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Motivating (Standard) Example I

Established efficiency race for NP-hard Vertex Cover problem:
Input: An undirected graph G = (V ,E) and a nonnegative integer k .
Task: Find a subset of vertices C ⊆ V with k or fewer vertices such

that each edge in E has at least one of its endpoints in C.

Currently best upper bound: O(1.274k + k |V |) time.
[Chen, Kanj, Xia: Theor. Comput. Sci. 2010]

Grain of salt: In many applications, the parameter k is not small and grows
with the graph size.
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Motivating Example Vertex Cover

Input: An undirected graph G = (V ,E) and a nonnegative integer k .
Task: Find a subset of vertices C ⊆ V with k or fewer vertices such

that each edge in E has at least one of its endpoints in C.

Now: New (above guarantee) parameter for Vertex Cover: k ′ := k − LP,
where LP denotes the value of the linear programming relaxation of the
standard ILP for Vertex Cover...
[Narayanaswamy et al., STACS 2012; updated version Lokshtanov et al., arXiv 2012]

So, LP bound is a guaranteed lower bound for solution size!

Clearly, k ′ is “stronger” than k .

Central result: Vertex Cover solvable in 2.32k ′ · (|V |+ |E |)O(1) time.

 Our general theme: Are there structures (that is, parameterizations) that
can be exploited for deriving “efficient” solutions for NP-hard problems?
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Parameterized Algorithmics in a Nutshell
NP-hard problem X : Input size n and problem parameter k .

If there is an algorithm solving X in time

f (k) · nO(1),

then X is called fixed-parameter tractable (FPT):

n
k

instead of
k

n

Completeness program developed by Downey and Fellows (1999).

FPT ⊆

Presumably fixed-parameter intractable︷ ︸︸ ︷
W[1] ⊆ W[2] ⊆ . . . ⊆ W[P] ⊆ XP

´
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Parameterized Complexity Hierarchy

FPT vs W[1]-hard vs para-NP-hard:

• Vertex Cover parameterized by solution size is FPT;
• Clique parameterized by solution size is W[1]-hard (but in XP);
• k -Coloring is para-NP-hard (and thus not in XP unless P=NP)

(because it is NP-hard for k = 3 colors (that is, constant parameter
value)).

“Function battle” concerning allowed running time:

FPT: f (k) · nO(1) vs XP: f (k) · ng(k)

Assumption: FPT 6= W[1]

For instance, if W[1]=FPT then 3-SAT for a Boolean formula F with n variables
can be solved in 2o(n) · |F |O(1) time.
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The “Art” of Parameter Identification

Central question: How to find relevant parameterizations?

Central fact: One problem may have a large number of different (relevant)
parameterizations, that is, structures to exploit...

Consequence: We achieve a more fine-grained but also more complicated
picture of the computational complexity of problems.
 Parameterized algorithmics goes multivariate...

Note: Parameterizations typically are of “structural nature”, modelling
(sometimes hidden) properties that input instances may have...

Basic philosophy: Different parameterizations allow for different views,
resulting in a “holistic” approach to complexity analysis.
Revisiting hardness proofs, deconstruct intractability!
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A Theoretical Way of Spotting Parameters

Call parameter k1 stronger than parameter k2 if there is a constant c such
that k1 ≤ c · k2 for all inputs, and there is no constant d such that k2 ≤ d · k1
for all inputs.
(Analogously: k2 is weaker than k1).

Examples:
• Average vertex degree of a graph is stronger than maximum vertex

degree.
• Treewidth is a stronger parameter than vertex cover number of a graph.
• Also: Single parameter k1 is stronger than combined parameter k1 + k2

whatever k2 is.
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Goals for Stronger and Weaker Parameterizations

Primary goals:
1 Whenever a problem is fixed-parameter tractable with respect to a

parameter k1, then try to also show fixed-parameter tractability for a
stronger parameter k2.

2 If a problem is W[1]-hard with respect to a parameter k1, then try to show
fixed-parameter tractability for a weaker parameter k2.

Secondary goals:
• Can similar upper bounds be achieved for stronger parameters?
• Provide a “complete” map of a problem’s (parameterized) computational

complexity with respect to various parameterizations (partially) ordered
by their respective “strength”.

 Profiling of NP-hard (graph) problems...
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First Example: Finding 2-Clubs
NP-hard s-Club problem (occurring in the analysis of social and biological
networks):

Input A graph G = (V ,E) and an integer k .
Question Is there a vertex set V ′ ⊆ V of size at least k such that G[V ′]

has diameter at most s?

• 1-Club is equivalent to Clique.

• We focus on 2-Club:

star diamond C5
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Navigating Through Parameter Space: 2-Clubs
[Hartung, Komusiewicz, Nichterlein, IPEC 2012 + SOFSEM 2013].

Vertex Cover Cluster Editing Max Leaf #Distance to Clique

Minimum
Clique Cover Distance to

Co-Cluster
Distance to

Cluster
Distance to

Disjoint Paths
Feedback
Edge Set

Bandwidth

Maximum
Independent Set Distance to

Cograph
Distance to

Interval
Feedback
Vertex Set

Pathwidth

Minimum
Dominating Set Distance to

Chordal
Distance to

Bipartite

Maximum
Degree

Diameter Distance to
Perfect

Treewidth h-index

Degeneracy

Chromatic
Number Average

Degree

FPT and polynomial-size kernels

NP-hard with constant parameter values

W[1]-
hard

FPT,
but no polynomial-
size kernel unless

NP ⊆ coNP/poly
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A More Pragmatic Way of Spotting Parameters

A simple way to spot interesting parameterizations (structure) in real-world
graph problems: Measure “all” possible parameters...:

Use tool Graphana for data-driven parameterization:

www.akt.tu-berlin.de/menue/software
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Outline of the Remaining Talk

We discuss three recent examples for graph problems where structure
detection and parameterized complexity analysis were instrumental:

• Arising from biological network analysis: Highly Connected Deletion
problem;

• Arising from social network analysis: Graph Anonymization problem.
• Arising from incremental clustering: Incremental Conservative k -List

Coloring problem
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Case Study: Highly Connected Deletion
Typical graph clustering situation:
Task: Partition a graph into clusters such that

• each cluster is dense and
• there are few edges between clusters.

 Definition: [Hartuv & Shamir, Inf. Proc. Letters ’00]

A graph with n vertices is highly connected if more than n/2 edges need to
be deleted to make it disconnected.

Properties:
• diameter two;
• each vertex has degree ≥ bn/2c.

Rolf Niedermeier Exploiting Graph Stucture in Multivariate Algorithmics Folie 13



Case Study: Highly Connected Deletion
Typical graph clustering situation:
Task: Partition a graph into clusters such that

• each cluster is dense and
• there are few edges between clusters.

 Definition: [Hartuv & Shamir, Inf. Proc. Letters ’00]

A graph with n vertices is highly connected if more than n/2 edges need to
be deleted to make it disconnected.

Properties:
• diameter two;
• each vertex has degree ≥ bn/2c.

Rolf Niedermeier Exploiting Graph Stucture in Multivariate Algorithmics Folie 13



Case Study: Highly Connected Deletion
Typical graph clustering situation:
Task: Partition a graph into clusters such that

• each cluster is dense and
• there are few edges between clusters.

 Definition: [Hartuv & Shamir, Inf. Proc. Letters ’00]

A graph with n vertices is highly connected if more than n/2 edges need to
be deleted to make it disconnected.

Properties:
• diameter two;
• each vertex has degree ≥ bn/2c.

Rolf Niedermeier Exploiting Graph Stucture in Multivariate Algorithmics Folie 13



Case Study: Highly Connected Deletion
Typical graph clustering situation:
Task: Partition a graph into clusters such that

• each cluster is dense and
• there are few edges between clusters.

 Definition: [Hartuv & Shamir, Inf. Proc. Letters ’00]

A graph with n vertices is highly connected if more than n/2 edges need to
be deleted to make it disconnected.

Properties:
• diameter two;
• each vertex has degree ≥ bn/2c.

Rolf Niedermeier Exploiting Graph Stucture in Multivariate Algorithmics Folie 13



A MinCut Heuristic for Highly-Connected Clustering
Task: Partition the network into clusters such that

• each cluster is highly connected and
• there are few edges between clusters.

Challenge: How to find highly connected clusters?

Min-Cut Algorithm: [Hartuv & Shamir, IPL 2000]

Input: G = (V ,E)
1 (A,B)= min-cut(G)
2 if (A,B) has > |V |/2 edges : output V
3 else: recurse on G[A] and G[B]

Biological applications:
• Clustering cDNA fingerprints
• Complex identification in protein–interaction networks
• Hierarchical clustering of protein sequences
• Clustering regulatory RNA structures
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Edge Coverage

Task: Partition the network into clusters such that
• each cluster is highly connected and
• the number of edges between clusters is minimal.

Does the MinCut heuristic achieve the second goal?
 Comparison with optimal solution...

≡ clique

 MinCut heuristic may delete Θ(OPT2) many edges!
 New goal: find optimal clustering
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Complexity of Highly Connected Deletion

Highly Connected Deletion
Input: An undirected graph.
Task: Delete a minimum number of edges such that each remaining
connected component is highly connected.

Theorem: Highly Connected Deletion is NP-hard even on 4-regular graphs.

Theorem: If the Exponential Time Hypothesis (ETH) is true, then Highly
Connected Deletion cannot be solved within 2o(m) poly(n) time or
2o(n) poly(n) time.

m := number of edges
n := number of vertices
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Data Reduction Rules
Idea 1: Find vertex sets that are inseparable because any cut of this set has
size > k
 Too-Connected-Rule: If G contains an inseparable vertex set S of size at
least 2k , then do the following. If G[S] is not highly connected, return “no”.
Otherwise, remove S from G and adapt k correspondingly.

Idea 2: Find highly connected clusters that are large compared to the number
of “outgoing” edges
 D(S) := edge cut between S and V \ S
Small-Cut-Rule: If G contains a vertex set S such that

• |S| ≥ 4,
• G[S] is highly connected, and
• |D(S)| ≤ 0.3 ·

√
|S|,

then remove S from G.

Theorem: Highly Connected Deletion admits polynomial-time data
reduction to an equivalent instance with ≤ 10 · k1.5 vertices.
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FPT Algorithm and Further Data Reduction

Combination of branching, data reduction, and dynamic programming 

Theorem: Highly Connected Deletion can be solved
in O(34k · k2 + n2mk · log n) time.

Lemma: Let G be a highly connected graph. If two vertices in G are adjacent,
they have at least one common neighbor.
 Reduction rule: If there are two vertices that are connected by an edge
but have no common neighbors, then delete the edge.
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Highly Connected Deletion: PPI Experiments
n m ∆k ∆k [%] n′ m′

C. elegans phys. 157 153 100 92.6 11 38
C. elegans all 3613 6828 5204 80.1 373 1562
M. musculus phys. 4146 7097 5659 85.3 426 1339
M. musculus all 5252 9640 7609 84.8 595 1893
A. thaliana phys. 1872 2828 2057 83.1 187 619
A. thaliana all 5704 12627 8797 79.5 866 3323

n′,m′: size of largest connected component after data reduction

min-cut without DR min-cut with DR column generation

k s t k s t k s t

CE-p 111 136 0.01 108 133 0.01 108 133 0.06
CE-a 6714 3589 86.46 6630 3521 6.36 6499 3436 2088.35
MM-p 7004 4116 126.30 6882 4003 7.42 6638 3845 898.13
MM-a 9563 5227 267.63 9336 5044 17.84 8978 4812 3858.62
AT-p 2671 1796 5.82 2567 1723 0.68 2476 1675 60.34
AT-a 12096 5559 434.52 11590 5213 32.09 11069 4944 34121.23

s: number of unclustered vertices; t : running time in seconds
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Case Study: Graph Anonymization

Degree Anonymization
Input: An undirected graph G = (V ,E) and two positive integers k and s.
Question: Is there an edge set E ′ over V with |E ′| ≤ s such
that G′ = (V ,E ∪ E ′) is k-anonymous, that is, for every vertex v ∈ V there are
at least k − 1 other vertices in G′ having the same degree?

7-anonymous graph

4-anonymous graph 2-anonymous graph
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Anonymization Heuristic, Liu and Terzi 2008

1.⇒ 1,2,2,3 2.⇒ 3,3,3,3 3.⇒

input graph

degree
sequence

“anonymized”
degree

sequence

“realized”
degree

sequence

Step 1: Sorting the degrees.
Step 2: Standard dynamic programming

(running time O(n · s · k ·∆) = O(n4)).
Step 3: (Due to graph structure not always possible!)

If there exists a “realization”, then it can be constructed in
polynomial time ( f -factors).
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The Third Step of the Liu-Terzi-Heuristic

Lemma
If the solution (edge set) found in the dynamic programming is “large” (that is,
s > ∆4 with ∆ being the maximum vertex degree)), then there is always a
realization of the anonymized degree sequence that is a supergraph of the
input graph. This realization can be found in polynomial time.

Consequence: win-win situation. Either
• the problem is polynomial-time solvable or
• the solution is “small” (≤ ∆4).
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Case Study Incremental Conservative k -List Coloring

Incremental Clustering and Dynamic Information Retrieval
[Charikar, Chekuri, Feder, Motwani; STOC 1997; SICOMP 2004]:
 Incremental Clustering problem:
For an update sequence of n points in metric space, maintain a collection of
k clusters such that as each input point is presented, either it is assigned to
one of the current k clusters or it starts off a new cluster while two existing
clusters are merged into one.

Remarks:
• Practial motivation: Maintain clusters in dynamic environments; updating

clusterings without performing frequent reclustering is highly desirable.
• Closely related to online clustering model...
• Charikar et al. focus on polynomial-time approximation and investigate

several variants of Incremental Clustering.
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k -Center and k -List Coloring

k -Center
Input A distance function d on an element set X , t ∈ R+ and k ∈ N+.

Question Is there a k -partition C1, . . . ,Ck of X such that
max1≤i≤k maxv ,u∈Ci d(v ,u) ≤ t?

k -Center ≡p k -List Coloring:

k -List Coloring

Input A graph G = (V ,E), k ∈ N+ and a list of colors
L(v) ⊆ {1, . . . , k} for each v ∈ V .

Question Is there a k -list coloring f : V → {1,2, . . . , k} of G?

f is a k -list coloring of G iff ∀u, v ∈ E : f (u) 6= f (v) and ∀v ∈ V : f (v) ∈ L(v).
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Incremental Conservative k -List Coloring

Incremental Conservative k -List Coloring (IC k -List Coloring)
Input A graph G = (V ,E), k -list coloring f for G[V\ {x}], and

number c ∈ N of allowed recolorings.
Question Is there a k -list coloring f ′ for G such that

| {v ∈ V\ {x} | f (v) 6= f ′(v)} | ≤ c?

Example: k = 3
c = 3
L(v) ⊆ {1, . . . , k} ∀v ∈ V

x
Note: c measures degree of change allowed: conservation parameter.
Parameterize on conservation!
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Complexity of IC k -List Coloring

Theorem. IC 3-Coloring is NP-complete even on bipartite graphs.
Idea of proof. Use corresponding NP-hardness result for
“Precoloring Extension” due to
Bodlaender, Jansen, and Woeginger [Discrete Appl. Math. 1994].

Theorem. IC k -List Coloring is W [1]-hard with respect to the conservation
parameter c.
Idea of proof. Parameterized reduction from k -Multicolored Independent
Set.

 Do a multivariate analysis! Combine parameters k and c:

Theorem. IC k -List Coloring can be solved in O(k · (k − 1)c · |V |) time.
Idea of proof. Search tree algorithm with straightforward branching.
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IC k -List Coloring on Special Graphs
class IC k -LIST COL. IC

k -COL.
PrExt k -LIST

COL.
poly
kernel

trees / P P P P
compl. bip. ? NP∗-c P P NP-c
bipartite no NP-c NP-c NP-c NP-c
chordal ? NP∗-c NP-c NP-c NP-c
interval ? NP∗-c ? NP-c NP-c
unit interval yes NP∗-c ? NP-c NP-c
cographs ? ? ? P NP-c
dist.-hered. ? NP∗-c NP-c NP-c NP-c
split ? NP∗-c ? P NP-c

NP∗-c: Turing reductions used; boldfaced results from literature.

Note: Using dynamic programming, IC k -List Coloring can be solved in
O(kω+1ω2 · |V |) time on graphs of treewidth ω (with given tree dec.).
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Experiments with IC k -list Coloring

Setting: Using the solution to IC k -List Coloring in a subroutine of a
well-known greedy heuristic for graph coloring yields promising results.
Idea: If greedy (color according to descending vertex degree) fails, then try to
conservatively recolor with c ≤ 8.

Compared with Iterated Greedy heuristic due to Culberson and Luo
[DIMACS Series in Discrete Math. and Theor. Comput. Sci., 1996]:
Iteratively run the greedy algorithm by trying different vertex orderings in the
coloring process...; abort when after 1000 iterations no better coloring was
found.

Tested on 64 benchmark graph instances (between 25 and 4730 vertices and
15 % average edge density), taken from
DIMACS “Graph Coloring and its Generalizations” Symposium 2002.
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IC k -List Coloring Experimental Work II
Each value obtained as avg. over four runs (std. deviation in brackets):

greedy Iterated Greedy search tree
k time k #iter time k c time

gr1 8 0.2 5.0 [0.0] 1058.8 33.2 [1.3] 5.0 [0.0] 8 0.2 [0.0]
gr2 29 0.1 27.5 [0.6] 1243.8 24.5 [5.0] 25.0 [0.0] 6 0.5 [0.1]
gr3 17 0.0 16.8 [0.5] 1217.5 6.7 [2.3] 14.8 [0.5] 8 0.3 [0.1]
gr4 148 0.3 109 [1.4] 2765.3 68.8 [9.2] 116.8 [2.6] 4 1.5 [0.6]
gr5 18 0.0 18.0 [0.0] 1000 5.0 [0.0] 16.0 [0.0] 7 1.2 [0.2]
gr6 44 0.3 42.0 [0.0] 1033.8 59.9 [1.7] 41.0 [0.0] 5 4.8 [0.3]
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Findings:
Our conservative search tree algorithm improves greedy result in 89 % of the
tested instances, Iterated Greedy in 83 %. Improvement by 12 % resp. 11 %
of number of colors used.
Search tree algorithm by a factor of 50 slower than greedy algorithm, Iterative
Greedy by a factor of 170.
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Discussion and Outlook

• Every problem accompanied with a natural parameter space (that is,
structure) to navigate through.
 Relevance of investigating the combinatorial relationships between
different parameters and their combinations.

• Structure analysis connects very well with multivariate algorithmics.
• Potential practical relevance when taking into account structure occurring

in real-world data.
 Algorithm engineering through parameter identification in real-world
instances.

• Detecting “hidden parameters” may help in better understanding and
exploiting the power of heuristics.

• Potential drawback from a practical point of view: all our studies still rely
on worst-case analysis.

• Once a whole suite of (parameterized) algorithms is available, choosing
the “right” one depending on the current input data becomes more
relevant...
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• Highly Connected Deletion: F. Hüffner, C. Komusiewicz, A. Liebtrau,
R. Niedermeier. Partitioning Biological Networks into Highly Connected Clusters
with Maximum Edge Coverage. ISBRA 2013.

• Graph Anonymization: S. Hartung, A. Nichterlein, R. Niedermeier, O. Suchý. A
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