV
formalism for perturbative quantum gauge theories
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Higher structures in gauge theory

o Gauge theory = higher spaces of fields

g
°

ok,
o o it
“ordinary” field theory gauge theory

o Technically, these are described by (higher) stacks
PSh(Man, Set) — PSh(Man, Grpd) — --- < PSh(Man,sSet)

¢ Quantum gauge theory = higher algebras of observables

o E.g. differential graded algebras dgAlg(k) := Mon(Ch(k)) in BRST/BV
formalism for perturbative quantum gauge theories

Common feature of higher geometry and algebra

Higher spaces/algebras come with a notion of weak equivalences X Y

= Need for higher category theory or model category theory!
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Model structure for strict AQFTS [Benini,ASWoike]

o For simplicity, consider target model category M = Ch(k) with £k 2 Q
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Model structure for strict AQFTS [Benini,ASWoike]

o For simplicity, consider target model category M = Ch(k) with £k 2 Q
Thm: [Hinich] For every colored operad O € Op(Ch(k)) the category of algebras
Alg(O) carries a model structure in which a morphism k: A — B is a
(i) weak equivalence if each k : Ac — B is a quasi-isomorphism;
(ii) fibration if each k : Ac — B. is degree-wise surjective;
(i) cofibration if it has the left lifting property w.r.t. acyclic fibrations.
Cor: For every orthogonal category (C, L) the category of Ch(k)-valued AQFTs
QFT(C, 1) is a model category with model structure induced by the
isomorphism QFT(C, 1) = Alg(O(c,1)).
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< Practical relevance for AQFT:
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Cor: For every orthogonal category (C, L) the category of Ch(k)-valued AQFTs
QFT(C, 1) is a model category with model structure induced by the
isomorphism QFT(C, 1) = Alg(O(c,1)).

< Practical relevance for AQFT:
1. BRST/BV formalism: Different choices of auxiliary fields/gauge fixings define
weakly equivalent (but non-isomorphic) theories 2l ~ 21" in QFT(Loc, 1)

2. Local-to-global: Embedding j : (Locg,j* (1)) — (Loc, L) defines Quillen
adjunction ext : QFT(Locg,j*(L)) &= QFT(Loc, L) : res
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Model structure for strict AQFTS [Benini,ASWoike]

o For simplicity, consider target model category M = Ch(k) with £k 2 Q

Thm: [Hinich] For every colored operad O € Op(Ch(k)) the category of algebras
Alg(O) carries a model structure in which a morphism k: A — B is a

(i) weak equivalence if each k : Ac — B is a quasi-isomorphism;
(ii) fibration if each k : Ac — B. is degree-wise surjective;
(i) cofibration if it has the left lifting property w.r.t. acyclic fibrations.

Cor: For every orthogonal category (C, L) the category of Ch(k)-valued AQFTs
QFT(C, 1) is a model category with model structure induced by the
isomorphism QFT(C, 1) = Alg(O(c,1)).

< Practical relevance for AQFT:
1. BRST/BV formalism: Different choices of auxiliary fields/gauge fixings define
weakly equivalent (but non-isomorphic) theories 2l ~ 21" in QFT(Loc, 1)
2. Local-to-global: Embedding j : (Locg,j* (1)) — (Loc, L) defines Quillen
adjunction ext : QFT(Locg,j*(L)) &= QFT(Loc, L) : res
Derived extension functor LLext : QF T (Locg, j* (L)) — QFT(Loc, 1) is
needed to obtain correct global gauge theory observables [Benini,AS,Szabo]
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Resolutions and homotopy AQFTs

o Homotopy O-algebras = algebras over (X-)cofibrant resolution O, — O
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o Homotopy O-algebras = algebras over (X-)cofibrant resolution O, — O

Thm: For every (C, L), the AQFT operad Oc,.) is X-cofibrant.

Every (X-)cofib. resolution Owc.1).. - O(c,1) induces Quillen equivalence
QFT_(C, 1) :=Alg(Occ,1). ) +~_ Alg(Oc,1)) =QFT(C, 1)

7 So does this mean that only strict AQFTs are important? NO!
Ex: e Consider stack Y € PSh(Man, sSet), e.g. Yang-Mills [Benini,AS,Schreiber]

e Normalized chains N, : PSh(Man, sSet) — PSh(Man, Ch(k)) and internal
hom defines F.-algebra N>°*(Y) = [N..Y, k]> of “functions” on Y’

e A diagram X : Loc®® — PSh(Man, sSet) of stacks defines a functor
N**(X): Loc — FE. Alg, i.e. a (classical/non-quantized) homotopy AQFT

N"(X) € Alg(O(Loc, 1)@ Es)

for resolution O(roc,1)®Fsc — O(Loc,1)- [Quantization is complicated!]
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Examples via homotopy invariants (orbifoldization)

o Letm: (D, 7*(L)) = (C, L) be (strictified) orthogonal category fibered in
groupoids and consider QFT(D, (L))
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o Letm: (D, 7*(L)) = (C, L) be (strictified) orthogonal category fibered in
groupoids and consider QFT(D, (L))
Ex: Principal G-bundles on spacetimes 7 : (GBun,7*(1L)) — (Loc, L)

o Take fiber-wise homotopy invariants by homotopy right Kan extension

5
™

Alg(O(C,L)xEOC) QFT(Cv J—) i.g. no right adjoint QFT(D7 7T (J-))
\ AbTAJU AbTA\LU
U *
_ o~
dgAlg(k)© T dgAlg(k)P
-« =
hoRan

Thm: Using the typical Bousfield-Kan model

hoRan, 2(c) = /de e [N.(B(r(e) L d)),2A(d)]

the functor hoRan, U : QFT(D, 7*(L)) — dgAlg(k)€ admits a lift along
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v AQFTs are algebras over a colored operad

V" Each orthogonal functor F : (C, L) — (C’, L) defines adjunction
F : QFT(C, 1) —— QFT(C, L") : F*
= Interesting constructions, e.g. local-to-global

V' Strict Ch(k)-valued AQFTs form model category and homotopy AQFTs
always admit strictification (at least for k£ O Q)

V" Examples of homotopy AQFTs over resolution O, 1)@ Fwx — O(c, 1) via

(i) Cochain “function algebras” on co-stacks [no quantization yet!]

(i) Fiber-wise homotopy invariants of QFTs on categories fibered in groupoids

X Open problem: Examples of quantum gauge theories, e.g. via deformation
quantization of (derived) symplectic stacks [Calaque,Pantev, Toén,Vaquié,Vezzosi]
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