Coupling between mechanics and chemistry: Multiscale modelling and analysis

Mariya Ptashnyk

LMS Durham Symposium Homogenization in Disordered Media 19 - 25 August 2018

Engineering and Physical Sciences Research Council

LMS-CMI Research School

29 April – 3 May 2019 ICMS, Edinburgh

"PDEs in Mathematical Biology: Modelling and Analysis"

Lecturers Dagmar Iber, ETH Zurich Jonathan Potts, Sheffield University Elaine Crooks, Swansea University Benoit Perthame, Pierre et Marie Curie Univ. Luigi Preziosi, Politecnico di Torino <u>Guest speakers</u> Angela Stevens, Muenster University Alain Goriely, University of Oxford Kees Weijier, University of Dundee

 $dv = F(D^2u, Du)dt + H(Du) \circ dU_E$

For more information: Mariya Ptashnyk m.ptashnyk@hw.ac.uk Kevin Painter k.painter@hw.ac.uk

 $\frac{\partial u}{\partial t} = D(\alpha) \Delta u + f(u, u, \alpha)$

tes 2 dis 2 dis 2 dis 1 dis 1

LONDON MATHEMATICAL SOCIETY

Plant cell walls: microstructure, mechanics & chemistry

Microscopic structure of plant cell wall

- cellulose microfibrils
- cell wall matrix of pectin, hemicellulose, water, enzymes
- allows for anisotropic cell expansion

Interactions between mechanics and chemistry

- mechanical forces can break load-bearing cross-links
- dynamics of cross-links influences mechanical properties of plant cell wall matrix of plant cell wall matrix by cell wall pectins

Plant cell walls: microstructure, mechanics & chemistry

Microscopic structure of plant cell wall

- cellulose microfibrils
- cell wall matrix of pectin, hemicellulose, water, enzymes
- allows for anisotropic cell expansion

Interactions between mechanics and chemistry

- mechanical forces can break load-bearing cross-links
- dynamics of cross-links influences mechanical properties of plant cell wall matrix of plant cell wall matrix fowth control by cell wall pectins

Mechanics (hyperelastic material)

div
$$\mathbf{T} = 0$$
, $\mathbf{T} = J_e^{-1} \mathbf{F}_e \frac{\partial W(\mathbf{F}_e)}{\partial \mathbf{F}_e}$

+ boundary conditions

 $\mathbf{F} = \mathbf{I} + \nabla \mathbf{u}$ deformation gradient $\mathbf{F} = \mathbf{F}_e \mathbf{F}_g$ decomposition in elastic & growth $J_e = \det(\mathbf{F}_e), J_g = \det(\mathbf{F}_g)$

Calcium-pectin chemistry

- methylestrified pectin: b₁
- ► demethylestrified pectin: *b*₂
- pectin-calcium cross links: b₃
- enzyme PME: p
- calcium ions: c

or
$$\mathbf{T} = \mathbf{F}_e \frac{\partial W(\mathbf{F}_e)}{\partial \mathbf{F}_e} - p\mathbf{I}$$

Ogden, Nonlinear elastic deform. 1984 Rodriguez, Hoger, McCulloch, J Biomech. 1994 Goriely, Moulton, Vandiver, EPL 2010 Goriely, Ben Amar, J Mech.Phys.Solids 2005 Goriely, Ben Amar, Biomech.Model.Mechan. 2007

$$\partial_t n - \operatorname{div}(D_n \nabla n) = g(n, \nabla \mathbf{u})$$

$$n \in \{b_1, b_2, b_3, p, c\}$$

$$\bigwedge^{\mathsf{PME}} \longrightarrow^{\mathsf{PME}} + \bullet^{\mathsf{+}} \mathsf{H}^{\mathsf{+}}$$

Plant cell walls: mechanics & chemistry

Linear elasticity

div
$$\mathbf{T} = 0$$
 in G , $\mathbf{T} \cdot \nu = -P \nu$ on ∂G

$$\mathbf{T} = \left(\mathbb{E}_{M}(b_{3})\chi_{G_{M}} + \mathbb{E}_{F}\chi_{G_{F}}\right)\mathbf{e}(\mathbf{u}_{e})$$

 $\mathbf{e}(\mathbf{u}_e)_{ij} = \frac{1}{2}(\partial_{x_i}\mathbf{u}_{e,j} + \partial_{x_j}\mathbf{u}_{e,i})$

Reaction-diffusion equations for chemical reactions

$$\partial_t n - \operatorname{div}(D_n \nabla n) = g_n(n, \mathcal{R}(\mathbf{e}(\mathbf{u}_e))),$$

- demethyl-esterification of pectin by PME
- demethyl-esterified pectin can decay
- formation and destruction of calcium-pectin cross-links

$$\mathcal{R}(\mathbf{e}(\mathbf{u}_e)) = \left(\operatorname{tr} \left(\mathbb{E}_M(b_3) \chi_{G_M} + \mathbb{E}_F \chi_{G_F} \right) \mathbf{e}(\mathbf{u}_e) \right)^+$$

$$n \in \{b_1, b_2, b_3, p, c\}$$

$$\frac{\kappa}{1+\beta b_2}b_1 p$$

$$-2g(c)b_2+2\kappa b_3 \mathcal{R}(\mathbf{e}(\mathbf{u}_e))$$

Microscopic Model

In $(0, T) \times G$

 $\operatorname{div}(\mathbb{E}^{\varepsilon}(\boldsymbol{b}_{3}^{\varepsilon}, \boldsymbol{x}) \mathbf{e}(\mathbf{u}_{e}^{\varepsilon})) = \mathbf{0}$

or

 $\operatorname{div}(\mathbb{E}^{\varepsilon}(\boldsymbol{b}_{3}^{\varepsilon}, \boldsymbol{x}) \mathbf{e}(\mathbf{u}_{e}^{\varepsilon}) + \mathbb{V}^{\varepsilon}(\boldsymbol{b}_{3}^{\varepsilon}, \boldsymbol{x}) \mathbf{e}(\partial_{t}\mathbf{u}_{e}^{\varepsilon})) = \mathbf{0}$

 $-\Gamma_{\mathcal{E}}$

 $\mathbb{E}^{\varepsilon}(\xi, x) = \mathbb{E}(\xi, \hat{x}/\varepsilon), \quad \mathbb{V}^{\varepsilon}(\xi, x) = \mathbb{V}(\xi, \hat{x}/\varepsilon), \text{ where}$ $\mathbb{E}(\xi, \hat{y}) = \mathbb{E}_{M}(\xi) \chi_{\hat{Y}_{M}}(\hat{y}) + \mathbb{E}_{F} \chi_{\hat{Y}_{F}}(\hat{y}), \quad \mathbb{V}(\xi, \hat{y}) = \mathbb{V}_{M}(\xi) \chi_{\hat{Y}_{M}}(\hat{y}) \quad \text{are } \hat{Y} - \text{periodic,}$ $\hat{Y} = Y \cap \{x_{3} = \text{const}\}$

Microscopic Model In $(0, T) \times G$

 $\mathsf{div}(\mathbb{E}^{\varepsilon}(\mathbf{b}_{\mathbf{3}}^{\varepsilon}, x) \mathbf{e}(\mathbf{u}_{e}^{\varepsilon})) = \mathbf{0}$

or

 $\operatorname{div}(\mathbb{E}^{\varepsilon}(\boldsymbol{b}_{3}^{\varepsilon}, \boldsymbol{x}) \mathbf{e}(\mathbf{u}_{e}^{\varepsilon}) + \mathbb{V}^{\varepsilon}(\boldsymbol{b}_{3}^{\varepsilon}, \boldsymbol{x}) \mathbf{e}(\partial_{t}\mathbf{u}_{e}^{\varepsilon})) = \mathbf{0}$

 $\mathbb{E}^{\varepsilon}(\xi, x) = \mathbb{E}(\xi, \hat{x}/\varepsilon), \quad \mathbb{V}^{\varepsilon}(\xi, x) = \mathbb{V}(\xi, \hat{x}/\varepsilon), \text{ where}$ $\mathbb{E}(\xi, \hat{y}) = \mathbb{E}_{M}(\xi) \chi_{\hat{Y}_{M}}(\hat{y}) + \mathbb{E}_{F} \chi_{\hat{Y}_{F}}(\hat{y}), \quad \mathbb{V}(\xi, \hat{y}) = \mathbb{V}_{M}(\xi) \chi_{\hat{Y}_{M}}(\hat{y}) \quad \text{are } \hat{Y}\text{-periodic,}$ $\hat{Y} = Y \cap \{x_{3} = \text{const}\}$

In $(0, T) \times G^{\varepsilon}_{M}$

 $\begin{aligned} \partial_t p^{\varepsilon} &= \operatorname{div}(D_p \nabla p^{\varepsilon}) \\ \partial_t b_1^{\varepsilon} &= \operatorname{div}(D_{b_1} \nabla b_1^{\varepsilon}) - f(b_1^{\varepsilon}, b_2^{\varepsilon}, p^{\varepsilon}) \\ \partial_t b_2^{\varepsilon} &= \operatorname{div}(D_{b_2} \nabla b_2^{\varepsilon}) + f(b_1^{\varepsilon}, b_2^{\varepsilon}, p^{\varepsilon}) - 2g(c^{\varepsilon})b_2^{\varepsilon} + 2\kappa b_3^{\varepsilon} \mathcal{R}(\mathbf{e}(\mathbf{u}_e^{\varepsilon})) \\ \partial_t c^{\varepsilon} &= \operatorname{div}(D_c \nabla c^{\varepsilon}) - g(c^{\varepsilon})b_2^{\varepsilon} + \kappa b_3^{\varepsilon} \mathcal{R}(\mathbf{e}(\mathbf{u}_e^{\varepsilon})) \\ \partial_t b_3^{\varepsilon} &= \operatorname{div}(D_{b_3} \nabla b_3^{\varepsilon}) + g(c^{\varepsilon})b_2^{\varepsilon} - \kappa b_3^{\varepsilon} \mathcal{R}(\mathbf{e}(\mathbf{u}_e^{\varepsilon})) \end{aligned}$

Mathematical model for plant tissue Biochemistry:

methylestrified pectin: b_1 demethylestrified pectin: b_2 calcium-pectin cross links: b_3 calcium ions: c_e and c_f

$$\partial_t b - \operatorname{div}(D_b \nabla b) = g_b(b, c_e, \mathbf{e}(\mathbf{u}_e)) \quad \text{in } G_e$$
$$\partial_t c_e - \operatorname{div}(D_e \nabla c_e) = g_e(b, c_e, \mathbf{e}(\mathbf{u}_e)) \quad \text{in } G_e$$
$$\partial_t c_f - \operatorname{div}(D_f \nabla c_f - \mathcal{G}(\partial_t \mathbf{u}_f)c_f) = g_f(c_f) \quad \text{in } G_f$$
$$b = (b_1, b_2, b_3)$$

Mechanics: Poroelasticity

A. Piatnitski, MP, MMS SIAM J, 2017

Mathematical model for plant tissue Biochemistry:

methylestrified pectin: b_1 demethylestrified pectin: b_2 calcium-pectin cross links: b_3 calcium ions: c_e and c_f

$$\partial_t b - \operatorname{div}(D_b \nabla b) = g_b(b, c_e, \mathbf{e}(\mathbf{u}_e)) \quad \text{in } G_e$$
$$\partial_t c_e - \operatorname{div}(D_e \nabla c_e) = g_e(b, c_e, \mathbf{e}(\mathbf{u}_e)) \quad \text{in } G_e$$
$$\partial_t c_f - \operatorname{div}(D_f \nabla c_f - \mathcal{G}(\partial_t \mathbf{u}_f)c_f) = g_f(c_f) \quad \text{in } G_f$$

 $b=(b_1,b_2,b_3)$

Mechanics: Poroelasticity

 \mathbf{u}_e - deformations of cell walls+middle lamella p_e - flow pressure in cell walls+middle lamella $\partial_t \mathbf{u}_f$ - fluid flow inside the cells

$$\operatorname{div}\left(\mathbb{E}(b_3)\,\mathbf{e}(\mathbf{u}_e)-p_e I\right)=0\qquad \text{ in } G_e$$

$$\operatorname{div}(K\nabla p_e - \partial_t \mathbf{u}_e) = 0 \qquad \text{in } G_e$$

$$\partial_t(\partial_t \mathbf{u}_f) - \operatorname{div}(\mu \, \mathbf{e}(\partial_t \mathbf{u}_f) - p_f I) = 0$$
 in G_f

Piatnitski, MP, MMS SIAM J, 2017

Plant tissue biomechanics: Poroelasticity

http://commons.wikimedia.org/wiki/

$$-\operatorname{div}(\mathbb{E}^{\varepsilon}(b_{3}^{\varepsilon})\mathbf{e}(\mathbf{u}_{e}^{\varepsilon}))+
abla p_{e}^{\varepsilon}=0$$
 in G_{e}^{ε}

$$-\operatorname{div}(K_{p}^{\varepsilon}\nabla p_{e}^{\varepsilon}-\partial_{t}\mathbf{u}_{e}^{\varepsilon})=0 \qquad \text{ in } G_{e}^{\varepsilon}$$

$$\partial_t^2 \mathbf{u}_f^{\varepsilon} - \varepsilon^2 \mu \operatorname{div}(\mathbf{e}(\partial_t \mathbf{u}_f^{\varepsilon})) + \nabla p_f^{\varepsilon} = 0 \quad \text{in } G_f^{\varepsilon}$$

$$\operatorname{div} \partial_t \mathbf{u}_f^{\varepsilon} = 0 \qquad \qquad \text{in } G_f^{\varepsilon}$$

Transmission conditions:

$$(\mathbb{E}^{\varepsilon}(\boldsymbol{b}_{3}^{\varepsilon}) \mathbf{e}(\mathbf{u}_{e}^{\varepsilon}) - \boldsymbol{p}_{e}^{\varepsilon} \boldsymbol{I}) \nu = (\varepsilon^{2} \mu \mathbf{e}(\partial_{t} \mathbf{u}_{f}^{\varepsilon}) - \boldsymbol{p}_{f}^{\varepsilon} \boldsymbol{I}) \nu \quad \text{on } \Gamma^{\varepsilon}$$
$$\Pi_{\tau} \partial_{t} \mathbf{u}_{e}^{\varepsilon} = \Pi_{\tau} \partial_{t} \mathbf{u}_{f}^{\varepsilon} \qquad \text{on } \Gamma^{\varepsilon}$$

$$\nu \cdot \left(\varepsilon^2 \mu \,\mathbf{e} (\partial_t \mathbf{u}_f^\varepsilon) - p_f^\varepsilon\right) \nu = -p_e^\varepsilon \qquad \text{on } \Gamma^\varepsilon$$

$$\left(-K_{p}^{\varepsilon}\nabla p_{e}^{\varepsilon}+\partial_{t}\mathbf{u}_{e}^{\varepsilon}\right)\cdot\nu=\partial_{t}\mathbf{u}_{f}^{\varepsilon}\cdot\nu\qquad\qquad\text{on }\Gamma^{\varepsilon}$$

 $\Pi_{\tau} w$ - tangential components

Microscopic Model

In $(0, T) \times G$

 $\mathsf{div}(\mathbb{E}^{\varepsilon}(\mathbf{b}^{\varepsilon}, x) \mathbf{e}(\mathbf{u}_{e}^{\varepsilon})) = \mathbf{0}$

or

$$\operatorname{div}(\mathbb{E}^{\varepsilon}(\boldsymbol{b}^{\varepsilon}, x) \mathbf{e}(\mathbf{u}_{e}^{\varepsilon}) + \mathbb{V}^{\varepsilon}(\boldsymbol{b}^{\varepsilon}, x) \mathbf{e}(\partial_{t}\mathbf{u}_{e}^{\varepsilon})) = \mathbf{0}$$

In $(0, T) \times G_M^{\varepsilon}$

 $\partial_t b^{\varepsilon} = \operatorname{div}(D_b \nabla b^{\varepsilon}) + g_b(b^{\varepsilon}, c^{\varepsilon}, \mathbf{e}(\mathbf{u}_e^{\varepsilon}))$ $\partial_t c^{\varepsilon} = \operatorname{div}(D_c \nabla c^{\varepsilon}) + g_c(b^{\varepsilon}, c^{\varepsilon}, \mathbf{e}(\mathbf{u}_e^{\varepsilon}))$

Microscopic model for plant tissues

$$\operatorname{div}\left(\mathbb{E}^{\varepsilon}(x, \boldsymbol{b}_{3}^{\varepsilon}) \mathbf{e}(\mathbf{u}_{e}^{\varepsilon}) - \boldsymbol{p}_{e}^{\varepsilon} \boldsymbol{I}\right) = 0 \qquad \text{in} \quad \boldsymbol{G}_{e}^{\varepsilon}$$

$$\operatorname{div}(K\nabla p_e^{\varepsilon} - \partial_t \mathbf{u}_e^{\varepsilon}) = 0 \qquad \qquad \text{in} \quad G_e^{\varepsilon}$$

$$\partial_t (\partial_t \mathbf{u}_f^{\varepsilon}) - \operatorname{div}(\varepsilon^2 \mu \, \mathbf{e}(\partial_t \mathbf{u}_f^{\varepsilon}) - p_f^{\varepsilon} I) = 0 \qquad \text{in} \quad G_f^{\varepsilon}$$

and

$$\begin{aligned} \partial_t b^{\varepsilon} &= \operatorname{div}(D_b \nabla b^{\varepsilon}) + g_b(b^{\varepsilon}, c_e^{\varepsilon}, \mathbf{e}(\mathbf{u}_e^{\varepsilon})) & \text{in } G_e^{\varepsilon} \\ \partial_t c_e^{\varepsilon} &= \operatorname{div}(D_e \nabla c_e^{\varepsilon}) + g_e(b^{\varepsilon}, c_e^{\varepsilon}, \mathbf{e}(\mathbf{u}_e^{\varepsilon})) & \text{in } G_e^{\varepsilon} \\ \partial_t c_f^{\varepsilon} &= \operatorname{div}(D_f \nabla c_f^{\varepsilon} - \mathcal{G}(\partial_t \mathbf{u}_f^{\varepsilon}) c_f^{\varepsilon}) + g_f(c_f^{\varepsilon}) & \text{in } G_f^{\varepsilon} \end{aligned}$$

on Γ^{ε}

on $\Gamma^{\varepsilon} \setminus \widetilde{\Gamma}^{\varepsilon}$

 G_e^{ε}

 G_{f}^{ϵ}

 $\Gamma^\epsilon \backslash \tilde{\Gamma}^\epsilon$

Transmission and boundary conditions:

$$\Pi_{\tau}\partial_t \mathbf{u}_e^{\varepsilon} = \Pi_{\tau}\partial_t \mathbf{u}_f^{\varepsilon} \qquad \text{on } \Gamma^{\varepsilon}$$

 $D_b
abla b^arepsilon \cdot
u = arepsilon R(b^arepsilon)$ $c_e^arepsilon = c_f^arepsilon$

 $D_e \nabla c_e^{\varepsilon} \cdot \nu = (D_f \nabla c_f^{\varepsilon} - \mathcal{G}(\partial_t \mathbf{u}_f^{\varepsilon}) c_f^{\varepsilon}) \cdot \nu \quad \text{on } \Gamma^{\varepsilon} \setminus \widetilde{\Gamma}^{\varepsilon}$

Existence of a weak solution for the tissue model

• Banach fixed point theorem for

$$\mathcal{K} \quad \text{over} \quad L^{\infty}(0, T; H^{1}(G_{e}^{\varepsilon})^{3}) \times L^{\infty}(0, T; L^{2}(G_{f}^{\varepsilon})^{3})$$

with $(\mathbf{u}_{e}^{\varepsilon,j}, \partial_{t}\mathbf{u}_{f}^{\varepsilon,j}) = \mathcal{K}(\mathbf{u}_{e}^{\varepsilon,j-1}, \partial_{t}\mathbf{u}_{f}^{\varepsilon,j-1})$

•
$$\|\mathbf{e}(\mathbf{u}_{e}^{\varepsilon,j+1} - \mathbf{u}_{e}^{\varepsilon,j})\|_{L^{\infty}(0,T;L^{2}(G_{e}^{\varepsilon}))} + \|\partial_{t}\mathbf{u}_{f}^{\varepsilon,j+1} - \partial_{t}\mathbf{u}_{f}^{\varepsilon,j}\|_{L^{\infty}(0,T;L^{2}(G_{f}^{\varepsilon}))}$$

+ $\|\mathbf{e}(\partial_{t}\mathbf{u}_{f}^{\varepsilon,j+1} - \partial_{t}\mathbf{u}_{f}^{\varepsilon,j})\|_{L^{2}(0,T;L^{2}(G_{f}^{\varepsilon}))} \leq C\|b_{3}^{\varepsilon,j+1} - b_{3}^{\varepsilon,j}\|_{L^{\infty}(0,T;L^{\infty}(G_{e}^{\varepsilon}))}$

•
$$\|b_{3}^{\varepsilon,j+1} - b_{3}^{\varepsilon,j}\|_{L^{\infty}(0,T;L^{\infty}(G_{e}^{\varepsilon}))} \leq CT^{\sigma}\|\mathbf{e}(\mathbf{u}_{e}^{\varepsilon,j} - \mathbf{u}_{e}^{\varepsilon,j-1})\|_{L^{\infty}(0,T;L^{2}(G_{e}^{\varepsilon}))}$$

 $+ C_{\delta}T\|\partial_{t}\mathbf{u}_{f}^{\varepsilon,j} - \partial_{t}\mathbf{u}_{f}^{\varepsilon,j-1}\|_{L^{\infty}(0,T;L^{2}(G_{f}^{\varepsilon}))}$
 $+ \delta\|\mathbf{e}(\partial_{t}\mathbf{u}_{f}^{\varepsilon,j} - \partial_{t}\mathbf{u}_{f}^{\varepsilon,j-1})\|_{L^{2}(0,T;L^{2}(G_{f}^{\varepsilon}))}$

Existence of a weak solution for the tissue model

• Banach fixed point theorem for

$$\mathcal{K} \quad \text{over} \quad L^{\infty}(0, T; H^{1}(G_{e}^{\varepsilon})^{3}) \times L^{\infty}(0, T; L^{2}(G_{f}^{\varepsilon})^{3})$$

with $(\mathbf{u}_{e}^{\varepsilon,j}, \partial_{t}\mathbf{u}_{f}^{\varepsilon,j}) = \mathcal{K}(\mathbf{u}_{e}^{\varepsilon,j-1}, \partial_{t}\mathbf{u}_{f}^{\varepsilon,j-1})$

• $\|\mathbf{e}(\mathbf{u}_{e}^{\varepsilon,j+1} - \mathbf{u}_{e}^{\varepsilon,j})\|_{L^{\infty}(0,T;L^{2}(G_{e}^{\varepsilon}))} + \|\partial_{t}\mathbf{u}_{f}^{\varepsilon,j+1} - \partial_{t}\mathbf{u}_{f}^{\varepsilon,j}\|_{L^{\infty}(0,T;L^{2}(G_{f}^{\varepsilon}))}$ + $\|\mathbf{e}(\partial_{t}\mathbf{u}_{f}^{\varepsilon,j+1} - \partial_{t}\mathbf{u}_{f}^{\varepsilon,j})\|_{L^{2}(0,T;L^{2}(G_{f}^{\varepsilon}))} \leq C\|b_{3}^{\varepsilon,j+1} - b_{3}^{\varepsilon,j}\|_{L^{\infty}(0,T;L^{\infty}(G_{e}^{\varepsilon}))}$

•
$$\|b_{3}^{\varepsilon,j+1} - b_{3}^{\varepsilon,j}\|_{L^{\infty}(0,T;L^{\infty}(G_{e}^{\varepsilon}))} \leq CT^{\sigma} \|\mathbf{e}(\mathbf{u}_{e}^{\varepsilon,j} - \mathbf{u}_{e}^{\varepsilon,j-1})\|_{L^{\infty}(0,T;L^{2}(G_{e}^{\varepsilon}))}$$

 $+ C_{\delta}T \|\partial_{t}\mathbf{u}_{f}^{\varepsilon,j} - \partial_{t}\mathbf{u}_{f}^{\varepsilon,j-1}\|_{L^{\infty}(0,T;L^{2}(G_{f}^{\varepsilon}))}$
 $+ \delta \|\mathbf{e}(\partial_{t}\mathbf{u}_{f}^{\varepsilon,j} - \partial_{t}\mathbf{u}_{f}^{\varepsilon,j-1})\|_{L^{2}(0,T;L^{2}(G_{f}^{\varepsilon}))}$

• A priori estimates

 $\begin{aligned} \|\partial_{t}u_{e}^{\varepsilon}\|_{L^{\infty}(0,T;H^{1}(G_{e}^{\varepsilon}))} + \|\partial_{t}^{2}u_{e}^{\varepsilon}\|_{L^{\infty}(0,T;L^{2}(G_{e}^{\varepsilon}))} + \|\partial_{t}p_{e}^{\varepsilon}\|_{L^{2}(0,T;H^{1}(G_{e}^{\varepsilon}))} \leq C \\ \|\partial_{t}^{2}u_{f}^{\varepsilon}\|_{L^{\infty}(0,T;L^{2}(G_{f}^{\varepsilon}))} + \varepsilon\|\nabla\partial_{t}u_{f}^{\varepsilon}\|_{H^{1}(0,T;L^{2}(G_{f}^{\varepsilon}))} + \|p_{f}^{\varepsilon}\|_{L^{2}(G_{f,T}^{\varepsilon})} \leq C \\ \|b^{\varepsilon}\|_{L^{\infty}(0,T;L^{\infty}(G_{e}^{\varepsilon}))} + \|\nabla b^{\varepsilon}\|_{L^{2}(G_{e,T}^{\varepsilon})} + \|c_{l}^{\varepsilon}\|_{L^{\infty}(0,T;L^{\infty}(G_{l}^{\varepsilon}))} + \|\nabla c_{l}^{\varepsilon}\|_{L^{2}(G_{l,T}^{\varepsilon})} \leq C \\ \|b^{\varepsilon}\|_{L^{\infty}(0,T;L^{\infty}(G_{e}^{\varepsilon}))} + \|\nabla b^{\varepsilon}\|_{L^{2}(G_{e,T}^{\varepsilon})} + \|c_{l}^{\varepsilon}\|_{L^{\infty}(0,T;L^{\infty}(G_{l}^{\varepsilon}))} + \|\nabla c_{l}^{\varepsilon}\|_{L^{2}(G_{l,T}^{\varepsilon})} \leq C \\ \|b^{\varepsilon}\|_{L^{\infty}(0,T;L^{\infty}(G_{e}^{\varepsilon}))} + \|\nabla b^{\varepsilon}\|_{L^{2}(G_{e,T}^{\varepsilon})} + \|c_{l}^{\varepsilon}\|_{L^{\infty}(0,T;L^{\infty}(G_{l}^{\varepsilon}))} + \|\nabla c_{l}^{\varepsilon}\|_{L^{2}(G_{l,T}^{\varepsilon})} \leq C \end{aligned}$

Multiscale analysis

- Microstructures: Periodic or locally-periodic microstructures
 - Stochastic microstructures

Methods: • per

- periodic, locally-periodic and stochastic two-scale convergence
 - periodic and locally-periodic unfolding operators

periodic: Allaire, Cioranescu, Damlamian, Griso, Neues-Radu, Nguetseng, ... locally periodic: Briane, Alexandre, Mikelic, Mascarenhas, Toader, Polisevski, Arrieta, Villanueva-Pesqueira, ... stochastic: Bourgeat, Heida, Mikelic, Piatnitski, Zhikov, ...

Microscopic Model

In $(0, T) \times G$

 $\mathsf{div}(\mathbb{E}^{\varepsilon}(\mathbf{b}^{\varepsilon}, x) \mathbf{e}(\mathbf{u}_{e}^{\varepsilon})) = \mathbf{0}$

or

 $\operatorname{div}(\mathbb{E}^{\varepsilon}(\boldsymbol{b}^{\varepsilon}, \boldsymbol{x}) \mathbf{e}(\mathbf{u}_{e}^{\varepsilon}) + \mathbb{V}^{\varepsilon}(\boldsymbol{b}^{\varepsilon}, \boldsymbol{x}) \mathbf{e}(\partial_{t}\mathbf{u}_{e}^{\varepsilon})) = \mathbf{0}$

In $(0, T) \times G_M^{\varepsilon}$

 $\partial_t b^{\varepsilon} = \operatorname{div}(D_b \nabla b^{\varepsilon}) + g_b(b^{\varepsilon}, c^{\varepsilon}, \mathcal{R}(\mathbf{e}(\mathbf{u}_e^{\varepsilon})))$ $\partial_t c^{\varepsilon} = \operatorname{div}(D_c \nabla c^{\varepsilon}) + g_c(b^{\varepsilon}, c^{\varepsilon}, \mathcal{R}(\mathbf{e}(\mathbf{u}_e^{\varepsilon})))$

$$\mathcal{R}(\mathbf{e}(\mathbf{u}_{e}^{\varepsilon})) = \left(\operatorname{tr}\left(\mathbb{E}_{M}(\mathbf{b}^{\varepsilon})\chi_{G_{M}} + \mathbb{E}_{F}\chi_{G_{F}}\right) \mathbf{e}(\mathbf{u}_{e}^{\varepsilon}) \right)^{+}$$

Strong convergence of b_3^{ε} , strong two-scale of $e(u_e^{\varepsilon})$

▶ In the case (no diffusion of b_3^{ε})

$$\mathcal{R}(\mathbf{e}(\mathbf{u}_e^{\varepsilon})) = \mathcal{N}_{\delta}(\mathbf{e}(\mathbf{u}_e^{\varepsilon}))(t, x) = \left(\int_{B_{\delta}(x) \cap G} \operatorname{tr} \mathbb{E}^{\varepsilon}(b_3^{\varepsilon}, \tilde{x}) \, \mathbf{e}(\mathbf{u}_e^{\varepsilon}(t, \tilde{x})) d\tilde{x} \right)^+$$

$$\begin{aligned} \mathcal{T}^{\varepsilon}(b_3^{\varepsilon}) &\to b_3 & \text{strongly in } L^2(G_T \times Y_M), \\ b_3^{\varepsilon} &\to b_3 & \text{strongly two-scale}, & \text{as } \varepsilon \to 0 \end{aligned}$$

In the case

 $\mathcal{R}(\mathbf{e}(\mathbf{u}_e^{\varepsilon})) = (\operatorname{tr} \mathbb{E}^{\varepsilon}(b_3^{\varepsilon}) \mathbf{e}(\mathbf{u}_e^{\varepsilon}))^+ \qquad (\text{ diffusion of } b_3^{\varepsilon})$

 $\mathbf{e}(\mathbf{u}_e^{\varepsilon})
ightarrow \mathbf{e}(\mathbf{u}_e) + \mathbf{e}_y(\mathbf{u}_e^1)$

 $\partial_t \mathbf{u}_f^{\varepsilon} \to \partial_t \mathbf{u}_f$ $\varepsilon \, \mathbf{e}(\partial_t \mathbf{u}_f^{\varepsilon}) \to \mathbf{e}_y(\partial_t \mathbf{u}_f)$ strongly two-scale $\mathbf{u}_e^1 \in L^2(G_T; H^1_{per}(G)/\mathbb{R})$ strongly two-scalestrongly two-scale,as $\varepsilon \to 0$

Strong convergence of b_3^{ε} , **strong two-scale of** $e(u_e^{\varepsilon})$

• In the case (no diffusion of b_3^{ε})

$$\mathcal{R}(\mathbf{e}(\mathbf{u}_{e}^{\varepsilon})) = \mathcal{N}_{\delta}(\mathbf{e}(\mathbf{u}_{e}^{\varepsilon}))(t,x) = \left(\int_{B_{\delta}(x)\cap G} \operatorname{tr} \mathbb{E}^{\varepsilon}(b_{3}^{\varepsilon},\tilde{x}) \, \mathbf{e}(\mathbf{u}_{e}^{\varepsilon}(t,\tilde{x})) d\tilde{x} \right)^{+}$$

$$\begin{array}{ll} \mathcal{T}^{\varepsilon}(b_{3}^{\varepsilon}) \to b_{3} & \text{strongly in } L^{2}(G_{T} \times Y_{M}), \\ b_{3}^{\varepsilon} \to b_{3} & \text{strongly two-scale}, & \text{as } \varepsilon \to 0 \end{array}$$

In the case

 $\mathcal{R}(\mathbf{e}(\mathbf{u}_e^{\varepsilon})) = (\operatorname{tr} \mathbb{E}^{\varepsilon}(b_3^{\varepsilon}) \, \mathbf{e}(\mathbf{u}_e^{\varepsilon}))^+ \qquad (\text{ diffusion of } b_3^{\varepsilon})$

$$\begin{split} \mathbf{e}(\mathbf{u}_{e}^{\varepsilon}) &\to \mathbf{e}(\mathbf{u}_{e}) + \mathbf{e}_{y}(\mathbf{u}_{e}^{1}) & \text{strongly two-scale} \\ \mathbf{u}_{e}^{1} \in L^{2}(G_{T}; H_{\text{per}}^{1}(G)/\mathbb{R}) \\ \partial_{t}\mathbf{u}_{f}^{\varepsilon} &\to \partial_{t}\mathbf{u}_{f} & \text{strongly two-scale} \\ \varepsilon \, \mathbf{e}(\partial_{t}\mathbf{u}_{f}^{\varepsilon}) &\to \mathbf{e}_{y}(\partial_{t}\mathbf{u}_{f}) & \text{strongly two-scale}, & \text{as } \varepsilon \to 0 \end{split}$$

Macroscopic model for plant cell wall biomechanics

$$\operatorname{div}(\mathbb{E}_{\operatorname{hom}}(\boldsymbol{b}_3)\,\mathbf{e}(\mathbf{u}_e))=\mathbf{0}\qquad \text{ in } G_T$$

$$\partial_t b = \operatorname{div}(\mathcal{D}_b \nabla b) + g_b(b, c, R(\mathbf{e}(\mathbf{u}_e))) \quad \text{in } G_T$$
$$\partial_t c = \operatorname{div}(\mathcal{D}_c \nabla c) + g_c(b, c, R(\mathbf{e}(\mathbf{u}_e))) \quad \text{in } G_T$$

$$R(\mathbf{e}(\mathbf{u}_e)) = \left(\oint_{B_{\delta}(x) \cap G} \operatorname{tr}(\mathbb{E}_{\operatorname{hom}}(b_3) \mathbf{e}(\mathbf{u}_e)) d\tilde{x} \right)^+ \text{ or } \left(\operatorname{tr}(\mathbb{E}_{\operatorname{hom}}(b_3) \mathbf{e}(\mathbf{u}_e)) \right)^+$$

$$\mathcal{D}_{\alpha,j3} = \mathcal{D}_{\alpha,3j} = D_{\alpha}\delta_{3j}, \quad \mathcal{D}_{\alpha,ij} = D_{\alpha} \oint_{\hat{Y}_{M}} \left[\delta_{ij} + \partial_{y_{j}} v_{\alpha}^{i}(y) \right] dy,$$
$$\alpha = b_{1}, b_{2}, b_{3}, c$$

$$\mathbb{E}_{\mathrm{hom},ijkl}(b_3) = \oint_{Y} \left[\mathbb{E}_{ijkl}(b_3, y) + \left(\mathbb{E}(b_3, y) \mathbf{e}_{y}(\mathbf{w}^{ij}) \right)_{kl} \right] dy$$

MP, B. Seguin, ESAIM M2AN, 2016

Unit cell problems

For effective diffusion coefficients

$$\operatorname{div}_{\hat{y}}(D_{\alpha}(\nabla_{\hat{y}}v_{\alpha}^{j}+\hat{\mathbf{b}}_{j})) = 0 \quad \text{in } \hat{Y}_{M}, \quad j = 1, 2 D_{\alpha}(\nabla_{\hat{y}}v_{\alpha}^{j}+\hat{\mathbf{b}}_{j}) \cdot \boldsymbol{\nu} = 0 \quad \text{on } \hat{\Gamma} \int_{\hat{Y}_{M}}v_{\alpha}^{j}dx = 0, \quad v_{\alpha}^{j} \quad \hat{Y} - \text{ periodic}$$

For effective elasticity tensor

$$\hat{\operatorname{div}}_{y}(\mathbb{E}(b_{3}, y)(\hat{\mathbf{e}}_{y}(\mathbf{w}^{ij}) + \mathbf{b}_{ij})) = \mathbf{0} \quad \text{in } \hat{Y},$$
$$\int_{\hat{Y}} \mathbf{w}^{ij} dy = \mathbf{0}, \qquad \mathbf{w}^{ij} \quad \hat{Y} - \text{ periodic}$$

$$\begin{split} \hat{\operatorname{div}}_{y} \mathbf{v} &= \partial_{y_{1}} \mathbf{v}_{1} + \partial_{y_{2}} \mathbf{v}_{2} \quad \text{for} \quad \mathbf{v} \in \mathbb{R}^{3} \\ \mathbf{b}_{jk} &= \frac{1}{2} (\mathbf{b}_{j} \otimes \mathbf{b}_{k} + \mathbf{b}_{k} \otimes \mathbf{b}_{j}), \ (\mathbf{b}_{j})_{1 \leq j \leq 3} \text{ basis of } \mathbb{R}^{3}, \ \hat{\mathbf{b}}_{1} &= (1,0)^{T}, \ \hat{\mathbf{b}}_{2} = (0,1)^{T} \\ &\mathbb{E}(\xi, \hat{y}) &= \mathbb{E}_{M}(\xi) \chi_{\hat{Y}_{M}}(\hat{y}) + \mathbb{E}_{F} \chi_{\hat{Y}_{F}}(\hat{y}) \text{ is } \hat{Y} - \text{periodic}, \ \hat{Y} &= Y \cap \{x_{3} = \text{const}\} \end{split}$$

Macroscopic equations: Poro-elasticity

Macroscopic problem

$$-\operatorname{div}(\mathbb{E}_{\operatorname{hom}}(b_3)\mathbf{e}(\mathbf{u}_e)) + \nabla p_e + \vartheta_f \oint_{Y_f} \partial_t^2 \mathbf{u}_f \, dy = 0 \quad \text{in } G_T$$
$$-\operatorname{div}(K_{p,\operatorname{hom}} \nabla p_e - K_u \, \partial_t \mathbf{u}_e - Q(x, \partial_t \mathbf{u}_f)) = 0 \quad \text{in } G_T$$

Microscopic problem

$$\partial_t^2 \mathbf{u}_f - \operatorname{div}_y(\mu \, \mathbf{e}_y(\partial_t \mathbf{u}_f) - \pi_f I) + \nabla p_e = 0 \quad \text{in } G_T \times Y_f$$
$$\operatorname{div}_y \partial_t \mathbf{u}_f = 0 \quad \text{in } G_T \times Y_f$$
$$\nu \cdot (\mu \, \mathbf{e}_y(\partial_t \mathbf{u}_f) - \pi_f I) \, \nu = -p_e^1 \quad \text{on } G_T \times \Gamma$$
$$\Pi_\tau \partial_t \mathbf{u}_f = \Pi_\tau \partial_t \mathbf{u}_e \quad \text{on } G_T \times \Gamma$$

where
$$\vartheta_f = |Y_f|/|Y|$$
, and
 $p_e^1(t, x, y) = \sum_{k=1}^3 \frac{\partial p_e}{\partial x_k}(t, x) w_p^k(x, y) + \sum_{k=1}^3 \partial_t \mathbf{u}_e^k(t, x) w_e^k(x, y) + q(x, y, \partial_t \mathbf{u}_f)$
A. Piatnitski, MP, *MMS SIAM J*, 2017

Multiscale analysis of viscoelastic model

 $\mathbf{u}^{arepsilon}$

$$\begin{split} 0 &= \operatorname{div}(\mathbb{E}^{\varepsilon}(b_{3}^{\varepsilon}, x) \mathbf{e}(\mathbf{u}^{\varepsilon}) + \mathbb{V}^{\varepsilon}(b_{3}^{\varepsilon}, x) \partial_{t} \mathbf{e}(\mathbf{u}^{\varepsilon})) & \text{ in } G_{T}, \\ & (\mathbb{E}^{\varepsilon}(b_{3}^{\varepsilon}, x) \mathbf{e}(\mathbf{u}^{\varepsilon}) + \mathbb{V}^{\varepsilon}(b_{3}^{\varepsilon}, x) \partial_{t} \mathbf{e}(\mathbf{u}^{\varepsilon})) \boldsymbol{\nu} = F & \text{ on } (0, T) \times \partial G, \\ & \mathbf{u}^{\varepsilon}(0, x) = \mathbf{u}_{0}(x) & \text{ in } G, \end{split}$$

 a_3 -periodic in x_3 ,

Multiscale analysis of viscoelastic model

Consider a perturbed problem

$$\begin{aligned} \sigma\chi_{G_{M}^{\varepsilon}}\partial_{t}^{2}\mathbf{u}^{\varepsilon} &= \operatorname{div}(\mathbb{E}^{\varepsilon}(b_{3}^{\varepsilon},x)\mathbf{e}(\mathbf{u}^{\varepsilon}) + \mathbb{V}^{\varepsilon}(b_{3}^{\varepsilon},x)\partial_{t}\mathbf{e}(\mathbf{u}^{\varepsilon})) & \text{ in } G_{T}, \\ & (\mathbb{E}^{\varepsilon}(b_{3}^{\varepsilon},x)\mathbf{e}(\mathbf{u}^{\varepsilon}) + \mathbb{V}^{\varepsilon}(b_{3}^{\varepsilon},x)\partial_{t}\mathbf{e}(\mathbf{u}^{\varepsilon}))\boldsymbol{\nu} = F & \text{ on } (0,T) \times \partial G, \\ & \mathbf{u}^{\varepsilon}(0,x) &= \mathbf{u}_{0}(x) & \text{ in } G, \\ & \partial_{t}\mathbf{u}^{\varepsilon}(0,x) &= \mathbf{0} & \text{ in } G, \\ & \mathbf{u}^{\varepsilon} & a_{3}\text{-periodic in } x_{3}, \end{aligned}$$

where $\sigma > 0$ is a small perturbation parameter

Multiscale analysis of viscoelastic model

Consider a perturbed problem

$$\begin{aligned} \sigma\chi_{G_M^{\varepsilon}}\partial_t^2 \mathbf{u}^{\varepsilon} &= \operatorname{div}(\mathbb{E}^{\varepsilon}(b_3^{\varepsilon}, x)\mathbf{e}(\mathbf{u}^{\varepsilon}) + \mathbb{V}^{\varepsilon}(b_3^{\varepsilon}, x)\partial_t \mathbf{e}(\mathbf{u}^{\varepsilon})) & \text{ in } G_T, \\ & (\mathbb{E}^{\varepsilon}(b_3^{\varepsilon}, x)\mathbf{e}(\mathbf{u}^{\varepsilon}) + \mathbb{V}^{\varepsilon}(b_3^{\varepsilon}, x)\partial_t \mathbf{e}(\mathbf{u}^{\varepsilon}))\boldsymbol{\nu} = F & \text{ on } (0, T) \times \partial G, \\ & \mathbf{u}^{\varepsilon}(0, x) &= \mathbf{u}_0(x) & \text{ in } G, \\ & \partial_t \mathbf{u}^{\varepsilon}(0, x) &= \mathbf{0} & \text{ in } G, \\ & \mathbf{u}^{\varepsilon} & a_3\text{-periodic in } x_3, \end{aligned}$$

where $\sigma > 0$ is a small perturbation parameter

$$\sigma^{\frac{1}{2}} \|\partial_t \mathbf{u}^{\varepsilon}\|_{L^{\infty}(0,T;L^2(G_M^{\varepsilon}))} + \|\mathbf{u}^{\varepsilon}\|_{L^{\infty}(0,T;\mathcal{W}(G))} + \|\partial_t \mathbf{e}(\mathbf{u}^{\varepsilon})\|_{L^2(G_{M,T}^{\varepsilon})} \leq C$$
$$\|b_3^{\varepsilon}\|_{W^{1,\infty}(0,T;L^{\infty}(G_M^{\varepsilon}))} \leq C$$

with a constant C independent of ε and σ .

$$\mathcal{W}(G) = \left\{ \mathbf{u} \in H^1(G; \mathbb{IR}^3) \mid \int_G \mathbf{u} \, dx = \mathbf{0}, \int_G [(\nabla \mathbf{u})_{12} - (\nabla \mathbf{u})_{21}] dx = \mathbf{0}, \, \mathbf{u} \text{ periodic in } x_3 \right\}$$

MP, B. Seguin, ESAIM: COCV, 2017

Locally-periodic microstructure

Locally-periodic microstructures: spatial changes of the microstructure are observed on a scale smaller than the size of the considered domain but larger than the characteristic size of the microstructure.

- fibres are of radius εa
- layers of fibres aligned in the same direction are of width ε^r

►
$$\varepsilon > 0$$
, $0 < a < 1/2$
 $0 < r < 1$

M. Briane, J. Math. Pures Appl. 1994, & RAIRO Model. Math. Anal. Numer. 1993

Locally periodic two-scale convergence

Definition. $\{u^{\varepsilon}\} \subset L^{p}(\Omega)$ converges locally periodic two-scale (I-t-s) to $u \in L^{p}(\Omega; L^{p}(Y_{x}))$ if for any $\psi \in L^{p}_{q}(\Omega; C_{per}(Y_{x}))$ $\lim_{\varepsilon \to 0} \int_{\Omega} u^{\varepsilon}(x) \mathcal{L}^{\varepsilon} \psi(x) dx = \int_{\Omega} \int_{Y_{x}} u(x, y) \psi(x, y) dy dx,$

where $\mathcal{L}^{\varepsilon}\psi$ is the locally-periodic approximation of ψ .

Locally periodic approximation: $\mathcal{L}^{\varepsilon} : C(\overline{\Omega}; C_{per}(Y_x)) \to L^{\infty}(\Omega)$

$$(\mathcal{L}^{\varepsilon}\psi)(x) = \sum_{n=1}^{N_{\varepsilon}} \tilde{\psi}\left(x, \frac{D_{x_{n}^{\varepsilon}}^{-1}x}{\varepsilon}\right) \chi_{\Omega_{n}^{\varepsilon}}(x)$$
$$\tilde{\psi} \in \mathcal{C}(\overline{\Omega}; \mathcal{C}_{per}(Y))$$

Definition A sequence $\{u^{\varepsilon}\} \subset L^{p}(\Omega)$ two-scale converge to $u \in L^{p}(\Omega \times Y)$ iff for any $\phi \in L^{q}(\Omega, C_{per}(Y))$

$$\lim_{\varepsilon\to 0}\int_{\Omega}u^{\varepsilon}(x)\phi\left(x,\frac{x}{\varepsilon}\right)dx=\int_{\Omega}\int_{Y}u(x,y)\phi(x,y)dxdy.$$

Plywood like microstructures

$$\overline{G} = \bigcup_{n=1}^{N_{\varepsilon}} \overline{G_n^{\varepsilon}}, \qquad \mathbb{E}^{\varepsilon}(\xi, x) = \sum_{n=1}^{N_{\varepsilon}} \mathbb{E}(\xi, x_3, \frac{x}{\varepsilon}) \chi_{G_n^{\varepsilon}}$$

 $-\operatorname{div}\left(\mathbb{E}^{\varepsilon}(\boldsymbol{b}_{3}^{\varepsilon},x)\,\mathbf{e}(\mathbf{u}^{\varepsilon})\right) = 0 \quad \text{in } G_{T}$

Macroscopic equations

where

$$\mathbb{E}_{\mathsf{hom},ijkl}(\boldsymbol{b}_3,\boldsymbol{x}_3) = \int_{\hat{Y}} \left(\tilde{\mathbb{E}}_{ijkl}(\boldsymbol{b}_3,\hat{y}) + \left[\tilde{\mathbb{E}}(\boldsymbol{b}_3,\hat{y}) \hat{e}_{\hat{y}}^R(\boldsymbol{w}^{ij}) \right]_{kl} \right) d\hat{y}$$

with \mathbf{w}_{ij} solutions of the cell problems

$$\begin{split} \hat{\operatorname{div}}_{y} \Big(\hat{R}_{x_{3}} \tilde{\mathbb{E}}(\boldsymbol{b}_{3}, \hat{y}) \big(\hat{e}_{\hat{y}}^{R}(\boldsymbol{w}^{ij}) + \boldsymbol{b}_{ij} \big) \Big) &= \boldsymbol{0} & \text{ in } \hat{Y} \\ \boldsymbol{w}^{ij} & \text{ periodic} & \text{ in } \hat{Y} \end{split}$$

$$\hat{e}_{\hat{y}}^{R}(v)_{kl} = \frac{1}{2} \begin{bmatrix} \left(\hat{R}_{x_{3}}^{T} \nabla_{\hat{y}} v' \right)_{k} + \left(\hat{R}_{x_{3}}^{T} \nabla_{\hat{y}} v^{k} \right)_{l} \end{bmatrix}$$
$$\hat{R}_{x_{3}} = \begin{pmatrix} -\sin(\gamma(x_{3})) & \cos(\gamma(x_{3})) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

where $\hat{Y} = Y \cap \{y_1 = \text{const}\}$

MP, MMS SIAM J 2013

Fast rotating plywood

$$-\operatorname{div}\left(\mathbb{E}_{\operatorname{hom}}(b_3,x)\mathbf{e}(\mathbf{u})
ight) = 0$$
 in G_T ,

where

$$\mathbb{E}_{\text{hom},ijkl}(\boldsymbol{b}_3,\boldsymbol{x}) = \int_{\hat{Z}_x} \left(\tilde{\mathbb{E}}_{ijkl}(\boldsymbol{b}_3,\boldsymbol{x},\hat{\boldsymbol{y}}) + \left[\tilde{\mathbb{E}}(\boldsymbol{b}_3,\boldsymbol{x},\hat{\boldsymbol{y}}) \hat{e}_{\hat{y}}^R(\boldsymbol{w}^{ij}) \right]_{kl} \right) d\hat{\boldsymbol{y}}$$

with \mathbf{w}_{ij} solutions of the cell problems

$$\begin{split} \hat{\operatorname{div}}_{y} \Big(\hat{R}_{x_{3}} \tilde{\mathbb{E}}(\boldsymbol{b}_{3}, \boldsymbol{x}, \hat{\boldsymbol{y}}) \big(\hat{e}_{\hat{y}}^{R}(\boldsymbol{w}^{ij}) + \boldsymbol{b}_{ij} \big) \Big) &= \boldsymbol{0} & \text{ in } \hat{Z}_{x} \\ \boldsymbol{w}^{ij} & \text{ periodic} & \text{ in } \hat{Z}_{x} \end{split}$$

 Ω_{a}^{ϵ}

where
$$\tilde{\mathbb{E}}(b_3, x, \hat{y}) = \mathbb{E}_F \hat{\vartheta}(x, \hat{y}) + \mathbb{E}_M(b_3)(1 - \hat{\vartheta}(x, \hat{y})), \quad x \in G, \ \hat{y} \in Z_x$$

 $\hat{\vartheta}(x, y) = \sum_{k \in \mathbb{Z}^3} \vartheta(y - W_x k), \quad x \in G, \ y \in Z_x, \ \vartheta(y) = \begin{cases} 1 & |\hat{y}| \le a \\ - & |\hat{y}| > a \end{cases}$

 and

$$Z_{x} = W_{x}Y, \quad W_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & w(x) \\ 0 & 0 & 1 \end{pmatrix}, \quad \hat{Z}_{x} = Z_{x} \cap \{y_{1} = \text{const}\}$$

with $w(x) = \gamma'(x_3)(\cos(\gamma(x_3))x_1 + \sin(\gamma(x_3))x_2)$

MP, MMS SIAM J 2013

Plant tissues with random distribution of cells

- $(\Omega, \mathcal{F}, \mathcal{P})$ probability space
- *T*(x) : Ω → Ω dynamical system, i.e.
 for each x ∈ ℝ^d: *T*(x) is measurable and
 (i) *T*(0) is the identity map on Ω and

 $\mathcal{T}(x_1+x_2) = \mathcal{T}(x_1)\mathcal{T}(x_2)$ for all $x_1, x_2 \in \mathbb{R}^d$

(ii) \mathcal{P} is an invariant measure for $\mathcal{T}(x)$, i.e. for $x \in \mathbb{R}^d$ and $F \in \mathcal{F}$:

$$\mathcal{P}(\mathcal{T}^{-1}(x)F) = \mathcal{P}(F)$$

(iii) For each $F \in \mathcal{F}$ the set $\{(x, \omega) \in \mathbb{R}^d \times \Omega : \mathcal{T}(x)\omega \in F\}$ is a measurable

Assume : T(x) - ergodic [every measurable function which is invariant for T(x) is \mathcal{P} -a.e. constant]

Plant tissues biomechanics: Random geometry

- Ω_f measurable set, $\mathcal{P}(\Omega_f) > 0$, $\mathcal{P}(\Omega \setminus \Omega_f) > 0$
- $\Omega_e = \Omega \setminus \Omega_f$
- $\Omega_{\Gamma} \subset \Omega$, with $\mathcal{P}(\Omega_{\Gamma}) > 0$ and $\mathcal{P}(\Omega_{\Gamma} \cap \Omega_j) > 0$, for j = e, f
 - For \mathcal{P} -a.a. $\omega \in \Omega$ define a random system of subdomains in \mathbb{R}^3

$$egin{aligned} G_j(\omega) &= \{x \in \mathbb{R}^3: \ \mathcal{T}(x) \omega \in \Omega_j\}, \quad j = e, f \ G_\Gamma(\omega) &= \{x \in \mathbb{R}^3: \ \mathcal{T}(x) \omega \in \Omega_\Gamma\} \end{aligned}$$

$$\Gamma(\omega) = \partial G_f(\omega), \qquad \widetilde{\Gamma}(\omega) = \Gamma(\omega) \cap G_{\Gamma}(\omega)$$

- **1.** $G_f(\omega)$ countable number of disjoined Lipschitz domains for \mathcal{P} -a.s. $\omega \in \Omega$
- 2. The distance between two connected components of $G_f(\omega)$ and diameter of $G_f(\omega)$ are uniformly bounded from above and below
- **3.** The surface $\widetilde{\Gamma}(\omega) \subset \Gamma(\omega)$ is open on $\Gamma(\omega)$ and Lipschitz continuous

Random measure: $d\mu_{\omega}(x) = \rho_e(\mathcal{T}(x)\omega)dx$, $\rho_e(\omega) = \chi_{\Omega^{\circ}} = \chi_{\Omega^{\circ}} = 0$

Plant tissues biomechanics: Random geometry

- Ω_f measurable set, $\mathcal{P}(\Omega_f) > 0$, $\mathcal{P}(\Omega \setminus \Omega_f) > 0$
- $\Omega_e = \Omega \setminus \Omega_f$
- $\Omega_{\Gamma} \subset \Omega$, with $\mathcal{P}(\Omega_{\Gamma}) > 0$ and $\mathcal{P}(\Omega_{\Gamma} \cap \Omega_{j}) > 0$, for j = e, f
 - For \mathcal{P} -a.a. $\omega \in \Omega$ define a random system of subdomains in \mathbb{R}^3

$$egin{aligned} G_j(\omega) &= \{x \in \mathbb{R}^3: \ \mathcal{T}(x) \omega \in \Omega_j\}, \quad j = e, f \ G_\Gamma(\omega) &= \{x \in \mathbb{R}^3: \ \mathcal{T}(x) \omega \in \Omega_\Gamma\} \end{aligned}$$

$$\Gamma(\omega) = \partial G_f(\omega), \qquad \widetilde{\Gamma}(\omega) = \Gamma(\omega) \cap G_{\Gamma}(\omega)$$

- 1. $G_f(\omega)$ countable number of disjoined Lipschitz domains for \mathcal{P} -a.s. $\omega \in \Omega$
- 2. The distance between two connected components of $G_f(\omega)$ and diameter of $G_f(\omega)$ are uniformly bounded from above and below

3. The surface $\widetilde{\Gamma}(\omega) \subset \Gamma(\omega)$ is open on $\Gamma(\omega)$ and Lipschitz continuous

Random measure: $d\mu_{\omega}(x) = \rho_{e}(\mathcal{T}(x)\omega)dx$, $\rho_{e}(\omega) = \chi_{\Omega_{e}}$

Random geometry

$$G \subset \mathbb{R}^d$$

 $G_f^{\varepsilon} = \{x \in \mathbb{R}^3 : \mathcal{T}(x/\varepsilon)\omega \in \Omega_f\} \cap G$
cell inside
 $G_e^{\varepsilon} = G \setminus G_f^{\varepsilon}$ cell wall + middle lamella
 $G_{\Gamma}^{\varepsilon} = \{x \in \mathbb{R}^3 : \mathcal{T}(x/\varepsilon)\omega \in \Omega_{\Gamma}\} \cap G$
 $\Gamma^{\varepsilon} = \partial G_f^{\varepsilon}$ cell me
 $\widetilde{\Gamma}^{\varepsilon} = \Gamma^{\varepsilon} \cap G_{\Gamma}^{\varepsilon}$ part of

cell membrane part of the cell membrane impermeable to calcium ions

Random geometry

$$G \subset \mathbb{R}^d$$

 $G_f^{\varepsilon} = \{x \in \mathbb{R}^3 : \mathcal{T}(x/\varepsilon)\omega \in \Omega_f\} \cap G$
cell inside
 $G_e^{\varepsilon} = G \setminus G_f^{\varepsilon}$ cell wall + middle lamella
 $G_{\Gamma}^{\varepsilon} = \{x \in \mathbb{R}^3 : \mathcal{T}(x/\varepsilon)\omega \in \Omega_{\Gamma}\} \cap G$
 $\Gamma^{\varepsilon} = \partial G_f^{\varepsilon}$ cell me
 $\widetilde{\Gamma}^{\varepsilon} = \Gamma^{\varepsilon} \cap G_{\Gamma}^{\varepsilon}$ part of

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$

cell membrane part of the cell membrane impermeable to calcium ions

Stationary random fields

$$\mathbb{E}(x,\omega,\xi) = \widetilde{\mathbb{E}}(\mathcal{T}(x)\omega,\xi), \qquad \mathcal{K}(x,\omega) = \widetilde{\mathcal{K}}(\mathcal{T}(x)\omega)$$
$$\widetilde{\mathbb{E}}(\cdot,\xi) : \Omega \to \mathbb{R}^{3^4}, \qquad \widetilde{\mathcal{K}}(\cdot) : \Omega \to \mathbb{R}^{3\times 3} \quad \text{measurable functions, } \xi \in \mathbb{R}$$

 $\mathbb{E}^{\varepsilon}(x,\xi) = \mathbb{E}(x/\varepsilon,\omega,\xi), \quad K^{\varepsilon}(x) = K(x/\varepsilon,\omega) \quad \text{for } \omega \in \Omega, \ x \in \mathbb{R}^3, \ \xi \in \mathbb{R}$

Microscopic model for plant tissues

$$\operatorname{div}\left(\mathbb{E}^{\varepsilon,\omega}(x,\boldsymbol{b}_{3}^{\varepsilon,\omega})\,\mathbf{e}(\mathbf{u}_{e}^{\varepsilon,\omega})-\boldsymbol{p}_{e}^{\varepsilon,\omega}\boldsymbol{I}\right)=0\qquad\qquad\text{in}\quad \boldsymbol{G}_{e}^{\varepsilon}$$

$$\operatorname{div}(K\nabla p_e^{\varepsilon,\omega} - \partial_t \mathbf{u}_e^{\varepsilon,\omega}) = 0 \qquad \qquad \text{in} \quad G_e^{\varepsilon}$$

$$\partial_t (\partial_t \mathbf{u}_f^{\varepsilon,\omega}) - \operatorname{div}(\varepsilon^2 \mu \, \mathbf{e}(\partial_t \mathbf{u}_f^{\varepsilon,\omega}) - p_f^{\varepsilon,\omega} I) = 0 \quad \text{in} \quad G_f^{\varepsilon}$$

and

$$\partial_t b^{\varepsilon,\omega} = \operatorname{div}(D_b \nabla b^{\varepsilon,\omega}) + g_b(b^{\varepsilon,\omega}, c_e^{\varepsilon,\omega}, \mathbf{e}(\mathbf{u}_e^{\varepsilon,\omega})) \quad \text{in } G_e^{\varepsilon}$$

$$\partial_t c_e^{\varepsilon,\omega} = \operatorname{div}(D_e \nabla c_e^{\varepsilon,\omega}) + g_e(b^{\varepsilon,\omega}, c_e^{\varepsilon,\omega}, \mathbf{e}(\mathbf{u}_e^{\varepsilon,\omega})) \quad \text{in} \quad G_e^{\varepsilon}$$
$$\partial_t c_f^{\varepsilon,\omega} = \operatorname{div}(D_f \nabla c_f^{\varepsilon,\omega} - \mathcal{G}(\partial_t \mathbf{u}_f^{\varepsilon,\omega}) c_f^{\varepsilon,\omega}) + g_f(c_f^{\varepsilon,\omega}) \quad \text{in} \quad G_f^{\varepsilon}$$

$$\partial_t c_f^{\varepsilon,\omega} = \operatorname{div}(D_f \nabla c_f^{\varepsilon,\omega} - \mathcal{G}(\partial_t \mathbf{u}_f^{\varepsilon,\omega}) c_f^{\varepsilon,\omega}) + g_f(c_f^{\varepsilon,\omega}) \quad \text{in} \quad 0$$

Transmission and boundary conditions:

$$D_b \nabla b^{\varepsilon,\omega} \cdot \nu = \varepsilon R(b^{\varepsilon,\omega})$$

$$c_e^{\varepsilon,\omega} = c_f^{\varepsilon,\omega} \qquad \qquad \text{on } \Gamma^\varepsilon \setminus \widetilde{\Gamma}^\varepsilon$$

 $D_e \nabla c_e^{\varepsilon,\omega} \cdot \nu = (D_f \nabla c_f^{\varepsilon,\omega} - \mathcal{G}(\partial_t \mathbf{u}_f^{\varepsilon,\omega}) c_f^{\varepsilon,\omega}) \cdot \nu \quad \text{on } \Gamma^{\varepsilon} \setminus \widetilde{\Gamma^{\varepsilon}}$

Stochastic two-scale convergence

 $\mathcal{T}(x)$ – ergodic dynamical system, $\mathcal{T}(x)\tilde{\omega}$ – 'typical trajectory', i.e.

$$\lim_{t\to\infty}\frac{1}{t^d|A|}\int_{tA}g(\mathcal{T}(x)\,\tilde{\omega})dx=\int_{\Omega}g(\omega)d\mathcal{P}(\omega)\ \mathcal{P}\text{-a.s.}$$

for all bounded Borel sets A with |A| > 0, and all $g \in L^1(\Omega, \mathcal{P})$

$$\begin{array}{ll} \text{Definition} & \{v^{\varepsilon}\} \subset L^{2}(G), \quad v \in L^{2}(G \times \Omega) \\ & v^{\varepsilon} \to v \quad \text{stochastically two-scale} & \text{iff} \\ & \lim_{\varepsilon \to 0} \sup \int_{G} |v^{\varepsilon}(x)|^{2} \, dx < \infty \end{array} \tag{1} \\ & \text{and for all } \varphi \in C_{0}^{\infty}(G) \text{ and } b \in L^{2}(\Omega) \\ & \lim_{\varepsilon \to 0} \int_{G} v^{\varepsilon}(x)\varphi(x)b(\mathcal{T}(x/\varepsilon)\tilde{\omega}) \, dx = \int_{G} \int_{\Omega} v(x,\omega)\varphi(x)b(\omega) \, d\mathcal{P}(\omega)dx. \\ & \text{Theorem } \{v^{\varepsilon}\} \subset L^{2}(G) \text{ satisfying } (1) \implies \exists v \in L^{2}(G \times \Omega, dx \times d\mathcal{P}(\omega)) \end{array}$$

 $v^{\varepsilon} \rightarrow v$ stochastically two-scale.

V. Zhikov, A. Piatnitsky 2006, M. Heida 2011

Palm measures

Definition. Let (Ω, \mathcal{F}) be a measurable space and $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ $\tilde{\mu} : \Omega \times \mathcal{B}(\mathbb{R}^d) \to \mathbb{R}_+ \cup \{\infty\}$ is a random measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ if $\mu_{\omega}(A) = \tilde{\mu}(\omega, A)$ is

- \mathcal{F} -measurable in $\omega \in \Omega$ for each $A \in \mathcal{B}(\mathbb{R}^d)$ and
- a measure in $A \in \mathcal{B}(\mathbb{R}^d)$ for each $\omega \in \Omega$.

Definition. The random measure μ_{ω} is stationary if for $\phi \in C_0^{\infty}(\mathbb{R}^d)$

$$\int_{\mathbb{R}^d} \phi(y-x) d\mu_{\omega}(y) = \int_{\mathbb{R}^d} \phi(y) d\mu_{\mathcal{T}(x)\omega}(y)$$

Definition. The *Palm measure* of the random measure μ_{ω} is a measure μ on (Ω, \mathcal{F}) defined by:

$$\boldsymbol{\mu}(F) = \int_{\Omega} \int_{\mathbb{R}^d} \mathbb{I}_{[0,1)^d}(x) \mathbb{I}_F(\mathcal{T}(x)\omega) d\mu_{\omega}(x) d\mathcal{P}(\omega), \quad F \in \mathcal{F}$$

The intensity $m(\mu_{\omega})$ of a random measure μ_{ω} :

$$m(\mu_{\omega}) = \int_{\Omega} \int_{[0,1)^d} d\mu_{\omega}(x) d\mathcal{P}(\omega)$$

D. J. Daley, D. Vere-Jones 1988

The ergodic theorem

Theorem Let $\mathcal{T}(x)$ be ergodic and assume that the stationary random measure μ_{ω} has finite intensity $m(\mu_{\omega}) > 0$. Then

$$\lim_{t\to\infty}\frac{1}{t^d|A|}\int_{tA}g(\mathcal{T}(x)\,\omega)d\mu_\omega(x)=\int_\Omega g(\omega)d\boldsymbol{\mu}(\omega)\ \mathcal{P}\text{-a.s.}$$

for all bounded Borel sets A with |A|>0, and all $g\in L^1(\Omega, oldsymbol{\mu})$

•
$$d\mu_{\omega}(x) = \rho(\mathcal{T}(x)\omega)dx$$
 on \mathbb{R}^d : $d\mu(\omega) = \rho(\omega)\mathcal{P}(\omega)$ on Ω

 $\mathcal{T}(x)\tilde{\omega}$ - 'typical trajectory'

Definition $\{v^{\varepsilon}\} \subset L^{2}(G, \mu_{\widetilde{\omega}}^{\varepsilon})$ converges stochastically two-scale to $v \in L^{2}(G \times \Omega, dx \times d\mu(\omega))$ if $\limsup_{\varepsilon \to 0} \int_{G} |v^{\varepsilon}(x)|^{2} d\mu_{\widetilde{\omega}}^{\varepsilon}(x) < \infty$

and

$$\lim_{\varepsilon \to 0} \int_{G} v^{\varepsilon}(x)\varphi(x)b(\mathcal{T}(x/\varepsilon)\tilde{\omega}) d\mu_{\tilde{\omega}}^{\varepsilon}(x) = \int_{G} \int_{\Omega} v(x,\omega)\varphi(x)b(\omega) d\mu(\omega)dx$$

for all $\varphi \in C_{0}^{\infty}(G)$ and $b \in L^{2}(\Omega, \mu)$.
D. J. Daley, D. Vere-Jones 1988
V. Zhikov, A. Piatnitsky 2006

The ergodic theorem

Theorem Let $\mathcal{T}(x)$ be ergodic and assume that the stationary random measure μ_{ω} has finite intensity $m(\mu_{\omega}) > 0$. Then

$$\lim_{t\to\infty}\frac{1}{t^d|A|}\int_{tA}g(\mathcal{T}(x)\omega)d\mu_{\omega}(x)=\int_{\Omega}g(\omega)d\mu(\omega) \ \mathcal{P}\text{-a.s.}$$

for all bounded Borel sets A with |A|> 0, and all $g\in L^1(\Omega,oldsymbol{\mu})$

•
$$d\mu_{\omega}(x) = \rho(\mathcal{T}(x)\omega)dx$$
 on \mathbb{R}^d : $d\mu(\omega) = \rho(\omega)\mathcal{P}(\omega)$ on Ω

 $\mathcal{T}(x)\tilde{\omega}$ - 'typical trajectory'

Definition $\{v^{\varepsilon}\} \subset L^{2}(G, \mu_{\widetilde{\omega}}^{\varepsilon})$ converges stochastically two-scale to $v \in L^{2}(G \times \Omega, dx \times d\mu(\omega))$ if $\limsup_{\varepsilon \to 0} \int_{G} |v^{\varepsilon}(x)|^{2} d\mu_{\widetilde{\omega}}^{\varepsilon}(x) < \infty$

and

$$\lim_{\varepsilon \to 0} \int_{G} v^{\varepsilon}(x) \varphi(x) b(\mathcal{T}(x/\varepsilon)\tilde{\omega}) d\mu_{\tilde{\omega}}^{\varepsilon}(x) = \int_{G} \int_{\Omega} v(x,\omega) \varphi(x) b(\omega) d\mu(\omega) dx$$

for all $\varphi \in C_{0}^{\infty}(G)$ and $b \in L^{2}(\Omega, \mu)$. D. J. Daley, D. Vere-Jones 1988

V. Zhikov, A. Piatnitsky 2006

Compactness results

Theorem (Zhikov & Piatnitsky 2006) $\{v^{\varepsilon}\} \subset H^1(G)$

• If $\|v^{\varepsilon}\|_{H^1(G)} \leq C(\tilde{\omega}) \Rightarrow \exists v \in H^1(G), v_1 \in L^2(G; L^2_{pot}(\Omega))$ $v^{\varepsilon} \rightarrow v, \qquad \nabla v^{\varepsilon} \rightarrow \nabla v + v_1 \qquad \text{stochastically two-scale}$ • If $\|v^{\varepsilon}\|_{L^{2}(G)} + \varepsilon \|\nabla v^{\varepsilon}\|_{L^{2}(G)} \leq C(\tilde{\omega}) \Rightarrow \exists v \in L^{2}(G; H^{1}(\Omega))$ $v^{\varepsilon} \rightarrow v, \qquad \varepsilon \nabla v^{\varepsilon} \rightarrow \nabla_{\omega} v \qquad \text{stochastically two-scale}$ **Lemma** (Piatnitsky, M.P.) μ - Palm measure of surface measure μ_{ω} of $\Gamma(\omega)$ $u \in H^1(\Omega, \mathcal{P}) \implies u \in L^2(\Omega, \mu)$, continuous embedding **Lemma** (Piatnitsky, M.P.) For $\|v^{\varepsilon}\|_{L^{p}(G^{\varepsilon})} + \varepsilon \|\nabla v^{\varepsilon}\|_{L^{p}(G^{\varepsilon})} \leq C$:

$$\lim_{\varepsilon \to 0} \int_{G} v^{\varepsilon}(x) \phi(x) \psi(\mathcal{T}_{x/\varepsilon} \omega) d\mu_{\omega}^{\varepsilon}(x) = \int_{G} \int_{\Omega} v(x, \omega) \phi(x) \psi(\omega) d\mu(\omega) dx$$

• $G_f(\omega) = \{x \in \mathbb{R}^d : \mathcal{T}(x)\omega \in \Omega_f\}, \Gamma(\omega) = \partial G_f(\omega), \mathcal{P}(\Omega_f) > 0, \mathcal{P}(\Omega \setminus \Omega_f) > 0$ $\mu_{\omega} \text{ is the stationary random measure of } \Gamma(\omega), d\mu_{\omega}^{\varepsilon}(x) = \varepsilon^d \mu_{\omega}(x/\varepsilon)$

Compactness results

Theorem (Zhikov & Piatnitsky 2006) $\{v^{\varepsilon}\} \subset H^1(G)$

$$\lim_{\varepsilon \to 0} \int_{G} v^{\varepsilon}(x) \phi(x) \psi(\mathcal{T}_{x/\varepsilon} \omega) d\mu_{\omega}^{\varepsilon}(x) = \int_{G} \int_{\Omega} v(x, \omega) \phi(x) \psi(\omega) d\mu(\omega) dx$$

• $G_f(\omega) = \{x \in \mathbb{R}^d : \mathcal{T}(x)\omega \in \Omega_f\}, \ \Gamma(\omega) = \partial G_f(\omega), \ \mathcal{P}(\Omega_f) > 0, \ \mathcal{P}(\Omega \setminus \Omega_f) > 0$

Macroscopic equations

$$\vartheta_e \partial_t^2 u_e - \operatorname{div}(\mathbb{E}^{\operatorname{hom}}(b)\mathbf{e}(u_e)) + \nabla p_e + \int_{\Omega} \partial_t^2 u_f \chi_{\Omega_f} d\mathcal{P}(\omega) = 0 \quad \text{in } G_T$$
$$\vartheta_e \partial_t p_e - \operatorname{div}(\mathcal{K}^{\operatorname{hom}} \nabla p_e - \mathcal{K}_u \partial_t u_e - \mathcal{Q}(\partial_t u_f)) = 0 \quad \text{in } G_T$$

and

$$\int_{\Omega} \left[\partial_t^2 u_f \varphi + \mu \, \mathbf{e}_{\omega}(\partial_t u_f) \mathbf{e}_{\omega}(\varphi) + \nabla p_e \, \varphi \right] \chi_{\Omega_f} d\mathcal{P}(\omega) - \int_{\Omega} P_e^1 \, \chi_{\Omega_e} \, \varphi \, d\mathcal{P}(\omega) = 0$$

 $\operatorname{div}_{\omega}\partial_{t}u_{f}=0 \quad \text{in } G_{T}\times\Omega, \quad \partial_{t}u_{f}(0)=u_{f0}^{1} \quad \text{in } G\times\Omega$

 $\Pi_{\tau}\partial_{t}u_{f}(t,x,\mathcal{T}(\widetilde{x})\omega) = \Pi_{\tau}\partial_{t}u_{e}(t,x) \text{ for } (t,x) \in G_{T} \quad \widetilde{x} \in \Gamma(\omega), \ \mathcal{P}\text{-}a.s. \text{ in } \Omega$

$$P_e^1(t,x,\omega) = \sum_{k=1}^3 \partial_{x_k} p_e(t,x) W_p^k(\omega) + \partial_t u_e^k(t,x) W_u^k(\omega) + Q_f(\omega,\partial_t u_f)$$

for all $\varphi \in L^2(G_T; H^1(\Omega))^3$, with $\operatorname{div}_{\omega} \varphi = 0$ in $G_T \times \Omega$, and $\Pi_{\tau} \varphi(t, x, \mathcal{T}(\widetilde{x})\omega) = 0$ for $(t, x) \in G_T$, $\widetilde{x} \in \Gamma(\omega)$ and \mathcal{P} -a.s. in Ω .

A. Piatnitski, MP (in preparation) 2018

Macroscopic equations for *b* and *c*

$$\begin{split} \vartheta_e \partial_t b - \operatorname{div}(D_{b,\text{eff}} \nabla b) &= \int_{\Omega} g_b(c, b, \mathbb{U}(b, \omega) \, \mathbf{e}(u_e)) \, \chi_{\Omega_e} d\mathcal{P}(\omega) \\ &+ \int_{\Omega} R(b_e) \, d\mu(\omega) \quad \text{in } G_T \end{split}$$

$$\partial_t c - \operatorname{div}(D_{\text{eff}} \nabla c - u_{\text{eff}} c) = \vartheta_f g_f(c) + \int_{\Omega} g_e(c, b, \mathbb{U}(b, \omega) \mathbf{e}(u_e)) \chi_{\Omega_e} d\mathcal{P}(\omega) \quad \text{in } G_T$$

where $\vartheta_j = \int_{\Omega} \chi_{\Omega_j}(\omega) \, d\mathcal{P}(\omega)$, for j = e, f, and

$$\mathbb{U}(b,\omega) = \{\mathbb{U}_{klij}(b,\omega)\}_{k,l,i,j=1,2,3} = \left\{b_{kl}^{ij} + W_{e,\text{sym},kl}^{ij}\right\}_{k,l,i,j=1,2,3}$$

 W_e^{ij} solutions of the cell problems, $\mathbf{b}_{kl} = (b_{kl}^{ij})_{i,j=1,2,3}$, $\mathbf{b}_{kl} = e_k \otimes e_l$ $\mu(\omega)$ is the Palm measure of the random measure of the surfaces $\Gamma(\omega)$

A. Piatnitski, MP (in preparation) 2018

Numerical simulations for plant cell wall model

Macroscopic model for plant cell wall biomechanics

$$\operatorname{div}(\mathbb{E}_{\operatorname{hom}}(\boldsymbol{b}_3)\,\mathbf{e}(\mathbf{u}_e))=\mathbf{0}\qquad \text{ in } G_T$$

$$\partial_t b = \operatorname{div}(\mathcal{D}_b \nabla b) + g_b(b, c, R(\mathbf{e}(\mathbf{u}_e))) \quad \text{in } G_T$$
$$\partial_t c = \operatorname{div}(\mathcal{D}_c \nabla c) + g_c(b, c, R(\mathbf{e}(\mathbf{u}_e))) \quad \text{in } G_T$$

$$R(\mathbf{e}(\mathbf{u}_{e})) = \left(\operatorname{tr}\left(\mathbb{E}_{\operatorname{hom}}(b_{3})\,\mathbf{e}(\mathbf{u}_{e})\right)\right)^{+} \text{ or } \left(\operatorname{tr}\mathbf{e}(\mathbf{u}_{e})\right)^{+}$$
$$\mathcal{D}_{\alpha,j3} = \mathcal{D}_{\alpha}\delta_{3j}, \quad \mathcal{D}_{\alpha,ij} = D_{\alpha} \oint_{\hat{Y}_{M}} \left[\delta_{ij} + \partial_{y_{j}}v_{\alpha}^{i}(y)\right]dy,$$
$$\alpha = b_{1}, b_{2}, b_{3}, c$$
$$\mathbb{E}_{\operatorname{hom},ijkl}(b_{3}) = \oint_{Y} \left[\mathbb{E}_{ijkl}(b_{3}, y) + \left(\mathbb{E}(b_{3}, y)\mathbf{e}_{y}(\mathbf{w}^{ij})\right)_{kl}\right]dy$$

MP, B. Seguin, ESAIM M2AN, 2016

Macroscopic elasticity tensor

$$\mathbb{E}_{\text{hom},ijkl}(x,b_{3}) = \int_{Y} \left[\mathbb{E}_{Y,ijkl}(b_{3},y) + \mathbb{E}_{Y,ijpq}(b_{3},y)\mathbf{e}_{y}(\mathbf{w}^{kl})_{pq}(y) \right] dy$$

div_y $\left[\mathbb{E}_{Y}(b_{3},y)(\mathbf{e}_{y}(\mathbf{w}^{kl}) + \mathbf{b}^{kl}) \right] = \mathbf{0}$ in Y
 $\int_{Y} \mathbf{w}^{kl} dy = \mathbf{0},$
 \mathbf{v}_{x} \mathbf{w}^{kl} is Y-periodic
 \mathbf{v}_{x} \mathbf{v}_{x

Macroscopic elasticity tensor for cell wall

 $\mathbb{E}(y,b_3) = \mathbb{E}_M(b_3) \ \chi_{Y_M}(y) + \mathbb{E}_F \chi_{Y_F}(y)$

Cell wall matrix is assumed to be isotropic

 $\mathbb{E}_M(b_3) = E_M(b_3) \mathbb{E}_1 + \mathbb{E}_0 \longrightarrow \mathbb{E}_{\mathrm{hom}}(b_3) = E_M(b_3) \mathbb{E}_{\mathrm{hom},1} + \mathbb{E}_{\mathrm{hom},0}$

 $\mathbb{E}_M \mathbf{A} = 2\mu_M \mathbf{A} + \lambda_M (\operatorname{tr} \mathbf{A}) \mathbf{1}$ Lame moduli $\mu_M \quad \lambda_M$

$$E_M = \frac{\mu_M (2\mu_M + 3\lambda_M)}{\mu_M + \lambda_M}$$
 and $\nu_M = \frac{\lambda_M}{2(\mu_M + \lambda_M)}$

 $E_M(b_3) = 0.775 \ b_3 + 8.08 \ \text{MPa}$

(Zsivanovits, MacDougall, Smith, Ring Carbohydrate Research, 2004)

Microfibrils are transversally isotropic

/	$\alpha_2 + \alpha_5$	$\alpha_2 - \alpha_5$	$_5 \alpha_3$	0	0	0	$(18393 \ 6855 \ 22277 \ 0 \ 0$	0 \
	$\alpha_2 - \alpha_5$	$\alpha_2 + \alpha_5$	$_5 \alpha_3$	0	0	0	$6855 \ 18393 \ 22277 \ 0 \ 0$	0
	$lpha_3$	$lpha_3$	α_1	0	0	0	$22277 \ 22277 \ 259901 0 \qquad 0$	0
	0	0	0	$lpha_4$	0	0	$0 \qquad 0 \qquad 0 \qquad 84842 0$	0
	0	0	0	0	α_4	0	0 0 0 0 84842	0
	0	0	0	0	0	α_5	$\begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix}$	5769/

 $E_F = 15,000 \text{ MPa}, \ \nu_{F1} = 0.3, \ n_F = 0.068, \ \nu_{F2} = 0.06, \ Z_F = 84,842 \text{ MPa}$

(Robert Moon, Review Wisconsin 2013-2014, Diddens et al., 2008)

nicrofibrils Ω_M^{ε} labeled. The surhidden) surface Γ_{ε} is facing the n the top and bottom of Ω_{ε} (b) Δ

Impact of the orientation of microfibrils

(BC1) Base case: $p = p_{\circ,1} = 0.209$ MPa and $f = 2.938p_{\circ,1}$ MPa

MP, B. Seguin, Bull Math Biology, 2016

Comparison with experimental results on tissue extension and compression

RD	(BC1) parallel MF	(BC1) no shift	(BC1) 4 shifts	(BC1) rotated MF	(BC2)	(BC3)
$\left[(C1) \right]$	1.06497	1.06396	1.06984	1.00456	1.00683	1.00816
(C2)	1.06452	1.06391		1.00462	1.00671	1.00823
$\left(\mathrm{C3}\right)$	1.06234	1.06294	1.06680	1.00379	1.00672	1.00831
$\left(\mathrm{C4}\right) $	1.06411	1.06320		1.00497	1.00696	1.00811

Good agreement with experimental data on changes in inner or outer tissue length due to tissue tension elimination, Hejnowicz, Sievers, *J Exp.Botany* 1995:

relative displacement (RD) ranging between 0.38% and 6.98% versus experimental data: 0.3% - 4.99%

- (BC1) Base case: $p = p_{\circ,1} = 0.209$ MPa and $f = 2.938 p_{\circ,1}$ MPa
- (BC2) No tensile tractions: $p = p_{\circ,1}$ and f = 0
- (BC3) Different turgor pressures in neighbouring cells and no tensile tractions: $p_1 = p_4 = p_5 = p_8 = p_\circ$ and $p_2 = p_3 = p_6 = p_7 = 1.3p_{\circ,1}$, where p_i , for i = 1, ..., 8, is the pressure in cell *i*, and f = 0

MP, B. Seguin, Bull Math Biology, 2016

Plant tissue growth: Microscopic model $\mathbf{F} = \mathbf{I} + \nabla \mathbf{u}, \quad \mathbf{F} = \mathbf{F}_e \cdot \mathbf{F}_g, \quad \mathbf{T}(x, \mathbf{F}_e) = J_e^{-1} \mathbf{F}_e \frac{\partial W(x, \mathbf{F}_e)}{\partial \mathbf{F}_e}$

$$div \mathbf{T}^{\varepsilon}(x, \nabla \mathbf{u}^{\varepsilon}, \mathbf{F}_{g,\varepsilon}) = 0$$
$$\mathbf{T}^{\varepsilon}(x, \nabla \mathbf{u}^{\varepsilon}, \mathbf{F}_{g,\varepsilon})\nu = -\varepsilon P \nu$$
$$\mathbf{T}^{\varepsilon}(x, \nabla \mathbf{u}^{\varepsilon}, \mathbf{F}_{g,\varepsilon})\nu = \mathbf{f}$$

in G_t^{ε} , t > 0on Γ_t^{ε} , t > 0on $\partial G_t \setminus \Gamma_t^{\varepsilon}$, t > 0

A.Boudaoud, MP 2018 (work in progress)

$$\mathbf{F} = \mathbf{I} + \nabla \mathbf{u}, \qquad \mathbf{F} = \mathbf{F}_e \, \mathbf{F}_g, \qquad \mathbf{T}(x, \mathbf{F}_e) = J_e^{-1} \mathbf{F}_e \frac{\partial W(x, \mathbf{F}_e)}{\partial \mathbf{F}_e}$$

Momentum equation

$$\operatorname{div} \mathbf{T}^{\varepsilon}(x, \nabla \mathbf{u}^{\varepsilon}, \mathbf{F}_{g,\varepsilon}) = 0 \qquad \text{in } G_{t}^{\varepsilon}, \ t > 0 \\ \mathbf{T}^{\varepsilon}(x, \nabla \mathbf{u}^{\varepsilon}, \mathbf{F}_{g,\varepsilon})\nu = -\varepsilon P \nu \qquad \text{on } \Gamma_{t}^{\varepsilon}, \ t > 0 \\ \mathbf{T}^{\varepsilon}(x, \nabla \mathbf{u}^{\varepsilon}, \mathbf{F}_{g,\varepsilon})\nu = \mathbf{f} \qquad \text{on } \partial G_{t} \setminus \Gamma_{t}^{\varepsilon}, \ t > 0$$

Dynamics for growth

$$\mu \partial_t \mathbf{F}_{g,\varepsilon} = \begin{pmatrix} [(\mathbf{T}^{\varepsilon} \tau) \cdot \tau - \mathbf{T}^{\text{tresh}}]_+ & 0 \\ 0 & 0 \end{pmatrix} \mathbf{F}_{g,\varepsilon} = K_2(x, \nabla \mathbf{u}^{\varepsilon}) \mathbf{F}_{g,\varepsilon}, \quad t > 0$$

or

$$\mu \partial_t \mathbf{F}_{g,\varepsilon} = \begin{pmatrix} [\tilde{\mathbf{T}}_{11}^{\varepsilon} - \sigma^{\text{tresh}}]_+ & 0 & 0 \\ 0 & [\tilde{\mathbf{T}}_{22}^{\varepsilon} - \sigma^{\text{tresh}}]_+ & 0 \\ 0 & 0 & 0 \end{pmatrix} \mathbf{F}_{g,\varepsilon} = K_3(x, \nabla \mathbf{u}) \mathbf{F}_{g,\varepsilon}$$
$$\mathbf{F}_{g,\varepsilon}(0) = \mathbf{I}$$

where

$$\tilde{\mathbf{T}}^{\varepsilon} = M^{-1} \mathbf{T}^{\varepsilon} M$$
 and M – an appropriate transformation

A.Boudaoud, MP 2018 (work in progress)

In reference configuration

$$div(J_{g}^{\varepsilon} \mathbf{S}^{\varepsilon} \mathbf{F}_{g,\varepsilon}^{-T}) = 0 \qquad \text{in } G^{\varepsilon}, \ t > 0,$$
$$J_{g}^{\varepsilon} \mathbf{S}^{\varepsilon} \mathbf{F}_{g,\varepsilon}^{-T} N = -\varepsilon P J_{g}^{\varepsilon} \mathbf{F}_{g,\varepsilon}^{-T} N \qquad \text{on } \Gamma^{\varepsilon}, \ t > 0,$$
$$J_{g}^{\varepsilon} \mathbf{S}^{\varepsilon} \mathbf{F}_{g,\varepsilon}^{-T} N = \mathbf{f} J_{g}^{\varepsilon} |\mathbf{F}_{g,\varepsilon}^{-T} N| \qquad \text{on } \partial G \setminus \Gamma^{\varepsilon}, \ t > 0,$$

where $J_g^{\varepsilon} = \det(\mathbf{F}_{g,\varepsilon})$

In reference configuration

$$\begin{aligned} \operatorname{div}(J_{g}^{\varepsilon} \mathbf{S}^{\varepsilon} \mathbf{F}_{g,\varepsilon}^{-T}) &= 0 & \text{in } G^{\varepsilon}, \ t > 0, \\ J_{g}^{\varepsilon} \mathbf{S}^{\varepsilon} \mathbf{F}_{g,\varepsilon}^{-T} N &= -\varepsilon P J_{g}^{\varepsilon} \mathbf{F}_{g,\varepsilon}^{-T} N & \text{on } \Gamma^{\varepsilon}, \ t > 0, \\ J_{g}^{\varepsilon} \mathbf{S}^{\varepsilon} \mathbf{F}_{g,\varepsilon}^{-T} N &= \mathbf{f} J_{g}^{\varepsilon} |\mathbf{F}_{g,\varepsilon}^{-T} N| & \text{on } \partial G \setminus \Gamma^{\varepsilon}, \ t > 0, \end{aligned}$$

where $J_g^{\varepsilon} = \det(\mathbf{F}_{g,\varepsilon})$, linearised elasticity

$$\mathbf{S}^{\varepsilon} = \mathbf{S}^{\varepsilon}(x, \nabla \mathbf{u}^{\varepsilon}, \mathbf{F}_{g, \varepsilon}) = \mathbb{E}^{\varepsilon}(x) \, \mathbf{e}_{\mathrm{ell}}(\nabla \mathbf{u}^{\varepsilon}, \mathbf{F}_{g, \varepsilon})$$

with

$$\mathbf{e}_{\mathrm{ell}}(\nabla \mathbf{u}^{\varepsilon}, \mathbf{F}_{g,\varepsilon}) = \frac{1}{2} \left[\nabla \mathbf{u}^{\varepsilon} \, \mathbf{F}_{g,\varepsilon}^{-1} + (\nabla \mathbf{u}^{\varepsilon} \, \mathbf{F}_{g,\varepsilon}^{-1})^{T} + \mathbf{F}_{g,\varepsilon}^{-1} + \mathbf{F}_{g,\varepsilon}^{-T} - 2\mathbf{I} \right]$$

In reference configuration

$$div(J_{g}^{\varepsilon} \mathbf{S}^{\varepsilon} \mathbf{F}_{g,\varepsilon}^{-T}) = 0 \qquad \text{in } G^{\varepsilon}, \ t > 0,$$
$$J_{g}^{\varepsilon} \mathbf{S}^{\varepsilon} \mathbf{F}_{g,\varepsilon}^{-T} N = -\varepsilon P J_{g}^{\varepsilon} \mathbf{F}_{g,\varepsilon}^{-T} N \qquad \text{on } \Gamma^{\varepsilon}, \ t > 0,$$
$$J_{g}^{\varepsilon} \mathbf{S}^{\varepsilon} \mathbf{F}_{g,\varepsilon}^{-T} N = \mathbf{f} J_{g}^{\varepsilon} |\mathbf{F}_{g,\varepsilon}^{-T} N| \qquad \text{on } \partial G \setminus \Gamma^{\varepsilon}, \ t > 0,$$

where $J_g^{\varepsilon} = \det(\mathbf{F}_{g,\varepsilon})$, linearised elasticity

$$\mathsf{S}^{\varepsilon} = \mathsf{S}^{\varepsilon}(x, \nabla \mathsf{u}^{\varepsilon}, \mathsf{F}_{g, \varepsilon}) = \mathbb{E}^{\varepsilon}(x) \, \mathsf{e}_{\mathrm{ell}}(\nabla \mathsf{u}^{\varepsilon}, \mathsf{F}_{g, \varepsilon})$$

with

$$\mathbf{e}_{\mathrm{ell}}(\nabla \mathbf{u}^{\varepsilon}, \mathbf{F}_{g,\varepsilon}) = \frac{1}{2} \left[\nabla \mathbf{u}^{\varepsilon} \, \mathbf{F}_{g,\varepsilon}^{-1} + (\nabla \mathbf{u}^{\varepsilon} \, \mathbf{F}_{g,\varepsilon}^{-1})^{T} + \mathbf{F}_{g,\varepsilon}^{-1} + \mathbf{F}_{g,\varepsilon}^{-T} - 2\mathbf{I} \right]$$

Growth dynamics

$$\mu \partial_t \mathbf{F}_{g,\varepsilon} = K_j(x, \nabla \mathbf{u}^{\varepsilon}) \mathbf{F}_{g,\varepsilon}, \qquad j = 2, 3$$
$$\mathbf{F}_{g,\varepsilon}(0) = \mathbf{I}$$

Assumptions

Plant tissue growth: A priori estimates

Boundedness of $\mathbf{F}_{g,\varepsilon}$, extension of \mathbf{u}^{ε} , rigidity estimate for $\nabla \mathbf{u}^{\varepsilon}$:

$$\begin{aligned} \| (\nabla \mathbf{u}^{\varepsilon} \mathbf{F}_{g,\varepsilon}^{-1})_{\text{sym}} \|_{L^{\infty}(0,T;L^{2}(G^{\varepsilon}))} + \| \partial_{t} (\nabla \mathbf{u}^{\varepsilon} \mathbf{F}_{g,\varepsilon}^{-1})_{\text{sym}} \|_{L^{2}((0,T)\times G^{\varepsilon})} \leq C \\ \| \mathbf{F}_{g,\varepsilon} \|_{L^{\infty}(0,T;L^{\infty}(G^{\varepsilon}))} + \| \mathbf{F}_{g,\varepsilon}^{-1} \|_{L^{\infty}(0,T;L^{\infty}(G^{\varepsilon}))} \leq C \\ \| \nabla \mathbf{u}^{\varepsilon} \|_{L^{\infty}(0,T;L^{2}(G))} \leq C_{1} + C_{2} \| (\nabla \mathbf{u}^{\varepsilon} \mathbf{F}_{g,\varepsilon}^{-1})_{\text{sym}} \|_{L^{\infty}(0,T;L^{2}(G^{\varepsilon}))} \leq C \end{aligned}$$

Convergence: $\mathbf{u} \in L^{\infty}(0, T; H^1(G)), \quad \mathbf{u}_1 \in L^2(G_T; H^1_{per}(Y)), \quad F \in L^2(G_T \times Y)$

$$\nabla \mathbf{u}^{\varepsilon} \rightharpoonup \nabla \mathbf{u} + \nabla_{y} \mathbf{u}_{1} \quad \text{two-scale}$$
$$(\nabla \mathbf{u}^{\varepsilon} \mathbf{F}_{g,\varepsilon}^{-1})_{\text{sym}} \rightharpoonup F \quad \text{two-scale}$$

Assume:

$$K_j(x, \nabla \mathbf{u}^{\varepsilon}) = K_j \Big(\int_{B_{\delta}(x)} \mathbf{S}^{\varepsilon}(\xi, \nabla \mathbf{u}^{\varepsilon}, \mathbf{F}_{g, \varepsilon}) d\xi \Big), \quad j = 2, 3, \ \delta > 0 \ \text{fixed}$$

 $\implies \text{ strong convergence } \mathsf{F}_{g,\varepsilon} \to \mathsf{F}_{g}, \quad \mathsf{F}_{g,\varepsilon}^{-1} \to \mathsf{F}_{g}^{-1} \\ \mathsf{F}_{g} \in L^{\infty}(0, T; L^{\infty}(G))$

Plant tissue growth: Macroscopic equations

Ansatz:

$$\mathbf{u}_1(t,x,y) = \sum_{ij=1}^d \partial_{x_i} \mathbf{u}^j(t,x) \mathbf{w}^{ij}(y) + \sum_{ij=1}^d \mathbf{F}_{g,ij} \mathbf{v}^{ij}(y) + \mathbf{h}(y)$$

Macroscopic equations in G, t > 0:

$$\operatorname{div}\left(J_{g}\left[\mathbb{E}_{\operatorname{hom}}(\mathbf{F}_{g}^{-1})\,\mathbf{e}(\mathbf{u}) + \mathbb{E}_{\operatorname{hom}}^{2}(\mathbf{F}_{g}^{-1})(\mathbf{F}_{g})_{\operatorname{sym}} + \mathbb{E}_{\operatorname{hom}}^{3}\,(\mathbf{F}_{g}^{-1})_{\operatorname{sym}}\right]\mathbf{F}_{g}^{-T}\right)$$
$$= -|Y_{w}|^{-1}\int_{\Gamma}J_{g}\,P\,\mathbf{F}_{g}^{-T}Nd\gamma$$

$$\operatorname{div}_{y}\left[\mathbb{E}(y)(\nabla \mathbf{u} + \sum_{ij=1}^{d} \partial_{x_{i}}\mathbf{u}^{j} \nabla_{y}\mathbf{w}^{ij})\mathbf{F}_{g}^{-1})_{\operatorname{sym}}\right]\mathbf{F}_{g}^{-T} = 0 \qquad \text{in } Y_{w}$$

$$\operatorname{div}_{y} \mathbb{E}(y) \Big[\Big(\sum_{ij=1}^{d} \mathbf{F}_{g,ij} \nabla_{y} \mathbf{v}^{ij} \mathbf{F}_{g}^{-1} \Big)_{\text{sym}} - \big(\mathbf{F}_{g} \mathbf{F}_{g}^{-1} \big)_{\text{sym}} \Big] \mathbf{F}_{g}^{-T} = 0 \quad \text{in } Y_{w}$$
$$\operatorname{div}_{y} \mathbb{E}(y) \Big[\big(\nabla \mathbf{h} \, \mathbf{F}_{g}^{-1} \big)_{\text{sym}} + \big(\mathbf{F}_{g}^{-1} \big)_{\text{sym}} \Big] \mathbf{F}_{g}^{-T} = 0 \quad \text{in } Y_{w}$$

A.Boudaoud, MP 2018 (work in progress)

Thank you very much !

