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4-color problem 



Reduction to the vertex coloring 



Vertex coloring problem 



Edge coloring problem 



Incidentor coloring 

• Incidentor  is a pair (v,e) of a vertex v and 
an arc (edge) e, incident with it. 

• It is a half of an arc (edge) adjoining to a 
given vertex.  

 

•   

•               initial        final 

•             (mated incidentors) 



Incidentor coloring problem 

 

• Color all incidentors of a given multigraph 
by the minimum number of colors in such 
a way that the given restrictions on the 
colors of adjacent (having a joint vertex) 
and mated  (having a joint arc) incidentors 
would be stisfied 



An example of incidentor coloring 



Incidentor coloring generalizes 
both vertex and edge coloring 

 

 



Incidentor coloring generalizes 
both vertex and edge coloring 

 

 



Motivation 

  Central computer 

… … … 

1 i j n 

i-th object must send to j-th one dij units 

of information 

All links capacities 
 are equal to 1 



There are two ways of 
information transmission: 

 

• 1) Directly from i-th object to j-th one 

(during one time unit); 

 

• 2) With memorizing in the central 
computer (receive the message from i-th 
object, memorize it, and transmit to j-th 

one later). 



Reduction to the incidentor 
coloring 

• Each object corresponds to a vertex of the 
multigraph (n vertices). 

• Each unit of information to transmit from 
i-th object to j-th one corresponds to the 
arc ij of the multigraph (there are dij arcs 
going from a vertex i to the a vertex j). 

• The maximum degree  equals the 
maximum load of the link. 



Scheduling 

• To each information unit two time 
moments should be assigned – when it 
goes via i-th and j-th links.  

 

 

 

• These moments could be interpreted as 
the colors of the incidentors of the arc ij. 

a b i j 



Restrictions 

 

 

• The colors of adjacent incidentors must 
be distinct. 

• For every arc, the color of its initial 
incidentor is at most the color of the 
final incidentor, i.e.  a  b. 

a b 
i j 



• It is required to color all incidentors by the 
minimum number of colors  satisfying all 
the restrictions (the length of the schedule 
is ). 

 

• For this problem  = . Such coloring can 
be found in O(n22) time. 

• (P., 1995) 



Sketch of the algorithm 

• Consider an arc that is not colored yet 

• Try to color its incidentors: 

• 1. In such a way that  a=b 

• 2. In such a way that a<b 

• Otherwise, modify the coloring (consider 
bicolored chains) 
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Construct  a 
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Construct a 
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Further investigations 

 

• 1) Modifications of initial problem 

 

• 2) Investigation of the incidentor 
coloring itself 



Modifications of initial problem 

 

• 1) Arbitrary capacities 

• 2) Two sessions of message transmission 

• 3) Memory restrictions 

• 4) Problem of Melnikov & Vizing 

• 5) Bilevel network 



Memory restriction 

• The memory of the central computer is at 
most Q  

 

• If Q=0 then second way of transmission is 

impossible and we have the edge coloring 
problem 



 

• If Q  n then we can store each message 
in the central computer during 1 unit of 

time. Incidentor coloring problem with the 
following restriction on mated incidentors 
colors appears: 

•  b – 1  a  b 

• In this case  =   

• (Melnikov, Vizing, P.; 2000). 

 



(k,l)-coloring of incidentors 

• Let 0  k  l  . Restrictions: 

• 1) adjacent incidentors have distinct 
colors; 

• 2) mated incidentors colors satisfy 

• k  b – a  l. 

• Denote the minimum number of colors by 
k,l(G).  



• Case k=0 is solved: 

• 0,0(G) is an edge chromatic number 

• 0,1(G) = 0,(G) =  (Melnikov, P., Vizing, 

2000) 

• Another solved case is l=:  

•  k,(G) = max{, k ++, k +–} (P.,1999) 

 

 
k+1 

k+– 

1 

+ k++ 



Vizing’s proof 

• Let t = max{, k ++, k +–} 

 

• 1. Construct a bipartite interpretation H of 
the graph G: 

 

• vV(G) corresponds to v+,v–V(H) 

• vuE(G) corresponds to v+u–E(H) 

 



Vizing’s proof 

• 2. Color the edges of H by (H) colors. 
Clearly, (H)= max{+(G),–(G)} 

 

• 3. If v+u–E(H) is colored a, color a the 
initial incidentor of the arc vuE(G) and 
color a+k its final incidentor 



Vizing’s proof 

• 4. Shift colors at every vertex 

 

• Initial: turn a1<a2<...<ap into 1,2,...,p 

• Final: turn b1>b2>...>bq into t,t–1,...,t –q+1 

 

• We get a required incidentor coloring of G 
by t colors 



Example 

k=1 

=3 

+=– =2 

 t=3 
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Edge coloring 
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Shifting the colors 
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Equivalent problem in scheduling 
theory 

• Job Shop with n machines and m jobs, 

each of which has two unit operations (at 
different machines), and there must be a 
delay at least k and at most l between  

the end of the first operation and the 
beginning of the second one. 



 

• It is NP-complete to find out whether 
there is a (1,1)-coloring of a multigraph by 
 colors even for =7 (Bansal, Mahdian, 

Sviridenko, 2006). 

 

• Reduction from 3-edge-coloring of a 3-

regular graph 

 

 



Reduction from 3-edge-coloring 

 

• Substitute each edge by the following 
gadget:  

u u v 
v 



Reduction from 3-edge-coloring 

 

• It can be verified that in any (1,1)-coloring 
by 7 colors the incidentors of the initial 

incidentors of the red edges must be 
colored by the same even color 



Results on (k,l)-coloring 

• k,k(G) = k,∞(G) for k ≥ (G)–1  

• k,(G)–1(G) = k,∞(G)  (Vizing, 2003) 

 

• Let k,l() = max{k,l(G) | deg(G) = } 

• k,() = k +  

• k,k()  k,l()  k +  

• 0,1() =  



Results on (k,l)-coloring 

• k,l(2) = k+2 except k = l = 0  

• (Melnikov, P.,Vizing, 2000) 

• k,l(3) = k+3 except k = l = 0 and k = l = 1 

(P., 2003) 

• k,l(4) = k+4 except k = l = 0  

• For l  /2, k,l() = k +  

• (P., 2004) 



Results on (1,1)-coloring 

• For odd , 1,1() > +1 (P., 2004) 

 

 



Results on (1,1)-coloring 

• For odd , 1,1() >  +1 (P., 2004) 
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Results on (1,1)-coloring 

• For odd , 1,1() >  +1 (P., 2004) 
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Results on (1,1)-coloring 

• For odd , 1,1() >  +1 (P., 2004) 
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Results on (1,1)-coloring 

• For even , it is unknown whether there is 
a graph G of degree  such that 1,1(G) > 

 +1. If such G exists, then it has degree 
at least 6.  

 

• Theorem. 1,1(4)=5  (P., 2004) 

 



Proof 

• Consider an Eulerian route in a given 4-

regular multigraph 

• Say that an edge is red, if its orientation is 
the same as in the route and blue 
otherwise 

• Construct a bipartite interpretation 
according to this route (it consists of the 
even cycles) 



• Find an edge coloring f:E{1,2} such that: 

 

• 1) any two edges adjacent at the right 
side have distinct colors; 

• 2) any two blue or red edges adjacent at 
the left side have distinct colors; 

• 3) If a red edge e meets a blue one e’ at 
the left side, then f(e)f(e’)+1 



• Construct an incidentor coloring g in the 

following way: 

 

• 1) For the right incidentor let g=2f 

• 2) For the left red incidentor let g=2f –1 

• 3) For the left blue incidentor let g=2f+1 

 

• We obtain an incidentor (1,1)-coloring of 
the initial multigraph by 5 colors  



Example 
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Incidentor coloring of weighted 
multigraph 

• Each arc e has weight w(e) 

• Coloring restrictions: 

• 1) adjacent incidentors have distinct 
colors; 

• 2) For every arc e,  w(e)  b – a  



Results on weighted coloring 

• Problem is NP-hard in a strong sense for  =  
(P., Vizing; 2005) 

 

• For  >  the problem is NP-hard in a strong 
sense  even for multigraphs on two vertices 
(Lenstra, Hoogevan,Yu; 2004) 

 

• It can be solved approximately with a relative 
error 3/2 (Vizing, 2006) 



List incidentor coloring 

• A weighted incidentor coloring where each arc e 

has a list L(e) of allowed colors for its incidentors 

 

• Conjecture. If |L(e)|w(e)+ for every arc e then 

an incidentor coloring exists 

 

• True for |L(e)|≥w(e)++1. Proved for even  
(Vizing, 2001) and for =3 (P., 2007) 



Total incidentor coloring 

• Color incidentors and vertices in such a way that 
vertex coloring is correct and a color of each 
vertex is distinct from the color of all incidentors 
adjoining this vertex 

 

• T
k,(G)  k+1,(G)+1  k,(G)+2; 

• T
0,(G)= +1 (Vizing, 2000)  

 

• Conjecture. T
k,(G)  k,(G)+1  



Interval incidentor coloring 

• The colors of adjacent incidentors must form an 
interval  

 

• I
0,(G)  max{, ++––1} 

• I
1,(G)  ++– 

 

• For k ≥ 2 there could be no interval incidentor 
(k,)-coloring (e.g. directed cycle) (Vizing, 2001) 



Undirected case 

• Instead of b–a use |b–a| for colors of 

mated incidentors 

 

• Undirected incidentor chromatic number is 
equal to the best directed ones taken 
among all orientations 



Undirected case 

• k,(G)= max{,/2+k} 

• T
k,(G)  k,(G)+1 (Vizing,Toft, 2001) 

 

• If k/2 then k,k (G)= /2+k 

• If =2kr then k,k (G)= 

• If =2kr+s then k,k (G)+k – s/2  

• (Vizing, 2005) 

 

 

 



Undirected case 

• For every regular multigraph G with 2k 

k,l (G){, k,k (G)} depending only on l; in 
particular, k,l(G)=k,l(H) for every two 
regular multigraphs G and H of degree  

(Vizing,2005) 



Undirected case 

• Interval incidentor coloring of undirected 
multigraphs always exists 

 

• I
0,(G) = I

1,(G) =  

• For k≥2, I
k,(G)max{,min{2k,+k}} and 

• I
k,(G)2+k(k –1)/2 

• (Vizing,2003) 



Undirected case 

• The incidentor coloring of weighted 
undirected multigraph is NP-hard in a 
strong sense even for =  

• It can be solved approximately with a 
relative error 5/4 

• (Vizing, P., 2008) 



Open problems 

• 1. Is it true that for every k there is l such 
that k,l() = k,()=k+?  

 

• Proved for k=0 (l=1). Incorrect for k,l(G) 

 

• 2. What are the values of 1,2(5) and 
2,2(5)? 



Open problems 

• 3. Given a -regular bipartite graph with red and 
blue edges is there an edge coloring 
f:E{1,2,...,} such that: 

• 1) any two edges adjacent at the right side have 
distinct colors; 

• 2) any two blue or red edges adjacent at the left 
side have distinct colors; 

• 3) If a red edge e meets a blue one e’ at the left 
side, then f(e)f(e’)+1? 



Open problems 

 

• 4. Is it true that if |L(e)|≥w(e)+ for every 
arc e then a list incidentor coloring exists? 

 

• 5. Is it true that T
k,(G)  k,(G)+1?  



Thanks for your 
 attention!!! 


