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The Tutte polynomial

The Tutte polynomial (traditional bivariate style)

The Tutte polynomial of a graph G = (V ,E ) is a two-variable
polynomial T defined by

T (G ; x , y) =
∑
A⊆E

(x − 1)κ(A)−κ(E)(y − 1)|A|+κ(A)−n,

where κ(A) denotes the number of connected components of
(V ,A), and n = |V (G )|.

Evaluations of the Tutte polynomial at various points and
along various curves in R2 yield much interesting information
about G .
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Evaluations of the Tutte polynomial

T (G ; 1, 1) counts spanning trees in G .

T (G ; 2, 1) counts forests in G .

T (G ; 1− q, 0) counts q-colourings of G .

More generally, along the hyperbola

Hq = {(x , y) : (x − 1)(y − 1) = q},

T (G ; x , y) specialises to the partition function of the
q-state Potts model.

T (G ; 2, 0) counts acyclic orientations of G .

Along the y > 1 branch of H0, T (G ; 1, y) specialises to
the reliability polynomial of G .



The Tutte polynomial

The computational complexity the Tutte

polynomial: what was known (exact evaluation)

For each pair (x , y) we can ask: what is the computational
complexity of the map G 7→ T (G ; x , y)?

Theorem (Kirchhoff, 1847)

There is a polynomial-time algorithm for evaluating T (G ; 1, 1).

Theorem (Jaeger, Vertigan and Welsh, 1990, rough
statement.)

Evaluating T (G ; x , y) is #P-complete, except on the
hyperbola H1 (where it is trivial), and at a finite set of “special
points”.
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. . . and what was known (approximate evaluation)

Definition (First attempt)

An FPRAS for the Tutte polynomial at (x , y) is a randomised
algorithm that estimates T (G ; x , y) within relative error 1± ε
with high probability. It must run in time poly(|G |, ε−1).

Theorem (Jerrum and Sinclair, 1990)

There is an FPRAS for T (G ; x , y) on the positive branch of
the hyperbola H2.

Theorem (Goldberg and Jerrum, 2008, 2012)

Assuming RP 6= NP, there is no FPRAS for large regions of
the Tutte plane. (Classification is far from complete though.)
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The Tutte plane (2010)
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The programme for this talk

Jackson and Sokal have shown that in certain regions of
the plane, the sign of the Tutte polynomial is “essentially
determined” (i.e., is a simple function of the number of
vertices, number of edges, number of connected
components, etc).

What happens when the sign is not essentially
determined? We show that computing the sign is often
#P-hard. (#P is to counting problems what NP is to
decision problems.)

Where the sign is hard to compute, the Tutte polynomial
is a fortiori hard to approximate.



The Tutte polynomial

An illustration: the x-axis.

The line y = 0 corresponds (up to scaling) to the chromatic
polynomial, under the transformation q = 1− x .

The sign of the chromatic polynomial was studied by
Jackson [1993], who showed that the sign is essentially
determined for q ≤ 32/27 (i.e., x ≥ −5/27).

At q = 2 (i.e., x = −1), the Tutte/chromatic polynomial
counts 2-colourings of a graph. Although not essentially
determined, the sign (and indeed the polynomial itself) is
easy to compute.
At integer points q > 2 (x < −1) the polynomial counts
q-colourings and its sign is 0 or +. Determining which is
NP-hard.
At non-integer points q > 32/27 (x < −5/27) the
polynomial can take any sign, and determining which is
#P-hard.
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How can determining the sign be #P-hard?

Consider a #P-complete counting problem such #SAT. Let
ϕ be an instance of #SAT; we want to know how many
satisfying assignments ϕ has. Let this number be N(ϕ).

Suppose we could design a reduction that takes a Boolean
formula ϕ and a number c and produces a graph Gc with the
following property:

The sign of N(ϕ)− c is the same as the sign of
T (Gc ;−3

2
, 0)

Then an oracle for the sign of T (G ;−3
2
, 0) could be used to

compute N(ϕ) exactly (by binary search on c).
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The multivariate Tutte polynomial

As usual [Sokal, 2005], proofs are made easier by the moving
to the multivariate Tutte polynomial.

Let G be a graph and γ be a function that assigns a (rational)
weight γe to every edge e ∈ E (G ).

Definition (The multivariate Tutte polynomial)

Z (G ; q,γ) =
∑

A⊆E(G)

qκ(V ,A)
∏
e∈A

γe .

When γe = γ for all e (i.e., the edge weights are constant), we
recover the traditional Tutte polynomial via the substitutions
q = (x − 1)(y − 1) and γ = y − 1.
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A key lemma (one of two)

Name SignTutte(q; γ1, . . . , γk).

Instance A graph G = (V ,E ) and a weight function
γ : E → {γ1, . . . , γk}.

Output Determine the sign of Z (G ; q,γ).

Lemma

Suppose q > 1 and that γ1 ∈ (−2,−1) and γ2 /∈ [−2, 0].
Then SignTutte(q; γ1, γ2) is #P-hard.
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Simulating weights

The problem we actually want to study is:

Name SignTutte(q, γ).

Instance A graph G = (V ,E ).

Output Determine the sign of Z (G ; q, γ).

So the question becomes: can we “simulate” the weights γ1
and γ2 required in the key lemma using the single weight γ?

A partial answer is that we can often do this by “stretching”
and/or “thickening” [Jaeger et al, 1990].
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Stretching and thickening

2-stretch

2-thickening

Two γ-edges in series “simulate” an edge of weight
γ′ = γ2/(q + 2γ). The 2-stretch of a graph implements
x ′ = x2 and y ′ = q/(x ′ − 1) + 1.
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Stretching and thickening

2-stretch

2-thickening

Two γ-edges in parallel simulate an edge of weight
γ′ = (1 + γ)2 − 1. A 2-thickening of a graph implements
y ′ = y 2 and x ′ = q/(y ′ − 1) + 1.



The Tutte polynomial

The significance of 32/27

Consider the point (x , y) = (−0.1,−0.1). Note that
q = (x − 1)(y − 1) = 1.21 > 32/27.

We already have a point with y ∈ (−1, 0). To satisfy the
lemma we need to simulate a point with y /∈ [−1, 1].

Perform alternate 2-stretches and 2-thickenings:

(x0, y0) = (−0.100000000, −0.100000000)
(x1, y1) = ( 0.010000000, −0.222222222)
(x2, y2) = (−0.272857143, 0.049382715)
(x3, y3) = ( 0.074451020, −0.307332218)

...
(x9, y9) = ( 0.240501295, −0.593156107)

(x10, y10) = (−0.866806208 0.351834167)
(x11, y11) = ( 0.751353002, −3.866336657)
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The significance of 32/27 (continued)

Consider the point (x , y) = (0,−0.1). Note that
q = (x − 1)(y − 1) = 1.1 < 32/27.

Perform alternate 2-thickenings and 2-stretches:

(x0, y0) = ( 0.000000000, −0.100000000)
(x1, y1) = (−0.111111111, 0.010000000)
(x2, y2) = ( 0.012345678, −0.113750000)

...
(x10, y10) = ( 0.013145124, −0.114652243)
(x11, y11) = (−0.114652256, 0.013145136)
(x12, y12) = ( 0.013145139, −0.114652260)
(x13, y13) = (−0.114652261, 0.013145140)
(x14, y14) = ( 0.013145140, −0.114652261)
(x15, y15) = (−0.114652261, 0.013145140)
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A further illustration: the y -axis.

The line x = 0 corresponds (up to scaling) to the flow
polynomial, under the transformation q = 1− x .

The sign of the flows polynomial was studied by Jackson
[2003] and Jackson and Sokal [2009], who showed that
the sign is essentially determined for q ≤ 32/27 (i.e.,
y ≥ −5/25).

At q = 2 (i.e., y = −1), the Tutte/flow polynomial
counts nowhere-zero 2-flows in a graph. Although not
essentially determined, the sign (and indeed the
polynomial itself) is easy to compute.

At integer points q = 3 (y = −2) and q = 4 (y = −3)
the polynomial counts, respectively, 3-colourings of a
planar graph and 3-edge-colourings of a cubic graph. The
sign is NP-hard to determine.
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The y -axis (continued)

At integer points q ≥ 6 (y ≤ −5), the sign is essentially
determined (Seymour’s 6-flow Theorem).

At non-integer points 32/27 < q < 4 (−3 < y < −5/32)
the polynomial can take any sign, and determining which
is #P-hard.

Other points are unresolved.
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The y -axis (continued)
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More exotic “shifts”

To approach y = −3 close to the y axis, the usual stretchings
and thickenings are not enough. Instead we use a graph
transformation based on taking a “2-sum” with a Petersen
graph along each edge.

2-sum with Petersen graph
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The Tutte plane more generally

y (= γ + 1)
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Relation to approximate counting.

Fix an evaluation point (x , y). There are three possibilities.

The sign is #P-hard to determine. A fortiori the Tutte
polynomial is #P-hard to approximate. Approximation of
the Tutte polynomial is “essentially #P-complete”.

The sign is NP-hard to determine. This tends to occur
when the Tutte polynomial has a combinatorial
interpretation, e.g., the number of 3-colourings of a
graph. The number of structures may be estimated by
iterated random bisection [Valiant and Vazirani], using an
NP-oracle. Approximation of the Tutte polynomial is
“essentially NP-complete”.

The sign is easily determined. In this case we have only
incomplete information about the complexity of
approximating the Tutte polynomial.
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The Tutte plane (2010, reprise)
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