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Branching random walks in a random potential

Branching random walks

• Motion: Start with single particle at the origin that performs a

simple random walk on Zd (in continuous time).

• Branching: After an exponential waiting time, the particle splits

into two new particles.

• The new particles behave independently (no interaction).

in a random potential:

• the potential {ξ(z), z ∈ Zd} is a collection of i.i.d. non-negative

random variables.

• Modification: when at site z , particles branch at rate ξ(z).

Note: Other models introduce a random offspring distribution instead of

changing the rates, e.g. space i.i.d., time i.i.d. or space-time i.i.d.
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Typical questions:

Start with one particle at the origin, then we can ask:

• How far do particles spread by time t?

• Equivalently: when do faraway sites z get hit?

• What does the height profile look like, i.e. how many particles

N(t, z) are there at site z at time t?

More specifically:

• We are interested in large scale behaviour ; scaling limit?

• Can we describe the site with the maximal number of particles?

Need to understand:

1. The role of averaging:

• over the environment.

• over the branching/migration mechanism.

2. The competition between the benefit of high peaks vs. cost of

getting there.
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Branching random walk with constant branching rate

No migration: Consider a branching process, where particles split at

rate r , but there is no migration. The expected number of particles ut
satisfies

d

dt
ut = r ut .

I.e. if we start with one particle, ut = ert .

Branching random walk with homogeneous branching rate. Suppose

ξ(x) ≡ r for all x ∈ Zd . A first moment calculation shows that:

Particle growth in constant environment

Particles spread in a ball of radius growing linearly in t.

More interesting questions: corrections to linear growth term.
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Averaging: The parabolic Anderson model

Fix the (inhomogeneous) potential ξ, let

u(t, x) = E ξ[#{particles at site x at time t }]

for t ≥ 0, x ∈ Zd . Then u solves the following equation that defines the

parabolic Anderson model

∂
∂t u(t, z) = ∆u(t, z) + ξ(z)u(t, z) ,

u(0, z) = 1l0(z) ,

where ∆ is the discrete Laplacian, defined as

∆f (x) =
∑

y∈Zd :y∼x

(f (y)− f (x)) ,

and y ∼ x if y is a neighbour of x .

Lots of research activity during the last 20 years in particular by

[Donsker, Varadhan, Gärtner, Molchanov, Sznitman, Antal,

Carmona, den Hollander, Biskup, König, van der Hofstad,

Mörters, Sidorova, Lacoin, O., Schnitzler, Twarowski,

Fiodorov, Muirhead, Chouk, Gairing, Perkowski, . . . ]
5
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Intermittency for the parabolic Anderson model

The main idea is to understand

Intermittency

The solution u is concentrated in a small number of remote islands,

where the potential ξ is particularly large.

• The behaviour of the model depends crucially on the decay of the

tail probability Prob{ξ(0) > x} ∼? for x →∞.

For this talk, we will focus on these:

Example A: ξ has a Pareto distrbution, for some α > 0:

Prob{ξ(0) > x} = x−α.

Example B: ξ has a Weibull distribution, for some γ > 0:

Prob{ξ(0) > x} = e−x
γ

.
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Previous work on parabolic Anderson model

Theorem 1

For either Pareto potential (α > d) or Weibull potential (any γ > 0),

there exists a process Zt such that as t →∞,

u(t,Zt)∑
z u(t, z)

→ 1, in probability.

• Proved by [König, Lacoin, Mörters, Sidorova ’09] – Pareto,

[N. Sidorova, A. Twarowski ’14] [Fiodorov, Muirhead

’14] – Weibull.

• For lighter tails (double exponential), need a island of finite size that

supports solution, [K’́onig, Biskup, dos Santos ’16].

Earlier results mostly concern asymptotics of exptected total mass.

Question

Do these results help to understand the actual number of particles in

the branching random walk? 7
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Back to BRW: Controlling the environment

Main question: If a BRW manages to cover a ball of radius r – what is

the largest potential it has seen along the way?

How does max
x∈B(0,r)∩Zd

ξ(x) grow ?

More precise question: What is the geometry of the peaks of the

potential on large scales?

Extreme value theory tells us:

• Fix a large scaling parameter T .

• Assume ξ is Pareto distributed, i.e. Prob{ξ(z) > x} ∼ x−α, α > d .

• For q = d
α−d , introduce scaling for potential and space

aT =
(

T
log T

)q
, rT =

(
T

log T

)q+1
.

Then, the rescaled environment converges:

ΠT :=
∑
z∈Zd

δ
( z
rT
,
ξ(z)
aT

)
⇒ Π,

where Π is a Poisson point process with intensity α
yα+1 dz ⊗ dy . 8
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Main result: a scaling limit

Consider for z ∈ r−1
T Zd , t ≥ 0:

Hitting times: HT (z) = inf{t ≥ 0 : N(tT , rT z) ≥ 1},

Support: ST (t) = {z ∈ Rd : HT (z) ≤ t}

Rescaled number of particles: MT (t, z) = 1
aT

log+ N(tT , rT z)

with interpolation for z 6∈ r−1
T Zd .

Theorem 2 (O., Roberts ’16, ’18)

The triple (
(HT (z))z∈Rd , (ST (t))t≥0, (MT (t, z))t≥0,z∈Rd

)
,

converges in distribution (in a suitable topology) to

(hΠ, sΠ,mΠ) = ((hΠ(z))z∈Rd , (sΠ(t))t≥0, (mΠ(t, z))t≥0,z∈Rd ),

where the limiting object is a functional of the Poisson point process Π.
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Predicting the hitting times: The lilypad process

Starting in a point z with high potential, we observe the following spread

of mass (in the rescaled picture):

• particles sit at z and branch at rate ξ(z)

• ‘lilypad’ of particles spreads out at speed proportional to ξ(z). (?)

• Continue until point with higher potential is found. ; start of a

new ‘lilypad’.

Let h(0) = 0, and we define the hitting time of z ∈ Rd by the lilypad

model as

h(z) = inf
( ∞∑

j=0

q
|yj+1 − yj |
ξ(yj+1)

)
,

where | · | is the `1-norm and the inf is over all sequences (yi ) with

y0 = z and (yi , ξ(yi )) ∈ Π, i ≥ 1 such that |yn| → 0.

• Need to show this is well-defined.

• Support and number of particles are corollaries.
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Balance between spatial and temporal scale

Claim

‘Lilypad’ of particles spreads out at speed proportional to ξ(z).

Recall that we rescale our systems

space rT =
( T

logT

)q+1

potential aT =
( T

logT

)q
.

We start in a point rT x with potential of size ξT (x) = ξ(rT x)/aT � 1

and assume there are no further good points nearby. When do we reach a

point rT z?

ErT x [N(tT , rT z)] ≈ eξT (x)aT tTPrT x{ reach rT z in time o(tT )}
≈ eξT (x)aT tT e−q|z−x|rT log T

= ea(T )T (ξT (x)t−q|z−x|).

We reach the point z when this expectation is ≈ 1, i.e. at time

t = q
|z − x |
ξT (x)

.

In particular, this shows that rT is the right spatial scaling. 11



Balance between spatial and temporal scale

Claim

‘Lilypad’ of particles spreads out at speed proportional to ξ(z).

Recall that we rescale our systems

space rT =
( T

logT

)q+1

potential aT =
( T

logT

)q
.

We start in a point rT x with potential of size ξT (x) = ξ(rT x)/aT � 1

and assume there are no further good points nearby. When do we reach a

point rT z?

ErT x [N(tT , rT z)] ≈ eξT (x)aT tTPrT x{ reach rT z in time o(tT )}
≈ eξT (x)aT tT e−q|z−x|rT log T

= ea(T )T (ξT (x)t−q|z−x|).

We reach the point z when this expectation is ≈ 1, i.e. at time

t = q
|z − x |
ξT (x)

.

In particular, this shows that rT is the right spatial scaling. 11



Balance between spatial and temporal scale

Claim

‘Lilypad’ of particles spreads out at speed proportional to ξ(z).

Recall that we rescale our systems

space rT =
( T

logT

)q+1

potential aT =
( T

logT

)q
.

We start in a point rT x with potential of size ξT (x) = ξ(rT x)/aT � 1

and assume there are no further good points nearby. When do we reach a

point rT z?

ErT x [N(tT , rT z)] ≈ eξT (x)aT tTPrT x{ reach rT z in time o(tT )}
≈ eξT (x)aT tT e−q|z−x|rT log T

= ea(T )T (ξT (x)t−q|z−x|).

We reach the point z when this expectation is ≈ 1, i.e. at time

t = q
|z − x |
ξT (x)

.

In particular, this shows that rT is the right spatial scaling. 11



Balance between spatial and temporal scale

Claim

‘Lilypad’ of particles spreads out at speed proportional to ξ(z).

Recall that we rescale our systems

space rT =
( T

logT

)q+1

potential aT =
( T

logT

)q
.

We start in a point rT x with potential of size ξT (x) = ξ(rT x)/aT � 1

and assume there are no further good points nearby. When do we reach a

point rT z?

ErT x [N(tT , rT z)] ≈ eξT (x)aT tTPrT x{ reach rT z in time o(tT )}
≈ eξT (x)aT tT e−q|z−x|rT log T

= ea(T )T (ξT (x)t−q|z−x|).

We reach the point z when this expectation is ≈ 1, i.e. at time

t = q
|z − x |
ξT (x)

.

In particular, this shows that rT is the right spatial scaling. 11



Balance between spatial and temporal scale

Claim

‘Lilypad’ of particles spreads out at speed proportional to ξ(z).

Recall that we rescale our systems

space rT =
( T

logT

)q+1

potential aT =
( T

logT

)q
.

We start in a point rT x with potential of size ξT (x) = ξ(rT x)/aT � 1

and assume there are no further good points nearby. When do we reach a

point rT z?

ErT x [N(tT , rT z)] ≈ eξT (x)aT tTPrT x{ reach rT z in time o(tT )}
≈ eξT (x)aT tT e−q|z−x|rT log T

= ea(T )T (ξT (x)t−q|z−x|).

We reach the point z when this expectation is ≈ 1, i.e. at time

t = q
|z − x |
ξT (x)

.

In particular, this shows that rT is the right spatial scaling. 11



Balance between spatial and temporal scale

Claim

‘Lilypad’ of particles spreads out at speed proportional to ξ(z).

Recall that we rescale our systems

space rT =
( T

logT

)q+1

potential aT =
( T

logT

)q
.

We start in a point rT x with potential of size ξT (x) = ξ(rT x)/aT � 1

and assume there are no further good points nearby. When do we reach a

point rT z?

ErT x [N(tT , rT z)] ≈ eξT (x)aT tTPrT x{ reach rT z in time o(tT )}
≈ eξT (x)aT tT e−q|z−x|rT log T

= ea(T )T (ξT (x)t−q|z−x|).

We reach the point z when this expectation is ≈ 1, i.e. at time

t = q
|z − x |
ξT (x)

.

In particular, this shows that rT is the right spatial scaling. 11



Balance between spatial and temporal scale

Claim

‘Lilypad’ of particles spreads out at speed proportional to ξ(z).

Recall that we rescale our systems

space rT =
( T

logT

)q+1

potential aT =
( T

logT

)q
.

We start in a point rT x with potential of size ξT (x) = ξ(rT x)/aT � 1

and assume there are no further good points nearby. When do we reach a

point rT z?

ErT x [N(tT , rT z)] ≈ eξT (x)aT tTPrT x{ reach rT z in time o(tT )}
≈ eξT (x)aT tT e−q|z−x|rT log T

= ea(T )T (ξT (x)t−q|z−x|).

We reach the point z when this expectation is ≈ 1, i.e. at time

t = q
|z − x |
ξT (x)

.

In particular, this shows that rT is the right spatial scaling. 11



Pictures: The support in d = 2

The limiting support is defined as

s(t) := {z ∈ Rd : h(z) ≤ t}.
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Pictures: The number of particles

The (log-)number of particles m(t, z) follows two rules:

• If z is a site with high potential, number of particles start growing at

rate ξ(z) as soon as z is hit.

• Costs to go from nearest good site y to z is q|y − z | (on logarithmic

scale).

Thus,

m(t, z) = ξ(z)(t − h(z)).

13



Pictures: The number of particles

The (log-)number of particles m(t, z) follows two rules:

• If z is a site with high potential, number of particles start growing at

rate ξ(z) as soon as z is hit.

• Costs to go from nearest good site y to z is q|y − z | (on logarithmic

scale).

Thus,

m(t, z) = sup
y
{ξT (y)(t − h(y))−q|y − z |}.

13



Comments on scaling limit

• Limit is random in contrast to earlier work on BRWRE [Comets,

Popov ’07], but also not of SDE/SPDE-type.

• Corollary: Log of number of particles at site is random in leading

order!

• We call the limit process the lilypad process.

• Lilypads grow like `1-balls:

• Reason is that the front is driven by extreme large deviation events

(underlying RW talkes � T steps in time T ).

• Dominating term comes from number of steps taken to get from x

to z ; `1 norm.

• Scaling limit is not universal (e.g. not the same for other lattices).
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Proof of scaling limit

Step 1: Decoupling the randomness:

• Define a discrete lilypad process in terms of the point process

ΠT =
∑
z∈Zd

δ
( z
rT
,
ξ(z)
aT

)
.

We show in [O. and Roberts ’16] that the branching random

walks hitting times are well approximated by the hitting times in the

discrete lilypad process (which only depend on the environment!)

• Use moments, but starting from a good point!

• plus elaborate induction arguments.

• It remains to show that the discrete lilypad model converges.

Step 2: Continuous mapping theorem:

• Since ΠT ⇒ Π, any continuous functional of the point process will

also converge.

• Our functionals are only continuous if they depend on finitely many

points: thus need to ‘cut off’ points with small potential or that are

too far out. 15
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One-point localisation

For u(x , t) the solution of the parabolic Anderson model (i.e. the

expected number of particles) it is known from [König et.al ’09] that

there exists a process ZPAM
t such that

u(t,ZPAM
t )∑

z∈Zd u(t, z)
→ 1 in probability as t →∞.

Q: Does the same hold for the branching random walk?

Recall that we write N(t, z) for the number of particles at site z at

time t.

Theorem 1 (O. and Roberts ’17)

There exists a process Z (1)

t such that

N(t,Z (1)

t )∑
z∈Zd N(t, z)

→ 1 in probability as t →∞.

• Convergence cannot hold almost surely, otherwise we need two

points for transition times (conjecture).
16
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Proof of the one-point localisation

• From scaling limit theorem, we now that at a typical large time t,

we have

1

at
logN(t, r−1

t z) ≈

This implies that there is localisation in the rescaled picture, i.e.

there exists ε > 0 and a process Zt such that∑
z∈B(Zt ,εrt)

N(t, z)∑
w∈Zd N(t,w)

→ 1 in prob.

Here Zt is defined as the maximizer of the corresponding lilypad

process, see [O. and Roberts ’16].

• Remains to worry about particles in a ‘small’ ball around Zt .

Strategy:

• Need to control when exactly the good point Zt is hit for the first

time ; Stopping lines.

• Then show that it is too expensive to leave the good point! (here we

very much rely on the extreme growth of potential!) 17
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Comparison to parabolic Anderson model

• Recall: The solution u(t, x) of the parabolic Anderson model

describes the expected number of particles in the branching

random walk (when averaging over branching/migration).

Our methods also give a scaling limit for

ΛT (t, z) =
1

aTT
log u(tT , rT z), z ∈ Rd

using a description via a ‘modified lilypad process’.

• New hitting times τT (z) ( = time such that Λ(t, z) > 1) depend for

peaks only on position and potential (and otherwise only on nearest

peak).

• Support can be disconnected!

18
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Comparison of the support in dimension 2

• Support of the BRW: green.

• “Support” of the parabolic Anderson model: blue.
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Comparison: Number of particles

• Branching random walk: green.

• Expected number of particles (PAM): blue.
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BRW in Weibull environment

So far all results have been for Pareto potential.

Next step: Weibull potentials:

Prob{ξ(0) > z} ∼ e−z
γ

.

Localisation and asymptotics of total mass of the parabolic Anderson

model well understood:

• [Gärtner, Molchanov ’98, van der Hofstad, Sidorova,

Mörters ’08, Lacoin, H, Mörters ’12, Sidorova,

Twarowski ’14, Fidorov, Muirhead ’14 ].

• This class includes heavy-tailed and non-heavy tailed distributions.

• For any γ > 0: one-point localisation (in probability).
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Rescaling the environment

Extreme value theory tells us to rescale differently this time:

Spatial rescaling:

rT =
T (logT )

1
γ−1

log logT
.

For the potential we need:

aT = (d log rT )
1
γ , bT = (d log rT )

1
γ−1.

Then, the rescaled point process

ΠT =
∑
z∈Zd

δ
( z
rT
,
ξ(z)−aT

bT
)
,

converges to a Poisson point process on Rd × R.

Note the leading order of maximal value of ΠT on a compact set is

deterministic!

Also it is known that there exists Z 1
T :

1

T
log
∑
z

u(T , z) ∼ 1

T
log u(T ,Z 1

T ) ∼ aT + bT random term.

Moreover, Z 1
T/rT converges to a random variable.
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Our work in progress

Q: Are BRW and PAM still different?

Proposition 3

For Weibull potential with γ small, we have that

1

TbT

(
log
∑
z

u(T , z)− log
∑
z

N(T , z)
)
→ 0,

in probability. I.e. PAM and BRW agree to first orders (including the

random term).

Moreover, there exists ε > 0 and a site XT with

|XT | ≥ rT log log(T )ε.

such that N(T ,XT ) ≥ 1.

• Recall for the maximizer in the PAM |Z 1
T |/rT converges.

• So the support of the BRW grows on different scale from maximizer.

• Claim: On the scale of the maximizer, there are particles everywhere.
23
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Proof idea for Weibull case

Identify the optimal strategy for BRW:

• Try to get to a good site z with zT := z/rT and ξT (z) = ξ(z)−aT
bT

of

order one.

• Taking the route via a decent site w near the origin, we can show

that the first particle arrives at z no later than

|zT |
γd1/γ

T

logT
.

• Then, by time T , we have at least the following number of particles:

exp
{
ξ(z)

(
T − |zT |

γd1/γ

T

logT

)}
= exp

{
aTT + bTT

(
ξT (z)− |zT |

γd1/γ−1

)
+ o(bTT )

}
• This gives the same optimization problem as for the PAM.
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Conjecture:

For the parabolic Anderson model / branching random walks:

log u(tT , rT x) ∼ tTaT + TbTΛT (t, x),

where ΛT converges to the following functional of a Poisson point

process (taking a supremum at each spatial position):

Λ(t, x) = sup
z∈Π

{
tξ(z)− |z − x |

γd1/γ−1

}
.
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Open problems:

For branching random walks in random environment

• Double exponential potential?

• Branching rate 1 and (soft or hard) killing according to random

potential?

; corresponds to parabolic Anderson model with bounded

potential. [Engländer 2011, 2015]

• Correlated potentials? ; any new effects?

Related (more realistic) models of population growth in random

environment:

• In Pareto case: the population growth is super-exponential and front

of particles is driven by extreme large-deviations events.

• Is there an interesting model with more realistic particle behaviour

that shows similar effect as our lilypad model?

• Incorporate local competition to restrain population growth?
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