Branching random walks in random environment

Marcel Ortgiese

Joint work with Matt Roberts (Bath)

LMS Durham Symposium
20 August 2018
Branching random walks in a random potential

Branching random walks

- **Motion:** Start with single particle at the origin that performs a simple random walk on \mathbb{Z}^d (in continuous time).
- **Branching:** After an exponential waiting time, the particle splits into two new particles.
- The new particles behave independently (**no interaction**).

in a random potential:

- the potential $\{\xi(z), z \in \mathbb{Z}^d\}$ is a collection of i.i.d. non-negative random variables.
- **Modification:** when at site z, particles branch at rate $\xi(z)$.

Note: Other models introduce a random offspring distribution instead of changing the rates, e.g. space i.i.d., time i.i.d. or space-time i.i.d.
Branching random walks

- **Motion**: Start with a single particle at the origin that performs a simple random walk on \mathbb{Z}^d (in continuous time).
- **Branching**: After an exponential waiting time, the particle splits into two new particles.
- The new particles behave independently (**no interaction**).

in a random potential:

- The potential $\{\xi(z), z \in \mathbb{Z}^d\}$ is a collection of i.i.d. non-negative random variables.
- **Modification**: When at site z, particles branch at rate $\xi(z)$.

Note: Other models introduce a random offspring distribution instead of changing the rates, e.g. space i.i.d., time i.i.d. or space-time i.i.d.
Branching random walks

- **Motion**: Start with a single particle at the origin that performs a simple random walk on \mathbb{Z}^d (in continuous time).

- **Branching**: After an exponential waiting time, the particle splits into two new particles.

- The new particles behave independently (no interaction).

in a random potential:

- the potential $\{\xi(z), z \in \mathbb{Z}^d\}$ is a collection of i.i.d. non-negative random variables.

- **Modification**: when at site z, particles branch at rate $\xi(z)$.

Note: Other models introduce a random offspring distribution instead of changing the rates, e.g. space i.i.d., time i.i.d. or space-time i.i.d.
Typical questions:

Start with one particle at the origin, then we can ask:

- How far do particles spread by time t?
- Equivalently: when do faraway sites z get hit?
- What does the height profile look like, i.e. how many particles $N(t, z)$ are there at site z at time t?

More specifically:

- We are interested in large scale behaviour \sim scaling limit?
- Can we describe the site with the maximal number of particles?

Need to understand:

1. The role of **averaging**:
 - over the environment.
 - over the branching/migration mechanism.
2. The competition between the benefit of **high peaks** vs. **cost of getting there**.
Typical questions:

Start with one particle at the origin, then we can ask:

- How far do particles spread by time t?
- Equivalently: when do faraway sites z get hit?
- What does the height profile look like, i.e. how many particles $N(t, z)$ are there at site z at time t?

More specifically:

- We are interested in large scale behaviour \sim scaling limit?
- Can we describe the site with the maximal number of particles?

Need to understand:

1. The role of **averaging**:
 - over the environment.
 - over the branching/migration mechanism.

2. The competition between the benefit of **high peaks** vs. **cost of getting there**.
Typical questions:

Start with one particle at the origin, then we can ask:

- How far do particles spread by time t?
- Equivalently: when do faraway sites z get hit?
- What does the height profile look like, i.e. how many particles $N(t, z)$ are there at site z at time t?

More specifically:

- We are interested in large scale behaviour \sim scaling limit?
- Can we describe the site with the maximal number of particles?

Need to understand:

1. The role of **averaging**:
 - over the environment.
 - over the branching/migration mechanism.

2. The competition between the benefit of **high peaks** vs. **cost of getting there**.
Typical questions:

Start with one particle at the origin, then we can ask:

- How far do particles spread by time t?
- Equivalently: when do faraway sites z get hit?
- What does the height profile look like, i.e. how many particles $N(t, z)$ are there at site z at time t?

More specifically:

- We are interested in large scale behaviour \sim scaling limit?
- Can we describe the site with the maximal number of particles?

Need to understand:

1. The role of **averaging**:
 - over the environment.
 - over the branching/migration mechanism.
2. The competition between the benefit of **high peaks** vs. **cost of getting there**.
No migration: Consider a branching process, where particles split at rate r, but there is no migration. The expected number of particles u_t satisfies

$$\frac{d}{dt} u_t = r u_t.$$

I.e. if we start with one particle, $u_t = e^{rt}$.

Branching random walk with homogeneous branching rate. Suppose $\xi(x) \equiv r$ for all $x \in \mathbb{Z}^d$. A first moment calculation shows that:

Particle growth in constant environment

Particles spread in a ball of radius growing linearly in t.

More interesting questions: corrections to linear growth term.
Branching random walk with constant branching rate

No migration: Consider a branching process, where particles split at rate r, but there is no migration. The expected number of particles u_t satisfies

$$ \frac{d}{dt} u_t = r u_t. $$

I.e. if we start with one particle, $u_t = e^{rt}$.

Branching random walk with homogeneous branching rate. Suppose $\xi(x) \equiv r$ for all $x \in \mathbb{Z}^d$. A first moment calculation shows that:

Particle growth in constant environment

Particles spread in a ball of radius growing linearly in t.

More interesting questions: corrections to linear growth term.
No migration: Consider a branching process, where particles split at rate r, but there is no migration. The expected number of particles u_t satisfies
\[\frac{d}{dt} u_t = r u_t. \]
I.e. if we start with one particle, $u_t = e^{rt}$.

Branching random walk with homogeneous branching rate. Suppose $\xi(x) \equiv r$ for all $x \in \mathbb{Z}^d$. A first moment calculation shows that:

Particle growth in constant environment
Particles spread in a ball of radius growing linearly in t.

More interesting questions: corrections to linear growth term.
Fix the (inhomogeneous) potential \(\xi \), let

\[
 u(t, x) = E^\xi[\#\{\text{particles at site } x \text{ at time } t \}]
\]

for \(t \geq 0, x \in \mathbb{Z}^d \). Then \(u \) solves the following equation that defines the parabolic Anderson model

\[
 \frac{\partial}{\partial t} u(t, z) = \Delta u(t, z) + \xi(z)u(t, z),
\]

\[
 u(0, z) = 1_{0}(z),
\]

where \(\Delta \) is the discrete Laplacian, defined as

\[
 \Delta f(x) = \sum_{y \in \mathbb{Z}^d : y \sim x} (f(y) - f(x)),
\]

and \(y \sim x \) if \(y \) is a neighbour of \(x \).

Lots of research activity during the last 20 years in particular by

[Donsker, Varadhan, Gärtner, Molchanov, Sznitman, Antal, Carmona, den Hollander, Biskup, König, van der Hofstad, Mörters, Sidorova, Lacoin, O., Schnitzler, Twarowski, Fiodorov, Muirhead, Chouk, Gairing, Perkowski, ...]
Averaging: The parabolic Anderson model

Fix the (inhomogeneous) potential ξ, let
\[
u(t, x) = E^{\xi}[\# \{ \text{particles at site } x \text{ at time } t \}]
\]
for $t \geq 0, x \in \mathbb{Z}^d$. Then u solves the following equation that defines the parabolic Anderson model
\[
\frac{\partial}{\partial t} u(t, z) = \Delta u(t, z) + \xi(z) u(t, z),
\]
\[
u(0, z) = 1_{0}(z),
\]
where Δ is the discrete Laplacian, defined as
\[
\Delta f(x) = \sum_{y \in \mathbb{Z}^d : y \sim x} (f(y) - f(x)),
\]
and $y \sim x$ if y is a neighbour of x.

Lots of research activity during the last 20 years in particular by
[Donsker, Varadhan, Gärtner, Molchanov, Sznitman, Antal, Carmona, den Hollander, Biskup, König, van der Hofstad, Mörters, Sidorova, Lacoin, O., Schnitzler, Twarowskii, Fiodorov, Muirhead, Chouk, Gairing, Perkowski, ...]
Averaging: The parabolic Anderson model

Fix the (inhomogeneous) potential ξ, let

$$u(t, x) = E^\xi[\# \{ \text{particles at site } x \text{ at time } t \}]$$

for $t \geq 0, x \in \mathbb{Z}^d$. Then u solves the following equation that defines the **parabolic Anderson model**

$$\frac{\partial}{\partial t} u(t, z) = \Delta u(t, z) + \xi(z) u(t, z),$$
$$u(0, z) = 1_{l_0}(z),$$

where Δ is the discrete Laplacian, defined as

$$\Delta f(x) = \sum_{y \in \mathbb{Z}^d : y \sim x} (f(y) - f(x)),$$

and $y \sim x$ if y is a neighbour of x.

Lots of research activity during the last 20 years in particular by

[Donsker, Varadhan, Gärtner, Molchanov, Sznitman, Antal, Carmona, den Hollander, Biskup, König, van der Hofstad, Mörters, Sidorova, Lacoin, O., Schnitzler, Twarowski, Fiodorov, Muirhead, Chouk, Gairing, Perkowski, ...]
Intermittency for the parabolic Anderson model

The main idea is to understand

Intermittency

The solution u is concentrated in a **small** number of **remote** islands, where the potential ξ is particularly large.

- The behaviour of the model depends crucially on the decay of the tail probability $\text{Prob}\{\xi(0) > x\} \sim \? \text{ for } x \rightarrow \infty$.

For this talk, we will focus on these:

Example A: ξ has a Pareto distribution, for some $\alpha > 0$:

$$\text{Prob}\{\xi(0) > x\} = x^{-\alpha}.$$

Example B: ξ has a Weibull distribution, for some $\gamma > 0$:

$$\text{Prob}\{\xi(0) > x\} = e^{-x^\gamma}.$$
Intermittency for the parabolic Anderson model

The main idea is to understand

Intermittency

The solution u is concentrated in a **small** number of **remote** islands, where the potential ξ is particularly large.

- The behaviour of the model depends crucially on the decay of the tail probability $\text{Prob}\{\xi(0) > x\} \sim ?$ for $x \to \infty$.

For this talk, we will focus on these:

Example A: ξ has a Pareto distribution, for some $\alpha > 0$:

$$\text{Prob}\{\xi(0) > x\} = x^{-\alpha}.$$

Example B: ξ has a Weibull distribution, for some $\gamma > 0$:

$$\text{Prob}\{\xi(0) > x\} = e^{-x^\gamma}.$$
The main idea is to understand

Intermittency

The solution u is concentrated in a **small** number of **remote** islands, where the potential ξ is particularly large.

- The behaviour of the model depends crucially on the decay of the tail probability $\operatorname{Prob}\{\xi(0) > x\} \sim ?$ for $x \to \infty$.

For this talk, we will focus on these:

Example A: ξ has a Pareto distribution, for some $\alpha > 0$:

$$\operatorname{Prob}\{\xi(0) > x\} = x^{-\alpha}.$$

Example B: ξ has a Weibull distribution, for some $\gamma > 0$:

$$\operatorname{Prob}\{\xi(0) > x\} = e^{-x^\gamma}.$$
The main idea is to understand

Intermittency

The solution u is concentrated in a **small** number of **remote** islands, where the potential ξ is particularly large.

- The behaviour of the model depends crucially on the decay of the tail probability $\text{Prob}\{\xi(0) > x\} \sim ?$ for $x \to \infty$.

For this talk, we will focus on these:

Example A: ξ has a Pareto distribution, for some $\alpha > 0$:

$$\text{Prob}\{\xi(0) > x\} = x^{-\alpha}.$$

Example B: ξ has a Weibull distribution, for some $\gamma > 0$:

$$\text{Prob}\{\xi(0) > x\} = e^{-x^\gamma}.$$
Previous work on parabolic Anderson model

Theorem 1

For either Pareto potential ($\alpha > d$) or Weibull potential (any $\gamma > 0$), there exists a process Z_t such that as $t \to \infty$,

$$\frac{u(t, Z_t)}{\sum_z u(t, z)} \to 1, \text{ in probability.}$$

- Proved by [König, Lacoin, Mörters, Sidorova '09] – Pareto,
 [N. Sidorova, A. Twarowski '14] [Fiodorov, Muirhead '14] – Weibull.

- For lighter tails (double exponential), need a island of finite size that supports solution, [König, Biskup, dos Santos ’16].

Earlier results mostly concern asymptotics of expected total mass.

Question

Do these results help to understand the actual number of particles in the branching random walk?
Previous work on parabolic Anderson model

Theorem 1

For either Pareto potential ($\alpha > d$) or Weibull potential (any $\gamma > 0$), there exists a process Z_t such that as $t \to \infty$,

$$\frac{u(t, Z_t)}{\sum_z u(t, z)} \to 1, \quad \text{in probability.}$$

 - For lighter tails (double exponential), need a island of finite size that supports solution, [König, Biskup, dos Santos ’16].

Earlier results mostly concern asymptotics of expected total mass.

Question

Do these results help to understand the actual number of particles in the branching random walk?
Previous work on parabolic Anderson model

Theorem 1

*For either Pareto potential \((\alpha > d)\) or Weibull potential (any \(\gamma > 0\)), there exists a process \(Z_t\) such that as \(t \to \infty\),

\[
\frac{u(t, Z_t)}{\sum_z u(t, z)} \to 1, \quad \text{in probability.}
\]*

- Proved by [König, Lacoin, Mörters, Sidorova ’09] – Pareto,
 [N. Sidorova, A. Twarowski ’14] [Fiodorov, Muirhead ’14] – Weibull.
- For lighter tails (double exponential), need a island of finite size that supports solution, [König, Biskup, dos Santos ’16].

Earlier results mostly concern asymptotics of expected total mass.

Question

Do these results help to understand the actual number of particles in the branching random walk?
Previous work on parabolic Anderson model

Theorem 1

For either Pareto potential ($\alpha > d$) or Weibull potential (any $\gamma > 0$), there exists a process Z_t such that as $t \to \infty$,

$$\frac{u(t, Z_t)}{\sum_z u(t, z)} \to 1, \text{ in probability.}$$

- Proved by [König, Lacoin, Mörters, Sidorova ’09] – Pareto,
 [N. Sidorova, A. Twarowski ’14] [Fiodorov, Muirhead ’14] – Weibull.

- For lighter tails (double exponential), need a island of finite size that supports solution, [König, Biskup, dos Santos ’16].

Earlier results mostly concern asymptotics of expected total mass.

Question

Do these results help to understand the actual number of particles in the branching random walk?
Back to BRW: Controlling the environment

Main question: If a BRW manages to cover a ball of radius r – what is the largest potential it has seen along the way?

How does $\max_{x \in B(0,r) \cap \mathbb{Z}^d} \xi(x)$ grow?

More precise question: What is the geometry of the peaks of the potential on large scales?

Extreme value theory tells us:

- Fix a large scaling parameter T.
- Assume ξ is Pareto distributed, i.e. $\text{Prob}\{\xi(z) > x\} \sim x^{-\alpha}$, $\alpha > d$.
- For $q = \frac{d}{\alpha - d}$, introduce scaling for potential and space

$$a_T = \left(\frac{T}{\log T} \right)^q, \quad r_T = \left(\frac{T}{\log T} \right)^{q+1}.$$

Then, the rescaled environment converges:

$$\Pi_T := \sum_{z \in \mathbb{Z}^d} \delta\left(\frac{z}{r_T}, \frac{\xi(z)}{a_T}\right) \Rightarrow \Pi,$$

where Π is a Poisson point process with intensity $\frac{\alpha}{y^{\alpha+1}} \, dz \otimes dy$.
Main question: If a BRW manages to cover a ball of radius \(r \) – what is the largest potential it has seen along the way?

How does \(\max_{x \in B(0,r) \cap \mathbb{Z}^d} \xi(x) \) grow?

More precise question: What is the **geometry of the peaks** of the potential on large scales?

Extreme value theory tells us:

- Fix a large scaling parameter \(T \).
- Assume \(\xi \) is Pareto distributed, i.e. \(\text{Prob}\{\xi(z) > x\} \sim x^{-\alpha}, \, \alpha > d \).
- For \(q = \frac{d}{\alpha-d} \), introduce scaling for potential and space

\[
a_T = \left(\frac{T}{\log T} \right)^q, \quad r_T = \left(\frac{T}{\log T} \right)^{q+1}.
\]

Then, the rescaled environment converges:

\[
\Pi_T := \sum_{z \in \mathbb{Z}^d} \delta\left(\frac{z}{a_T}, \frac{\xi(z)}{r_T}\right) \Rightarrow \Pi,
\]

where \(\Pi \) is a Poisson point process with intensity \(\frac{\alpha}{y^{\alpha+1}} \, dz \otimes dy \).
Main question: If a BRW manages to cover a ball of radius r – what is the largest potential it has seen along the way?

How does $\max_{x \in B(0,r) \cap \mathbb{Z}^d} \xi(x)$ grow?

More precise question: What is the geometry of the peaks of the potential on large scales?

Extreme value theory tells us:

- Fix a large scaling parameter T.
- Assume ξ is Pareto distributed, i.e. $\text{Prob}\{\xi(z) > x\} \sim x^{-\alpha}$, $\alpha > d$.
- For $q = \frac{d}{\alpha - d}$, introduce scaling for potential and space

$$a_T = \left(\frac{T}{\log T}\right)^q, \quad r_T = \left(\frac{T}{\log T}\right)^{q+1}.$$

Then, the rescaled environment converges:

$$\Pi_T := \sum_{z \in \mathbb{Z}^d} \delta\left(\frac{z}{r_T}, \frac{\xi(z)}{a_T}\right) \Rightarrow \Pi,$$

where Π is a Poisson point process with intensity $\frac{\alpha}{y^{\alpha+1}} dz \otimes dy$.

Main question: If a BRW manages to cover a ball of radius r – what is the largest potential it has seen along the way?

How does $\max_{x \in B(0, r) \cap \mathbb{Z}^d} \xi(x)$ grow?

More precise question: What is the geometry of the peaks of the potential on large scales?

Extreme value theory tells us:

- Fix a large scaling parameter T.
- Assume ξ is Pareto distributed, i.e. $\text{Prob}\{\xi(z) > x\} \sim x^{-\alpha}$, $\alpha > d$.
- For $q = \frac{d}{\alpha - d}$, introduce scaling for potential and space

\[a_T = \left(\frac{T}{\log T}\right)^q, \quad r_T = \left(\frac{T}{\log T}\right)^{q+1}.\]

Then, the rescaled environment converges:

\[\Pi_T := \sum_{z \in \mathbb{Z}^d} \delta\left(\frac{z}{r_T}, \frac{\xi(z)}{a_T}\right) \Rightarrow \Pi,\]

where Π is a Poisson point process with intensity $\frac{\alpha}{y^{\alpha+1}} dz \otimes dy$.
Main question: If a BRW manages to cover a ball of radius r – what is the largest potential it has seen along the way?

How does $\max_{x \in B(0,r) \cap \mathbb{Z}^d} \xi(x)$ grow?

More precise question: What is the **geometry of the peaks** of the potential on large scales?

Extreme value theory tells us:

- Fix a large scaling parameter T.
- Assume ξ is Pareto distributed, i.e. $\text{Prob}\{\xi(z) > x\} \sim x^{-\alpha}$, $\alpha > d$.
- For $q = \frac{d}{\alpha-d}$, introduce scaling for potential and space

$$a_T = \left(\frac{T}{\log T}\right)^q, \quad r_T = \left(\frac{T}{\log T}\right)^{q+1}.$$

Then, the rescaled environment converges:

$$\Pi_T := \sum_{z \in \mathbb{Z}^d} \delta\left(\frac{z}{r_T}, \frac{\xi(z)}{a_T}\right) \Rightarrow \Pi,$$

where Π is a Poisson point process with intensity $\frac{\alpha}{y^{\alpha+1}} \, dz \otimes dy$.
Main question: If a BRW manages to cover a ball of radius r – what is the largest potential it has seen along the way?

How does $\max_{x \in B(0,r) \cap \mathbb{Z}^d} \xi(x)$ grow?

More precise question: What is the geometry of the peaks of the potential on large scales?

Extreme value theory tells us:

- Fix a large scaling parameter T.
- Assume ξ is Pareto distributed, i.e. $\text{Prob}\{\xi(z) > x\} \sim x^{-\alpha}, \alpha > d$.
- For $q = \frac{d}{\alpha - d}$, introduce scaling for potential and space

 \[a_T = \left(\frac{T}{\log T} \right)^q, \quad r_T = \left(\frac{T}{\log T} \right)^{q+1}. \]

Then, the rescaled environment converges:

\[\Pi_T := \sum_{z \in \mathbb{Z}^d} \delta\left(\frac{z}{r_T}, \frac{\xi(z)}{a_T} \right) \Rightarrow \Pi, \]

where Π is a Poisson point process with intensity $\frac{\alpha}{y^{\alpha+1}} \, dz \otimes dy$.
Then, the rescaled environment converges:

\[\Pi_T := \sum_{z \in \mathbb{Z}^d} \delta_{(\frac{z}{r_T}, \frac{\xi(z)}{a_T})} \Rightarrow \Pi, \]

where \(\Pi \) is a Poisson point process with intensity \(\frac{\alpha}{y^{\alpha+1}} \, dz \otimes dy \).
Then, the rescaled environment converges:

$$\Pi_T := \sum_{z \in \mathbb{Z}^d} \delta\left(\frac{z}{r_T}, \frac{\xi(z)}{a_T}\right) \Rightarrow \Pi,$$

where Π is a Poisson point process with intensity $\frac{\alpha}{y^{\alpha + 1}} \, dz \otimes dy$.

Then, the rescaled environment converges:

$$\Pi_T := \sum_{z \in \mathbb{Z}^d} \delta\left(\frac{z}{r_T}, \frac{\xi(z)}{a_T}\right) \Rightarrow \Pi,$$

where Π is a Poisson point process with intensity $\frac{\alpha}{y^{\alpha+1}} \, dz \otimes dy$.
Then, the rescaled environment converges:

\[\Pi_T := \sum_{z \in \mathbb{Z}^d} \delta\left(\frac{z}{r_T}, \frac{\xi(z)}{a_T}\right) \Rightarrow \Pi, \]

where \(\Pi \) is a Poisson point process with intensity \(\frac{\alpha}{y^{\alpha+1}} \, dz \otimes dy \).
Main result: a scaling limit

Consider for $z \in r_1^{-1}\mathbb{Z}^d$, $t \geq 0$:

- **Hitting times:** $H_T(z) = \inf \{ t \geq 0 : N(tT, r_Tz) \geq 1 \}$,

- **Support:** $S_T(t) = \{ z \in \mathbb{R}^d : H_T(z) \leq t \}$

- **Rescaled number of particles:** $M_T(t, z) = \frac{1}{a_T} \log_+ N(tT, r_Tz)$

with interpolation for $z \notin r_1^{-1}\mathbb{Z}^d$.

Theorem 2 (O., Roberts '16, '18)

The triple

$$\left((H_T(z))_{z \in \mathbb{R}^d}, (S_T(t))_{t \geq 0}, (M_T(t, z))_{t \geq 0, z \in \mathbb{R}^d} \right)$$

converges in distribution (in a suitable topology) to

$$(h_\Pi, s_\Pi, m_\Pi) = ((h_\Pi(z))_{z \in \mathbb{R}^d}, (s_\Pi(t))_{t \geq 0}, (m_\Pi(t, z))_{t \geq 0, z \in \mathbb{R}^d})$$

where the limiting object is a functional of the Poisson point process Π.
Main result: a scaling limit

Consider for \(z \in r_T^{-1}\mathbb{Z}^d, t \geq 0: \)

- **Hitting times:** \(H_T(z) = \inf\{t \geq 0 : N(tT, r_Tz) \geq 1\}, \)
- **Support:** \(S_T(t) = \{z \in \mathbb{R}^d : H_T(z) \leq t\} \)
- **Rescaled number of particles:** \(M_T(t, z) = \frac{1}{a_T} \log_+ N(tT, r_Tz) \)

with interpolation for \(z \notin r_T^{-1}\mathbb{Z}^d \).

Theorem 2 (O., Roberts ’16, ’18)

The triple

\[
\left((H_T(z))_{z \in \mathbb{R}^d}, (S_T(t))_{t \geq 0}, (M_T(t, z))_{t \geq 0, z \in \mathbb{R}^d}\right),
\]

converges in distribution (in a suitable topology) to

\[
(h_\Pi, s_\Pi, m_\Pi) = \left(((h_\Pi(z))_{z \in \mathbb{R}^d}, (s_\Pi(t))_{t \geq 0}, (m_\Pi(t, z))_{t \geq 0, z \in \mathbb{R}^d}\right),
\]

where the limiting object is a functional of the Poisson point process \(\Pi \).
Main result: a scaling limit

Consider for \(z \in r_T^{-1}\mathbb{Z}^d, t \geq 0 \):

Hitting times: \(H_T(z) = \inf\{t \geq 0 : N(tT, r_Tz) \geq 1\} \),

Support: \(S_T(t) = \{z \in \mathbb{R}^d : H_T(z) \leq t\} \)

Rescaled number of particles: \(M_T(t, z) = \frac{1}{aT}\log_+ N(tT, r_Tz) \)

with interpolation for \(z \notin r_T^{-1}\mathbb{Z}^d \).

Theorem 2 (O., Roberts '16, '18)

The triple

\[
\left((H_T(z))_{z \in \mathbb{R}^d}, (S_T(t))_{t \geq 0}, (M_T(t, z))_{t \geq 0, z \in \mathbb{R}^d} \right),
\]

converges in distribution (in a suitable topology) to

\[
(h_\Pi, s_\Pi, m_\Pi) = \left((h_\Pi(z))_{z \in \mathbb{R}^d}, (s_\Pi(t))_{t \geq 0}, (m_\Pi(t, z))_{t \geq 0, z \in \mathbb{R}^d} \right),
\]

where the limiting object is a functional of the Poisson point process \(\Pi \).
Main result: a scaling limit

Consider for \(z \in r_T^{-1}\mathbb{Z}^d, t \geq 0 \):

Hitting times:
\[
H_T(z) = \inf \{ t \geq 0 : N(tT, r_T z) \geq 1 \}
\]

Support:
\[
S_T(t) = \{ z \in \mathbb{R}^d : H_T(z) \leq t \}
\]

Rescaled number of particles:
\[
M_T(t, z) = \frac{1}{a_T} \log_+ N(tT, r_T z)
\]

with interpolation for \(z \notin r_T^{-1}\mathbb{Z}^d \).

Theorem 2 (O., Roberts ’16, ’18)

The triple
\[
\left((H_T(z))_{z \in \mathbb{R}^d}, (S_T(t))_{t \geq 0}, (M_T(t, z))_{t \geq 0, z \in \mathbb{R}^d} \right),
\]
converges in distribution (in a suitable topology) to
\[
(h_\Pi, s_\Pi, m_\Pi) = \left((h_\Pi(z))_{z \in \mathbb{R}^d}, (s_\Pi(t))_{t \geq 0}, (m_\Pi(t, z))_{t \geq 0, z \in \mathbb{R}^d} \right),
\]
where the limiting object is a functional of the Poisson point process \(\Pi \).
Predicting the hitting times: The lilypad process

Starting in a point z with high potential, we observe the following spread of mass (in the rescaled picture):

- particles sit at z and branch at rate $\xi(z)$
- ‘lilypad’ of particles spreads out at speed proportional to $\xi(z)$. (⋆)
- Continue until point with higher potential is found. \rightsquigarrow start of a new ‘lilypad’.

\[
\begin{align*}
\text{Let } h(0) &= 0, \text{ and we define the hitting time of } z \in \mathbb{R}^d \text{ by the lilypad model as } \\
&= \inf \left\{ \sum_{j=0}^{\infty} q_{j+1} - q_j \xi(q_j+1) \right\},
\end{align*}
\]

where $|\cdot|$ is the ℓ_1-norm and the inf is over all sequences (y_i) with $y_0 = z$ and $(y_i, \xi(y_i)) \in \Pi$, $i \geq 1$ such that $|y_n| \to 0$.

- Need to show this is well-defined.
- Support and number of particles are corollaries.
Predicting the hitting times: The lilypad process

Starting in a point z with high potential, we observe the following spread of mass (in the rescaled picture):

- particles sit at z and branch at rate $\xi(z)$
- ‘lilypad’ of particles spreads out at speed proportional to $\xi(z)$. (\star)
- Continue until point with higher potential is found. \leadsto start of a new ‘lilypad’.
Predicting the hitting times: The lilypad process

Starting in a point \(z \) with high potential, we observe the following spread of mass (in the rescaled picture):

- particles sit at \(z \) and branch at rate \(\xi(z) \)
- ‘lilypad’ of particles spreads out at speed proportional to \(\xi(z) \). (⋆)
- Continue until point with higher potential is found. \(\sim \) start of a new ‘lilypad’.

Let \(h(0) = 0 \), and we define the hitting time of \(z \in \mathbb{R}^d \) by the lilypad model as

\[
 h(z) = \inf \left(\sum_{j=0}^{\infty} q|y_{j+1} - y_j| \xi(y_{j+1}) \right),
\]

where \(|·| \) is the \(\ell_1 \)-norm and the inf is over all sequences \((y_i)\) with \(y_0 = z \) and \((y_i, \xi(y_i)) \in \Pi, i \geq 1 \) such that \(|y_n| \to 0 \).

Need to show this is well-defined.

Support and number of particles are corollaries.
Starting in a point z with high potential, we observe the following spread of mass (in the rescaled picture):

- particles sit at z and branch at rate $\xi(z)$
- ‘lilypad’ of particles spreads out at speed proportional to $\xi(z)$. (\star)
- Continue until point with higher potential is found. \leadsto start of a new ‘lilypad’.

Let $h(0) = 0$, and we define the hitting time of $z \in \mathbb{R}^d$ by the lilypad model as

$$h(z) = \inf \left\{ \sum_{j=0}^{\infty} q |y_{j+1} - y_j| \xi(y_{j+1}) \right\},$$

where $|\cdot|$ is the ℓ^1-norm and the inf is over all sequences (y_i) with $y_0 = z$ and $(y_i, \xi(y_i)) \in \Pi$, $i \geq 1$ such that $|y_n| \to 0$.

Need to show this is well-defined.

Support and number of particles are corollaries.
Predicting the hitting times: The lilypad process

Starting in a point \(z \) with high potential, we observe the following spread of mass (in the rescaled picture):

- particles sit at \(z \) and branch at rate \(\xi(z) \)
- ‘lilypad’ of particles spreads out at speed proportional to \(\xi(z) \). (⋆)
- Continue until point with higher potential is found. \(\sim \) start of a new ‘lilypad’.

\[h(z) = \inf \left(\sum_{j=0}^{\infty} q |y_{j+1} - y_j| \xi(y_{j+1}) \right), \]

where \(|·|\) is the \(\ell_1 \)-norm and the inf is over all sequences \((y_i, \xi(y_i))\) with \(y_0 = z \) and \((y_i, \xi(y_i)) \in \Pi, i \geq 1 \) such that \(|y_n| \rightarrow 0 \).

Need to show this is well-defined.

Support and number of particles are corollaries.
Predicting the hitting times: The lilypad process

Starting in a point z with high potential, we observe the following spread of mass (in the rescaled picture):

- particles sit at z and branch at rate $\xi(z)$
- ‘lilypad’ of particles spreads out at speed proportional to $\xi(z)$. (\star)
- Continue until point with higher potential is found. \leadsto start of a new ‘lilypad’.

\[
\begin{align*}
\text{Let } h(0) &= 0, \text{ and we define the hitting time of } z \in \mathbb{R}^d \text{ by the lilypad model as } \\
&= \inf \left(\sum_{j=0}^{\infty} q |y_{j+1} - y_j| \xi(y_{j+1}) \right),
\end{align*}
\]

where $|\cdot|$ is the ℓ_1-norm and the inf is over all sequences (y_i) with $y_0 = z$ and $(y_i, \xi(y_i)) \in \Pi$, $i \geq 1$ such that $|y_n| \to 0$.

- Need to show this is well-defined.
- Support and number of particles are corollaries.
Predicting the hitting times: The lilypad process

Starting in a point z with high potential, we observe the following spread of mass (in the rescaled picture):

- particles sit at z and branch at rate $\xi(z)$
- ‘lilypad’ of particles spreads out at speed proportional to $\xi(z)$. (⋆)
- Continue until point with higher potential is found. \leadsto start of a new ‘lilypad’.
Predicting the hitting times: The lilypad process

Starting in a point z with high potential, we observe the following spread of mass (in the rescaled picture):

- particles sit at z and branch at rate $\xi(z)$
- ‘lilypad’ of particles spreads out at speed proportional to $\xi(z)$. \(\star\)
- Continue until point with higher potential is found. \(\sim\) start of a new ‘lilypad’.

\[h(z) = \inf \left(\sum_{j=0}^{\infty} q |y_{j+1} - y_j| \xi(y_{j+1}) \right), \]

where $|\cdot|$ is the ℓ_1-norm and the inf is over all sequences (y_i) with $y_0 = z$ and $(y_i, \xi(y_i)) \in \Pi$, $i \geq 1$ such that $|y_n| \to 0$.

- Need to show this is well-defined.
- Support and number of particles are corollaries.
Predicting the hitting times: The lilypad process

Starting in a point \(z \) with high potential, we observe the following spread of mass (in the rescaled picture):

- particles sit at \(z \) and branch at rate \(\xi(z) \)
- ‘lilypad’ of particles spreads out at speed proportional to \(\xi(z) \). (⋆)
- Continue until point with higher potential is found. \(\leadsto \) start of a new ‘lilypad’.

\[h(z) = \inf \left(\sum_{j=0}^{\infty} q |y_{j+1} - y_j| \xi(y_{j+1}) \right), \]

where \(|·| \) is the \(\ell_1 \)-norm and the inf is over all sequences \((y_i)\) with \(y_0 = z \) and \((y_i, \xi(y_i)) \in \Pi, i \geq 1 \) such that \(|y_n| \to 0 \).

- Need to show this is well-defined.
- Support and number of particles are corollaries.
Starting in a point z with high potential, we observe the following spread of mass (in the rescaled picture):

- particles sit at z and branch at rate $\xi(z)$
- ‘lilypad’ of particles spreads out at speed proportional to $\xi(z)$. (⋆)
- Continue until point with higher potential is found. \rightsquigarrow start of a new ‘lilypad’.

$$h(z) = \inf \left(\sum_{j=0}^{\infty} q \left| y_{j+1} - y_j \right| \xi(y_{j+1}) \right),$$

where $\| \cdot \|$ is the ℓ_1-norm and the inf is over all sequences (y_i) with $y_0 = z$ and $(y_i, \xi(y_i)) \in \Pi$, $i \geq 1$ such that $\|y_n\| \to 0$.

Need to show this is well-defined.

Support and number of particles are corollaries.
Predicting the hitting times: The lilypad process

Starting in a point z with high potential, we observe the following spread of mass (in the rescaled picture):

- particles sit at z and branch at rate $\xi(z)$
- ‘lilypad’ of particles spreads out at speed proportional to $\xi(z)$. (⋆)
- Continue until point with higher potential is found. \leadsto start of a new ‘lilypad’.
Predicting the hitting times: The lilypad process

Starting in a point z with high potential, we observe the following spread of mass (in the rescaled picture):

- particles sit at z and branch at rate $\xi(z)$
- ‘lilypad’ of particles spreads out at speed proportional to $\xi(z)$. (\star)
- Continue until point with higher potential is found. \leadsto start of a new ‘lilypad’.

\[h(z) = \inf \left\{ \sum_{j=0}^{\infty} q |y_{j+1} - y_j| \xi(y_{j+1}) \right\}, \]

where $|\cdot|$ is the ℓ_1-norm and the inf is over all sequences (y_i) with $y_0 = z$ and $(y_i, \xi(y_i)) \in \Pi$, $i \geq 1$ such that $|y_n| \to 0$.
Predicting the hitting times: The lilypad process

Starting in a point z with high potential, we observe the following spread of mass (in the rescaled picture):

- particles sit at z and branch at rate $\xi(z)$
- ‘lilypad’ of particles spreads out at speed proportional to $\xi(z)$. (\star)
- Continue until point with higher potential is found. \leadsto start of a new ‘lilypad’.
Predicting the hitting times: The lilypad process

Starting in a point z with high potential, we observe the following spread of mass (in the rescaled picture):

- particles sit at z and branch at rate $\xi(z)$
- ‘lilypad’ of particles spreads out at speed proportional to $\xi(z)$. (⋆)
- Continue until point with higher potential is found. \leadsto start of a new ‘lilypad’.

Let $h(0) = 0$, and we define the hitting time of $z \in \mathbb{R}^d$ by the lilypad model as $h(z) = \inf \left(\sum_{j=0}^{\infty} q |y_{j+1} - y_j| \xi(y_{j+1}) \right)$, where $|·|$ is the ℓ_1-norm and the inf is over all sequences (y_i) with $y_0 = z$ and $(y_i, \xi(y_i)) \in \Pi$, $i \geq 1$ such that $|y_n| \to 0$.

Need to show this is well-defined.

Support and number of particles are corollaries.
Predicting the hitting times: The lilypad process

Starting in a point z with high potential, we observe the following spread of mass (in the rescaled picture):

- particles sit at z and branch at rate $\xi(z)$
- ‘lilypad’ of particles spreads out at speed proportional to $\xi(z)$. (⋆)
- Continue until point with higher potential is found. \leadsto start of a new ‘lilypad’.
Predicting the hitting times: The lilypad process

Starting in a point z with high potential, we observe the following spread of mass (in the rescaled picture):

- particles sit at z and branch at rate $\xi(z)$
- ‘lilypad’ of particles spreads out at speed proportional to $\xi(z)$. (⋆)
- Continue until point with higher potential is found. \leadsto start of a new ‘lilypad’.

Let $h(0) = 0$, and we define the hitting time of $z \in \mathbb{R}^d$ by the lilypad model as

$$h(z) = \inf \left(\sum_{j=0}^{\infty} q |y_{j+1} - y_j| \xi(y_{j+1}) \right),$$

where $|·|$ is the ℓ_1-norm and the inf is over all sequences (y_i) with $y_0 = z$ and $(y_i, \xi(y_i)) \in \Pi$, $i \geq 1$ such that $|y_n| \to 0$.

Need to show this is well-defined.

Support and number of particles are corollaries.
Predicting the hitting times: The lilypad process

Starting in a point \(z \) with high potential, we observe the following spread of mass (in the rescaled picture):

- particles sit at \(z \) and branch at rate \(\xi(z) \)
- ‘lilypad’ of particles spreads out at speed proportional to \(\xi(z) \). (⋆)
- Continue until point with higher potential is found. \(\sim \) start of a new ‘lilypad’.

\[
\begin{align*}
\text{h}(0) &= 0, \\
\text{h}(z) &= \inf \left(\sum_{j=0}^{\infty} q_{y_j+1} - y_j \right) \xi(y_j+1),
\end{align*}
\]

where \(|\cdot| \) is the \(\ell_1 \)-norm and the inf is over all sequences \((y_i)\) with \(y_0 = z \) and \((y_i, \xi(y_i)) \in \Pi\), \(i \geq 1 \) such that \(|y_n| \to 0 \).

Need to show this is well-defined.

Support and number of particles are corollaries.
Predicting the hitting times: The lilypad process

Starting in a point z with high potential, we observe the following spread of mass (in the rescaled picture):

- particles sit at z and branch at rate $\xi(z)$
- ‘lilypad’ of particles spreads out at speed proportional to $\xi(z)$.
- Continue until point with higher potential is found. \(\leadsto\) start of a new ‘lilypad’.

\[h(z) = \inf \sum_{j=0}^{\infty} q|y_{j+1} - y_j| \xi(y_{j+1}) \]

where $|\cdot|$ is the ℓ_1-norm and the inf is over all sequences (y_i) with $y_0 = z$ and $(y_i, \xi(y_i)) \in \Pi_i, i \geq 1$ such that $|y_n| \to 0$.

Need to show this is well-defined.

Support and number of particles are corollaries.
Predicting the hitting times: The lilypad process

Starting in a point z with high potential, we observe the following spread of mass (in the rescaled picture):

- particles sit at z and branch at rate $\xi(z)$
- ‘lilypad’ of particles spreads out at speed proportional to $\xi(z)$. (\star)
- Continue until point with higher potential is found. \leadsto start of a new ‘lilypad’.

Let $h(0) = 0$, and we define the hitting time of $z \in \mathbb{R}^d$ by the lilypad model as

$$h(z) = \inf \infty \sum_{j=0}^{\infty} q |y_{j+1} - y_j| \xi(y_{j+1}),$$

where $|\cdot|$ is the ℓ_1-norm and the inf is over all sequences (y_i) with $y_0 = z$ and $(y_i, \xi(y_i)) \in \Pi$, $i \geq 1$ such that $|y_n| \to 0$.

Need to show this is well-defined.

Support and number of particles are corollaries.
Predicting the hitting times: The lilypad process

Starting in a point \(z \) with high potential, we observe the following spread of mass (in the rescaled picture):

- particles sit at \(z \) and branch at rate \(\xi(z) \)
- ‘lilypad’ of particles spreads out at speed proportional to \(\xi(z) \). (⋆)
- Continue until point with higher potential is found. \(\leadsto \) start of a new ‘lilypad’.
Predicting the hitting times: The lilypad process

Starting in a point z with high potential, we observe the following spread of mass (in the rescaled picture):

- particles sit at z and branch at rate $\xi(z)$
- ‘lilypad’ of particles spreads out at speed proportional to $\xi(z)$. (⋆)
- Continue until point with higher potential is found. \rightsquigarrow start of a new ‘lilypad’.

Let $h(0) = 0$, and we define the hitting time of $z \in \mathbb{R}^d$ by the lilypad model as

$$h(z) = \inf \left(\sum_{j=0}^{\infty} q \frac{|y_{j+1} - y_j|}{\xi(y_{j+1})} \right),$$

where $|\cdot|$ is the ℓ^1-norm and the inf is over all sequences (y_i) with $y_0 = z$ and $(y_i, \xi(y_i)) \in \Pi, i \geq 1$ such that $|y_n| \to 0$.

- Need to show this is well-defined.
- Support and number of particles are corollaries.
Balance between spatial and temporal scale

Claim

‘Lilypad’ of particles spreads out at speed proportional to $\xi(z)$.

Recall that we rescale our systems

$$
\text{space } r_T = \left(\frac{T}{\log T} \right)^{q+1} \quad \text{potential } a_T = \left(\frac{T}{\log T} \right)^q.
$$

We start in a point $r_T x$ with potential of size $\xi_T(x) = \xi(r_T x)/a_T \approx 1$ and assume there are no further good points nearby. When do we reach a point $r_T z$?

$$
E_{r_T x}[N(tT, r_T z)] \approx e^{\xi_T(x) a_T t T} \mathbb{P}_{r_T x}\left\{ \text{reach } r_T z \text{ in time } o(tT) \right\}
\approx e^{\xi_T(x) a_T t T} e^{-q|z-x| r_T \log T}
= e^{a(T) T (\xi_T(x) t - q|z-x|)}.
$$

We reach the point z when this expectation is ≈ 1, i.e. at time

$$
t = q \frac{|z-x|}{\xi_T(x)}.
$$

In particular, this shows that r_T is the right spatial scaling.
Balance between spatial and temporal scale

<table>
<thead>
<tr>
<th>Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Lilypad’ of particles spreads out at speed proportional to $\xi(z)$.</td>
</tr>
</tbody>
</table>

Recall that we rescale our systems

$$
space \ r_T = \left(\frac{T}{\log T} \right)^{q+1} \quad \text{potential} \ a_T = \left(\frac{T}{\log T} \right)^q.
$$

We start in a point r_Tx with potential of size $\xi_T(x) = \xi(r_Tx)/a_T \approx 1$ and assume there are no further good points nearby. When do we reach a point r_Tz?

$$
\mathbb{E}_{r_Tx}[N(tT, r_Tz)] \approx e^{\xi_T(x)a_TtT} \mathbb{P}_{r_Tx}\{ \text{reach } r_Tz \text{ in time } o(tT) \} \
\approx e^{\xi_T(x)a_TtT} e^{-q|z-x|r_T\log T} \
= e^{a(T)T(\xi_T(x)t-q|z-x|)}.
$$

We reach the point z when this expectation is ≈ 1, i.e. at time

$$
t = q \frac{|z-x|}{\xi_T(x)}.
$$

In particular, this shows that r_T is the right spatial scaling.
Balance between spatial and temporal scale

Claim

‘Lilypad’ of particles spreads out at speed proportional to ξ(z).

Recall that we rescale our systems

\[r_T = \left(\frac{T}{\log T} \right)^{q+1}, \quad a_T = \left(\frac{T}{\log T} \right)^q. \]

We start in a point \(r_T x \) with potential of size \(\xi_T(x) = \xi(r_T x)/a_T \gtrsim 1 \) and assume there are no further good points nearby. When do we reach a point \(r_T z \)?

\[\mathbb{E}_{r_T x}[N(tT, r_T z)] \approx e^{\xi_T(x)a_T tT} \mathbb{P}_{r_T x}\{ \text{reach } r_T z \text{ in time } o(tT) \} \]

\[\approx e^{\xi_T(x)a_T tT} e^{-q|z-x|r_T \log T} \]

\[= e^{a(T) T (\xi_T(x) t - q|z-x|)}. \]

We reach the point \(z \) when this expectation is \(\approx 1 \), i.e. at time

\[t = q \frac{|z - x|}{\xi_T(x)}. \]

In particular, this shows that \(r_T \) is the right spatial scaling.
Balance between spatial and temporal scale

Claim

‘Lilypad’ of particles spreads out at speed proportional to $\xi(z)$.

Recall that we rescale our systems

$$r_T = \left(\frac{T}{\log T}\right)^{q+1} \quad \text{potential} \quad a_T = \left(\frac{T}{\log T}\right)^q.$$

We start in a point $r_T x$ with potential of size $\xi_T(x) = \xi(r_T x)/a_T \approx 1$ and assume there are no further good points nearby. When do we reach a point $r_T z$?

$$\mathbb{E}_{r_T x}[N(tT, r_T z)] \approx e^{\xi_T(x) a_T t T} \mathbb{P}_{r_T x}\{ \text{reach } r_T z \text{ in time } o(tT)\}$$

$$\approx e^{\xi_T(x) a_T t T} e^{-q|z-x|r_T \log T}$$

$$= e^{a(T) T (\xi_T(x) t - q|z-x|)}.$$

We reach the point z when this expectation is ≈ 1, i.e. at time

$$t = q \frac{|z-x|}{\xi_T(x)}.$$

In particular, this shows that r_T is the right spatial scaling.
Balance between spatial and temporal scale

Claim

‘Lilypad’ of particles spreads out at speed proportional to $\xi(z)$.

Recall that we rescale our systems

$$\text{space } r_T = \left(\frac{T}{\log T} \right)^{q+1} \quad \text{potential } a_T = \left(\frac{T}{\log T} \right)^q.$$

We start in a point $r_T x$ with potential of size $\xi_T(x) = \xi(r_T x) / a_T \asymp 1$ and assume there are no further good points nearby. When do we reach a point $r_T z$?

$$\mathbb{E}_{r_T x}[N(tT, r_T z)] \approx e^{\xi_T(x) a_T t T} \mathbb{P}_{r_T x}\{ \text{reach } r_T z \text{ in time } o(tT) \}$$

$$\approx e^{\xi_T(x) a_T t T} e^{-q |z - x| r_T \log T}$$

$$= e^{a(T) T (\xi_T(x) t - q |z - x|)}.$$

We reach the point z when this expectation is ≈ 1, i.e. at time

$$t = q \frac{|z - x|}{\xi_T(x)}.$$

In particular, this shows that r_T is the right spatial scaling.
Balance between spatial and temporal scale

Claim

‘Lilypad’ of particles spreads out at speed proportional to $\xi(z)$.

Recall that we rescale our systems

$$r_T = \left(\frac{T}{\log T} \right)^{q+1} \quad \text{potential} \quad a_T = \left(\frac{T}{\log T} \right)^q.$$

We start in a point $r_T x$ with potential of size $\xi_T(x) = \xi(r_T x)/a_T \approx 1$ and assume there are no further good points nearby. When do we reach a point $r_T z$?

$$E_{r_T x}[N(t T, r_T z)] \approx e^{\xi_T(x) a_T t T} \mathbb{P}_{r_T x}\{ \text{reach } r_T z \text{ in time } o(t T) \} \approx e^{\xi_T(x) a_T t T} e^{-q|z-x|r_T \log T} \approx e^{a(T) T (\xi_T(x)t - q|z-x|)}.$$

We reach the point z when this expectation is ≈ 1, i.e. at time

$$t = q \frac{|z-x|}{\xi_T(x)}.$$

In particular, this shows that r_T is the right spatial scaling.
Balance between spatial and temporal scale

Claim

‘Lilypad’ of particles spreads out at speed proportional to $\xi(z)$.

Recall that we rescale our systems

$$r_T = \left(\frac{T}{\log T} \right)^{q+1} \quad \text{potential} \quad a_T = \left(\frac{T}{\log T} \right)^q.$$

We start in a point $r_T x$ with potential of size $\xi_T(x) = \xi(r_T x)/a_T \approx 1$ and assume there are no further good points nearby. When do we reach a point $r_T z$?

$$E_{r_T x}[N(tT, r_T z)] \approx e^{\xi_T(x)a_T tT} \mathbb{P}_{r_T x}\{ \text{reach } r_T z \text{ in time } o(tT) \}$$

$$\approx e^{\xi_T(x)a_T tT} e^{-q|z-x|r_T \log T}$$

$$= e^{a(T) T (\xi_T(x)t - q|z-x|)}.$$

We reach the point z when this expectation is ≈ 1, i.e. at time

$$t = q \frac{|z-x|}{\xi_T(x)}.$$

In particular, this shows that r_T is the right spatial scaling.
The limiting support is defined as

\[s(t) := \{ z \in \mathbb{R}^d : h(z) \leq t \}. \]
The limiting support is defined as

\[s(t) := \{ z \in \mathbb{R}^d : h(z) \leq t \}. \]
The limiting support is defined as

\[s(t) := \{ z \in \mathbb{R}^d : h(z) \leq t \}. \]
The limiting support is defined as

$$s(t) := \{ z \in \mathbb{R}^d : h(z) \leq t \}.$$
The limiting support is defined as

$$s(t) := \{ z \in \mathbb{R}^d : h(z) \leq t \}.$$
The limiting support is defined as

\[s(t) := \{ z \in \mathbb{R}^d : h(z) \leq t \}. \]
The (log-)number of particles $m(t, z)$ follows two rules:

- If z is a site with high potential, number of particles start growing at rate $\xi(z)$ as soon as z is hit.
- Costs to go from nearest good site y to z is $q|y - z|$ (on logarithmic scale).

Thus,

$$m(t, z) = \xi(z)(t - h(z)).$$
The (log-)number of particles $m(t, z)$ follows two rules:

- If z is a site with high potential, number of particles start growing at rate $\xi(z)$ as soon as z is hit.
- Costs to go from nearest good site y to z is $q|y - z|$ (on logarithmic scale).

Thus,

$$m(t, z) = \sup_y \{\xi_T(y)(t - h(y)) - q|y - z|\}.$$
• Limit is random in contrast to earlier work on BRWRE [Comets, Popov '07], but also not of SDE/SPDE-type.
• Corollary: Log of number of particles at site is random in leading order!
• We call the limit process the **lilypad process**.
• Lilypads grow like ℓ^1-balls:
 • Reason is that the front is driven by extreme large deviation events (underlying RW talks $\gg T$ steps in time T).
 • Dominating term comes from number of steps taken to get from x to $z \sim \ell^1$ norm.
 • Scaling limit is not universal (e.g. not the same for other lattices).
Limit is random in contrast to earlier work on BRWRE \cite{Comets, Popov ’07}, but also not of SDE/SPDE-type.

Corollary: Log of number of particles at site is random in leading order!

We call the limit process the lilypad process.

Lilypads grow like ℓ^1-balls:

- Reason is that the front is driven by extreme large deviation events (underlying RW takes $\gg T$ steps in time T).
- Dominating term comes from number of steps taken to get from x to $z \sim \ell^1$ norm.
- Scaling limit is not universal (e.g. not the same for other lattices).
Comments on scaling limit

- Limit is random in contrast to earlier work on BRWRE \cite{Comets,Popov'07}, but also not of SDE/SPDE-type.
- Corollary: Log of number of particles at site is random in leading order!
- We call the limit process the \textit{lilypad process}.
- Lilypads grow like ℓ^1-balls:
 - Reason is that the front is driven by extreme large deviation events (underlying RW takes $\gg T$ steps in time T).
 - Dominating term comes from number of steps taken to get from x to $z \sim \ell^1$ norm.
 - Scaling limit is not universal (e.g. not the same for other lattices).
Comments on scaling limit

- Limit is random in contrast to earlier work on BRWRE [Comets, Popov ’07], but also not of SDE/SPDE-type.
- Corollary: Log of number of particles at site is random in leading order!
- We call the limit process the **lilypad process**.
- Lilypads grow like \(\ell^1 \)-balls:
 - Reason is that the front is driven by extreme large deviation events (underlying RW takes \(\gg T \) steps in time \(T \)).
 - Dominating term comes from number of steps taken to get from \(x \) to \(z \sim \ell^1 \) norm.
 - Scaling limit is not universal (e.g. not the same for other lattices).
Comments on scaling limit

- Limit is random in contrast to earlier work on BRWRE [Comets, Popov ’07], but also not of SDE/SPDE-type.
- Corollary: Log of number of particles at site is random in leading order!
- We call the limit process the lilypad process.
- Lilypads grow like ℓ^1-balls:
 - Reason is that the front is driven by extreme large deviation events (underlying RW talkes $\gg T$ steps in time T).
 - Dominating term comes from number of steps taken to get from x to $z \sim \ell^1$ norm.
 - Scaling limit is not universal (e.g. not the same for other lattices).
Comments on scaling limit

• Limit is random in contrast to earlier work on BRWRE [Comets, Popov ’07], but also not of SDE/SPDE-type.

• Corollary: Log of number of particles at site is random in leading order!

• We call the limit process the lilypad process.

• Lilypads grow like ℓ^1-balls:
 • Reason is that the front is driven by extreme large deviation events (underlying RW takes $\gg T$ steps in time T).
 • Dominating term comes from number of steps taken to get from x to $z \sim \ell^1$ norm.

• Scaling limit is not universal (e.g. not the same for other lattices).
Comments on scaling limit

- Limit is random in contrast to earlier work on BRWRE [Comets, Popov ’07], but also not of SDE/SPDE-type.
- Corollary: Log of number of particles at site is random in leading order!
- We call the limit process the lilypad process.
- Lilypads grow like \(\ell^1 \)-balls:
 - Reason is that the front is driven by extreme large deviation events (underlying RW takes \(\gg T \) steps in time \(T \)).
 - Dominating term comes from number of steps taken to get from \(x \) to \(z \sim \ell^1 \) norm.
 - Scaling limit is not universal (e.g. not the same for other lattices).
Proof of scaling limit

Step 1: Decoupling the randomness:

- Define a discrete lilypad process in terms of the point process
 \[\Pi_T = \sum_{z \in \mathbb{Z}^d} \delta \left(\frac{z}{r_T}, \frac{\xi(z)}{a_T} \right) . \]
 We show in [O. and Roberts ’16] that the branching random walks hitting times are well approximated by the hitting times in the discrete lilypad process (which only depend on the environment!)
 - Use moments, but starting from a good point!
 - plus elaborate induction arguments.
- It remains to show that the discrete lilypad model converges.

Step 2: Continuous mapping theorem:

- Since \(\Pi_T \Rightarrow \Pi \), any continuous functional of the point process will also converge.
- Our functionals are only continuous if they depend on finitely many points: thus need to ‘cut off’ points with small potential or that are too far out.
Proof of scaling limit

Step 1: Decoupling the randomness:

- Define a discrete lilypad process in terms of the point process

\[\Pi_T = \sum_{z \in \mathbb{Z}^d} \delta\left(\frac{z}{r_T}, \frac{\xi(z)}{a_T} \right). \]

We show in [O. and Roberts ’16] that the branching random walks hitting times are well approximated by the hitting times in the discrete lilypad process (which only depend on the environment!)

- Use moments, but starting from a good point!
- plus elaborate induction arguments.
- It remains to show that the discrete lilypad model converges.

Step 2: Continuous mapping theorem:

- Since \(\Pi_T \rightarrow \Pi \), any continuous functional of the point process will also converge.
- Our functionals are only continuous if they depend on finitely many points: thus need to ‘cut off’ points with small potential or that are too far out.
Proof of scaling limit

Step 1: Decoupling the randomness:

- Define a discrete lilypad process in terms of the point process
\[\Pi_T = \sum_{z \in \mathbb{Z}^d} \delta_{(\frac{z}{r_T}, \xi(z) \frac{a_T}{a_T})}. \]

We show in [O. and Roberts '16] that the branching random walks hitting times are well approximated by the hitting times in the discrete lilypad process (which only depend on the environment!)

- Use moments, but starting from a good point!
- plus elaborate induction arguments.

- It remains to show that the discrete lilypad model converges.

Step 2: Continuous mapping theorem:

- Since \(\Pi_T \Rightarrow \Pi \), any continuous functional of the point process will also converge.
- Our functionals are only continuous if they depend on finitely many points: thus need to ‘cut off’ points with small potential or that are too far out.
Proof of scaling limit

Step 1: Decoupling the randomness:

- Define a discrete lilypad process in terms of the point process

\[\Pi_T = \sum_{z \in \mathbb{Z}^d} \delta\left(\frac{z}{r_T}, \frac{\xi(z)}{a_T} \right). \]

We show in [O. and Roberts ’16] that the branching random walks hitting times are well approximated by the hitting times in the discrete lilypad process (which only depend on the environment!)

- Use moments, but starting from a good point!
- plus elaborate induction arguments.

- It remains to show that the discrete lilypad model converges.

Step 2: Continuous mapping theorem:

- Since \(\Pi_T \Rightarrow \Pi \), any continuous functional of the point process will also converge.

- Our functionals are only continuous if they depend on finitely many points: thus need to ‘cut off’ points with small potential or that are too far out.
Proof of scaling limit

Step 1: Decoupling the randomness:

- Define a discrete lilypad process in terms of the point process
\[
\Pi_T = \sum_{z \in \mathbb{Z}^d} \delta\left(\frac{z}{r_T}, \frac{\xi(z)}{a_T}\right).
\]

We show in [O. and Roberts '16] that the branching random walks hitting times are well approximated by the hitting times in the discrete lilypad process (which only depend on the environment!)

- Use moments, but starting from a good point!
- plus elaborate induction arguments.

- It remains to show that the discrete lilypad model converges.

Step 2: Continuous mapping theorem:

- Since \(\Pi_T \Rightarrow \Pi \), any continuous functional of the point process will also converge.

- Our functionals are only continuous if they depend on finitely many points: thus need to ‘cut off’ points with small potential or that are too far out.
Proof of scaling limit

Step 1: Decoupling the randomness:

- Define a discrete lilypad process in terms of the point process

\[\Pi_T = \sum_{z \in \mathbb{Z}^d} \delta\left(\frac{z}{t_T}, \frac{\xi(z)}{a_T} \right). \]

We show in \([O. \text{ and Roberts } '16]\) that the branching random walks hitting times are well approximated by the hitting times in the discrete lilypad process (which only depend on the environment!)

- Use moments, but starting from a good point!
- plus elaborate induction arguments.

- It remains to show that the discrete lilypad model converges.

Step 2: Continuous mapping theorem:

- Since \(\Pi_T \Rightarrow \Pi \), any continuous functional of the point process will also converge.
- Our functionals are only continuous if they depend on finitely many points: thus need to ‘cut off’ points with small potential or that are too far out.
One-point localisation

For $u(x, t)$ the solution of the parabolic Anderson model (i.e. the expected number of particles) it is known from [König et.al '09] that there exists a process Z_{t}^{PAM} such that

$$\frac{u(t, Z_{t}^{\text{PAM}})}{\sum_{z \in \mathbb{Z}^d} u(t, z)} \to 1 \text{ in probability as } t \to \infty.$$

Q: Does the same hold for the branching random walk?

Recall that we write $N(t, z)$ for the number of particles at site z at time t.

Theorem 1 (O. and Roberts '17)

There exists a process $Z_{t}^{(1)}$ such that

$$\frac{N(t, Z_{t}^{(1)})}{\sum_{z \in \mathbb{Z}^d} N(t, z)} \to 1 \text{ in probability as } t \to \infty.$$

- Convergence cannot hold almost surely, otherwise we need two points for transition times (conjecture).
One-point localisation

For $u(x, t)$ the solution of the parabolic Anderson model (i.e. the expected number of particles) it is known from [König et.al '09] that there exists a process Z_{t}^{PAM} such that

$$\frac{u(t, Z_{t}^{\text{PAM}})}{\sum_{z\in\mathbb{Z}^{d}} u(t, z)} \rightarrow 1 \text{ in probability as } t \to \infty.$$

Q: Does the same hold for the branching random walk?

Recall that we write $N(t, z)$ for the number of particles at site z at time t.

Theorem 1 (O. and Roberts '17)

There exists a process $Z_{t}^{(1)}$ such that

$$\frac{N(t, Z_{t}^{(1)})}{\sum_{z\in\mathbb{Z}^{d}} N(t, z)} \rightarrow 1 \text{ in probability as } t \to \infty.$$

- Convergence cannot hold almost surely, otherwise we need two points for transition times (conjecture).
Proof of the one-point localisation

• From scaling limit theorem, we now that at a typical large time t, we have

$$\frac{1}{a_t} \log N(t, r_t^{-1} z) \approx \log N(t, z)$$

This implies that there is localisation in the rescaled picture, i.e. there exists $\varepsilon > 0$ and a process Z_t such that

$$\frac{\sum_{z \in B(Z_t, \varepsilon r_t)} N(t, z)}{\sum_{w \in \mathbb{Z}^d} N(t, w)} \to 1 \text{ in prob.}$$

Here Z_t is defined as the maximizer of the corresponding lilypad process, see [O. and Roberts '16].

• Remains to worry about particles in a ‘small’ ball around Z_t.

Strategy:

• Need to control when exactly the good point Z_t is hit for the first time \rightsquigarrow Stopping lines.

• Then show that it is too expensive to leave the good point! (here we very much rely on the extreme growth of potential!)
Proof of the one-point localisation

- From scaling limit theorem, we now that at a typical large time t, we have

$$\frac{1}{a_t} \log N(t, r_t^{-1} z) \approx$$

This implies that there is localisation in the rescaled picture, i.e. there exists $\varepsilon > 0$ and a process Z_t such that

$$\frac{\sum_{z \in B(Z_t, \varepsilon r_t)} N(t, z)}{\sum_{w \in \mathbb{Z}^d} N(t, w)} \rightarrow 1 \text{ in prob.}$$

Here Z_t is defined as the maximizer of the corresponding lilypad process, see [O. and Roberts '16].

- Remains to worry about particles in a ‘small’ ball around Z_t.

Strategy:
- Need to control when exactly the good point Z_t is hit for the first time \sim Stopping lines.
- Then show that it is too expensive to leave the good point! (here we very much rely on the extreme growth of potential!)
Proof of the one-point localisation

• From scaling limit theorem, we now that at a typical large time t, we have

$$\frac{1}{a_t} \log N(t, r_t^{-1}z) \approx$$

This implies that there is localisation in the rescaled picture, i.e. there exists $\varepsilon > 0$ and a process Z_t such that

$$\frac{\sum_{z \in B(Z_t, \varepsilon r_t)} N(t, z)}{\sum_{w \in \mathbb{Z}^d} N(t, w)} \to 1 \text{ in prob.}$$

Here Z_t is defined as the maximizer of the corresponding lilypad process, see [O. and Roberts ’16].

• Remains to worry about particles in a ‘small’ ball around Z_t.

Strategy:

• Need to control when exactly the good point Z_t is hit for the first time \leadsto Stopping lines.

• Then show that it is too expensive to leave the good point! (here we very much rely on the extreme growth of potential!)
Comparison to parabolic Anderson model

- Recall: The solution $u(t, x)$ of the parabolic Anderson model describes the **expected number** of particles in the branching random walk (when averaging over branching/migration).

Our methods also give a scaling limit for

$$\Lambda_T(t, z) = \frac{1}{aT} \log u(tT, rTz), \quad z \in \mathbb{R}^d$$

using a description via a ‘modified lilypad process’.

- New hitting times $\tau_T(z)$ ($= \text{time such that } \Lambda(t, z) > 1$) depend for peaks only on position and potential (and otherwise only on nearest peak).

- **Support can be disconnected!**
Comparison to parabolic Anderson model

- Recall: The solution $u(t, x)$ of the parabolic Anderson model describes the **expected number** of particles in the branching random walk (when averaging over branching/migration).

Our methods also give a scaling limit for

$$\Lambda_T(t, z) = \frac{1}{a_T T} \log u(tT, r_T z), \quad z \in \mathbb{R}^d$$

using a description via a ‘modified lilypad process’.

- New hitting times $\tau_T(z)$ (= time such that $\Lambda(t, z) > 1$) depend for peaks only on position and potential (and otherwise only on nearest peak).

- **Support can be disconnected!**
Comparison of the support in dimension 2

- Support of the BRW: green.
- “Support” of the parabolic Anderson model: blue.
Comparison of the support in dimension 2

- Support of the BRW: green.
- “Support” of the parabolic Anderson model: blue.
Comparison of the support in dimension 2

- Support of the BRW: green.
- “Support” of the parabolic Anderson model: blue.
Comparison of the support in dimension 2

- Support of the BRW: green.
- “Support” of the parabolic Anderson model: blue.
Comparison of the support in dimension 2

- Support of the BRW: green.
- “Support” of the parabolic Anderson model: blue.
Comparison of the support in dimension 2

- Support of the BRW: green.
- “Support” of the parabolic Anderson model: blue.
Comparison: Number of particles

- Branching random walk: green.
- Expected number of particles (PAM): blue.
Comparison: Number of particles

- Branching random walk: green.
- Expected number of particles (PAM): blue.
Comparison: Number of particles

- Branching random walk: green.
- Expected number of particles (PAM): blue.
Comparison: Number of particles

- Branching random walk: green.
- Expected number of particles (PAM): blue.
Comparison: Number of particles

- Branching random walk: green.
- Expected number of particles (PAM): blue.
Comparison: Number of particles

- Branching random walk: green.
- Expected number of particles (PAM): blue.
Comparison: Number of particles

- Branching random walk: green.
- Expected number of particles (PAM): blue.
BRW in Weibull environment

So far all results have been for Pareto potential.

Next step: **Weibull potentials**:

\[
\text{Prob}\{\xi(0) > z\} \sim e^{-z^\gamma}.
\]

Localisation and asymptotics of total mass of the parabolic Anderson model well understood:

- [Gärtner, Molchanov '98, van der Hofstad, Sidorova, Mörters '08, Lacoin, H, Mörters '12, Sidorova, Twarowski '14, Fidorov, Muirhead '14].
- This class includes heavy-tailed and non-heavy tailed distributions.
- For any \(\gamma > 0 \): one-point localisation (in probability).
So far all results have been for Pareto potential.

Next step: **Weibull potentials**:

\[
\text{Prob}\{ \xi(0) > z \} \sim e^{-z^\gamma}.
\]

Localisation and asymptotics of total mass of the parabolic Anderson model well understood:

- [Gärtner, Molchanov ’98, van der Hofstad, Sidorova, Mörters ’08, Lacoin, H, Mörters ’12, Sidorova, Twarowski ’14, Fidorov, Muirhead ’14].
- This class includes heavy-tailed and non-heavy tailed distributions.
- For any \(\gamma > 0 \): one-point localisation (in probability).
Rescaling the environment

Extreme value theory tells us to rescale differently this time:

Spatial rescaling:

\[r_T = \frac{T (\log T)^{\frac{1}{\gamma}}}{\log \log T}. \]

For the potential we need:

\[a_T = (d \log r_T)^{\frac{1}{\gamma}}, \quad b_T = (d \log r_T)^{\frac{1}{\gamma}} - 1. \]

Then, the rescaled point process

\[\Pi_T = \sum_{z \in \mathbb{Z}^d} \delta_{\left(\frac{z}{r_T}, \frac{\xi(z) - a_T}{b_T} \right)}, \]

converges to a Poisson point process on \(\mathbb{R}^d \times \mathbb{R} \).

Note the leading order of maximal value of \(\Pi_T \) on a compact set is deterministic!

Also it is known that there exists \(Z^1_T \):

\[\frac{1}{T} \log \sum_z u(T, z) \sim \frac{1}{T} \log u(T, Z^1_T) \sim a_T + b_T \text{ random term.} \]
Rescaling the environment

Extreme value theory tells us to rescale differently this time:

Spatial rescaling:

\[r_T = \frac{T (\log T)^{\frac{1}{\gamma}}}{\log \log T}. \]

For the potential we need:

\[a_T = (d \log r_T)^{\frac{1}{\gamma}}, \quad b_T = (d \log r_T)^{\frac{1}{\gamma}} - 1. \]

Then, the rescaled point process

\[\Pi_T = \sum_{z \in \mathbb{Z}^d} \delta(\frac{z}{r_T}, \frac{\xi(z) - a_T}{b_T}), \]

converges to a Poisson point process on \(\mathbb{R}^d \times \mathbb{R} \).

Note the leading order of maximal value of \(\Pi_T \) on a compact set is deterministic!

Also it is known that there exists \(Z^1_T \):

\[\frac{1}{T} \log \sum_z u(T, z) \sim \frac{1}{T} \log u(T, Z^1_T) \sim a_T + b_T \text{ random term.} \]
Rescaling the environment

Extreme value theory tells us to rescale differently this time:

Spatial rescaling:

\[r_T = \frac{T (\log T)^{\frac{1}{\gamma} - 1}}{\log \log T}. \]

For the potential we need:

\[a_T = \left(d \log r_T \right)^{\frac{1}{\gamma}}, \quad b_T = \left(d \log r_T \right)^{\frac{1}{\gamma} - 1}. \]

Then, the rescaled point process

\[\Pi_T = \sum_{z \in \mathbb{Z}^d} \delta_{\left(\frac{z}{r_T}, \frac{\xi(z) - a_T}{b_T} \right)}, \]

converges to a Poisson point process on \(\mathbb{R}^d \times \mathbb{R} \).

Note the leading order of maximal value of \(\Pi_T \) on a compact set is deterministic!

Also it is known that there exists \(Z^{1}_T \):

\[\frac{1}{T} \log \sum_{z} u(T, z) \sim \frac{1}{T} \log u(T, Z^{1}_T) \sim a_T + b_T \text{ random term}. \]
Rescaling the environment

Extreme value theory tells us to rescale differently this time:

Spatial rescaling:

\[r_T = \frac{T \left(\log T \right)^{\frac{1}{\gamma}-1}}{\log \log T}. \]

For the potential we need:

\[a_T = \left(d \log r_T \right)^{\frac{1}{\gamma}}, \quad b_T = \left(d \log r_T \right)^{\frac{1}{\gamma}-1}. \]

Then, the rescaled point process

\[\Pi_T = \sum_{z \in \mathbb{Z}^d} \delta \left(\frac{z}{r_T}, \frac{\xi(z)-a_T}{b_T} \right), \]

converges to a Poisson point process on \(\mathbb{R}^d \times \mathbb{R} \).

Note the leading order of maximal value of \(\Pi_T \) on a compact set is deterministic!

Also it is known that there exists \(Z_{1T}^1 \):

\[\frac{1}{T} \log \sum_z u(T, z) \sim \frac{1}{T} \log u(T, Z_{1T}^1) \sim a_T + b_T \text{ random term.} \]
Q: Are BRW and PAM still different?

Proposition 3

For Weibull potential with γ small, we have that

$$\frac{1}{Tb_T} \left(\log \sum_z u(T, z) - \log \sum_z N(T, z) \right) \to 0,$$

in probability. I.e. PAM and BRW agree to first orders (including the random term).

Moreover, there exists $\varepsilon > 0$ and a site X_T with

$$|X_T| \geq r_T \log \log(T)^\varepsilon.$$

such that $N(T, X_T) \geq 1$.

- Recall for the maximizer in the PAM $|Z_T^1|/r_T$ converges.
- So the support of the BRW grows on different scale from maximizer.
- Claim: On the scale of the maximizer, there are particles everywhere.
Q: Are BRW and PAM still different?

Proposition 3

For Weibull potential with γ small, we have that

$$\frac{1}{Tb_T} \left(\log \sum_z u(T, z) - \log \sum_z N(T, z) \right) \to 0,$$

in probability. I.e. PAM and BRW agree to first orders (including the random term).

Moreover, there exists $\varepsilon > 0$ and a site X_T with

$$|X_T| \geq r_T \log \log(T)^\varepsilon.$$

such that $N(T, X_T) \geq 1$.

- Recall for the maximizer in the PAM $|Z_T^1|/r_T$ converges.
- So the support of the BRW grows on different scale from maximizer.
- Claim: On the scale of the maximizer, there are particles everywhere.
Q: Are BRW and PAM still different?

Proposition 3

For Weibull potential with γ small, we have that

$$\frac{1}{T b_T} \left(\log \sum_z u(T, z) - \log \sum_z N(T, z) \right) \to 0,$$

in probability. i.e. PAM and BRW agree to first orders (including the random term).

Moreover, there exists $\varepsilon > 0$ and a site X_T with

$$|X_T| \geq r_T \log \log(T)^\varepsilon.$$

such that $N(T, X_T) \geq 1$.

- Recall for the maximizer in the PAM $|Z_T^1|/r_T$ converges.
- So the support of the BRW grows on different scale from maximizer.
- Claim: On the scale of the maximizer, there are particles everywhere.
Q: Are BRW and PAM still different?

Proposition 3

For Weibull potential with γ small, we have that

\[
\frac{1}{Tb_T} \left(\log \sum_z u(T, z) - \log \sum_z N(T, z) \right) \to 0,
\]

in probability. I.e. PAM and BRW agree to first orders (including the random term).

Moreover, there exists $\varepsilon > 0$ and a site X_T with

\[
|X_T| \geq r_T \log \log(T)^\varepsilon.
\]

such that $N(T, X_T) \geq 1$.

- Recall for the maximizer in the PAM $|Z_T^1|/r_T$ converges.
- So the support of the BRW grows on different scale from maximizer.
- Claim: On the scale of the maximizer, there are particles everywhere.
Q: Are BRW and PAM still different?

Proposition 3

For Weibull potential with γ small, we have that

$$\frac{1}{Tb_T} \left(\log \sum_z u(T, z) - \log \sum_z N(T, z) \right) \to 0,$$

in probability. I.e. PAM and BRW agree to first orders (including the random term).

Moreover, there exists $\varepsilon > 0$ and a site X_T with

$$|X_T| \geq r_T \log \log(T)^\varepsilon.$$

such that $N(T, X_T) \geq 1$.

- Recall for the maximizer in the PAM $|Z^1_T|/r_T$ converges.
- So the support of the BRW grows on different scale from maximizer.
- Claim: On the scale of the maximizer, there are particles everywhere.
Proof idea for Weibull case

Identify the optimal strategy for BRW:

- Try to get to a good site z with $z_T := z/r_T$ and $\xi_T(z) = \frac{\xi(z) - a_T}{b_T}$ of order one.
- Taking the route via a decent site w near the origin, we can show that the first particle arrives at z no later than

$$\frac{|z_T|}{\gamma d^{1/\gamma}} \frac{T}{\log T}.$$

- Then, by time T, we have at least the following number of particles:

$$\exp \left\{ \xi(z) \left(T - \frac{|z_T|}{\gamma d^{1/\gamma}} \frac{T}{\log T} \right) \right\}$$

$$= \exp \left\{ a_T T + b_T T \left(\xi_T(z) - \frac{|z_T|}{\gamma d^{1/\gamma-1}} \right) + o(b_T T) \right\}$$

- This gives the same optimization problem as for the PAM.
Proof idea for Weibull case

Identify the optimal strategy for BRW:

- Try to get to a good site \(z \) with \(z_T := z/r_T \) and \(\xi_T(z) = \frac{\xi(z) - a_T}{b_T} \) of order one.
- Taking the route via a decent site \(w \) near the origin, we can show that the first particle arrives at \(z \) no later than

\[
\frac{|z_T|}{\gamma d^{1/\gamma}} \frac{T}{\log T}.
\]

- Then, by time \(T \), we have at least the following number of particles:

\[
\exp \left\{ \xi(z) \left(T - \frac{|z_T|}{\gamma d^{1/\gamma}} \frac{T}{\log T} \right) \right\}
\]

\[
= \exp \left\{ a_T T + b_T T \left(\xi_T(z) - \frac{|z_T|}{\gamma d^{1/\gamma - 1}} \right) + o(b_T T) \right\}
\]

- This gives the same optimization problem as for the PAM.
Proof idea for Weibull case

Identify the optimal strategy for BRW:

- Try to get to a good site z with $z_T := z/r_T$ and $\xi_T(z) = \frac{\xi(z) - a_T}{b_T}$ of order one.

- Taking the route via a decent site w near the origin, we can show that the first particle arrives at z no later than

$$|z_T| \frac{T}{\gamma d^{1/\gamma} \log T}.$$

- Then, by time T, we have at least the following number of particles:

$$\exp \left\{ \xi(z) \left(T - \frac{|z_T|}{\gamma d^{1/\gamma} \log T} \right) \right\}$$

$$= \exp \left\{ a_T T + b_T T \left(\xi_T(z) - \frac{|z_T|}{\gamma d^{1/\gamma - 1}} \right) + o(b_T T) \right\}$$

- This gives the same optimization problem as for the PAM.
Proof idea for Weibull case

Identify the optimal strategy for BRW:

- Try to get to a good site z with $z_T := z/r_T$ and $\xi_T(z) = \frac{\xi(z) - a_T}{b_T}$ of order one.
- Taking the route via a decent site w near the origin, we can show that the first particle arrives at z no later than
 \[
 \frac{|z_T|}{\gamma d^{1/\gamma}} \frac{T}{\log T}.
 \]
- Then, by time T, we have at least the following number of particles:
 \[
 \exp \left\{ \xi(z) \left(T - \frac{|z_T|}{\gamma d^{1/\gamma}} \frac{T}{\log T} \right) \right\} = \exp \left\{ a_T T + b_T T \left(\xi_T(z) - \frac{|z_T|}{\gamma d^{1/\gamma-1}} \right) + o(b_T T) \right\}
 \]
- This gives the same optimization problem as for the PAM.
Conjecture:

For the parabolic Anderson model / branching random walks:

$$\log u(tT, r_T x) \sim t Ta_T + T b_T \Lambda_T(t, x),$$

where Λ_T converges to the following functional of a Poisson point process (taking a supremum at each spatial position):

$$\Lambda(t, x) = \sup_{z \in \Pi} \left\{ t \xi(z) - \frac{|z - x|}{\gamma d^{1/\gamma - 1}} \right\}.$$
Conjecture:

For the parabolic Anderson model / branching random walks:

$$\log u(tT, r_T x) \sim t T a_T + T b_T \Lambda_T(t, x),$$

where Λ_T converges to the following functional of a Poisson point process (taking a supremum at each spatial position):
Conjecture:

For the parabolic Anderson model / branching random walks:

\[
\log u(tT, rTx) \sim tTa_T + Tb_T\Lambda_T(t, x),
\]

where \(\Lambda_T \) converges to the following functional of a Poisson point process (taking a supremum at each spatial position):
Conjecture:

For the parabolic Anderson model / branching random walks:

\[\log u(tT, r_T x) \sim t Ta_T + T b_T \Lambda_T(t, x), \]

where \(\Lambda_T \) converges to the following functional of a Poisson point process (taking a supremum at each spatial position):
Conjecture:

For the parabolic Anderson model / branching random walks:

$$\log u(tT, r_T x) \sim tT a_T + T b_T \Lambda_T(t, x),$$

where Λ_T converges to the following functional of a Poisson point process (taking a supremum at each spatial position):
For the parabolic Anderson model / branching random walks:

\[\log u(tT, r_T x) \sim tT a_T + T b_T \Lambda_T(t, x), \]

where \(\Lambda_T \) converges to the following functional of a Poisson point process (taking a supremum at each spatial position):
Conjecture:

For the parabolic Anderson model / branching random walks:

\[
\log u(tT, r_Tx) \sim tT a_T + T b_T \Lambda_T(t, x),
\]

where \(\Lambda_T \) converges to the following functional of a Poisson point process (taking a supremum at each spatial position):

\[
\lim_{T \to \infty} \Lambda_T(t, x) = \Lambda(t, x).
\]
Conjecture:

For the parabolic Anderson model / branching random walks:

$$\log u(tT, r_T x) \sim tT a_T + T b_T \Lambda_T(t, x),$$

where Λ_T converges to the following functional of a Poisson point process (taking a supremum at each spatial position):
Open problems:

For branching random walks in random environment

- Double exponential potential?
- Branching rate 1 and (soft or hard) killing according to random potential?
 \(\sim \) corresponds to parabolic Anderson model with bounded potential. [Engländer 2011, 2015]
- Correlated potentials? \(\sim \) any new effects?

Related (more realistic) models of population growth in random environment:

- In Pareto case: the population growth is super-exponential and front of particles is driven by extreme large-deviations events.
- Is there an interesting model with more realistic particle behaviour that shows similar effect as our lilypad model?
- Incorporate local competition to restrain population growth?
Open problems:

For branching random walks in random environment

- Double exponential potential?
- Branching rate 1 and (soft or hard) killing according to random potential?
 \(\leadsto\) corresponds to parabolic Anderson model with bounded potential. [Engländer 2011, 2015]
- Correlated potentials? \(\leadsto\) any new effects?

Related (more realistic) models of population growth in random environment:

- In Pareto case: the population growth is super-exponential and front of particles is driven by extreme large-deviations events.
- Is there an interesting model with more realistic particle behaviour that shows similar effect as our lilypad model?
- Incorporate local competition to restrain population growth?
Open problems:

For branching random walks in random environment

- Double exponential potential?
- Branching rate 1 and (soft or hard) killing according to random potential?
 \[\sim\] corresponds to parabolic Anderson model with bounded potential. \[\textit{Engländer 2011, 2015}\]
- Correlated potentials? \[\sim\] any new effects?

Related (more realistic) models of population growth in random environment:

- In Pareto case: the population growth is super-exponential and front of particles is driven by extreme large-deviations events.
- Is there an interesting model with more realistic particle behaviour that shows similar effect as our lilypad model?
- Incorporate local competition to restrain population growth?
Open problems:

For branching random walks in random environment

- Double exponential potential?
- Branching rate 1 and (soft or hard) killing according to random potential?
 \[\rightsquigarrow \] corresponds to parabolic Anderson model with bounded potential. [Engländer 2011, 2015]
- Correlated potentials? \[\rightsquigarrow \] any new effects?

Related (more realistic) models of population growth in random environment:

- In Pareto case: the population growth is super-exponential and front of particles is driven by extreme large-deviations events.
- Is there an interesting model with more realistic particle behaviour that shows similar effect as our lilypad model?
- Incorporate local competition to restrain population growth?
Open problems:

For branching random walks in random environment

- Double exponential potential?
- Branching rate 1 and (soft or hard) killing according to random potential?
 \(\sim \) corresponds to parabolic Anderson model with bounded potential. \textbf{[Engländer 2011, 2015]}
- Correlated potentials? \(\sim \) any new effects?

Related (more realistic) models of population growth in random environment:

- In Pareto case: the population growth is super-exponential and front of particles is driven by extreme large-deviations events.
- Is there an interesting model with more realistic particle behaviour that shows similar effect as our lilypad model?
- Incorporate local competition to restrain population growth?
Open problems:

For branching random walks in random environment

- Double exponential potential?
- Branching rate 1 and (soft or hard) killing according to random potential?
 \[\sim \] corresponds to parabolic Anderson model with bounded potential. [Engländer 2011, 2015]
- Correlated potentials? \[\sim \] any new effects?

Related (more realistic) models of population growth in random environment:

- In Pareto case: the population growth is super-exponential and front of particles is driven by extreme large-deviations events.
- Is there an interesting model with more realistic particle behaviour that shows similar effect as our lilypad model?
- Incorporate local competition to restrain population growth?