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G = (V, E) finite graph.
Assume all vertices have degree > 3.

Then w1 G is a free group of rank > 2.
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Metric Graphs

We can make G into a metric graph by assigning a positive length
/(e) to each edge e € E.

More formally, the lengths are defined by a function £ : E — R>C.

The pair (G, £) may be thought of as a toy analogue of a compact
hyperbolic surface, i.e. a compact smooth surface S of genus > 2,

equipped with a Riemannian metric of constant Gaussian curvature
—1.
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A Moduli Space

Just as the Teichmiiller space of a smooth surface Teich(S)
parametrizes hyperbolic metrics on S, we can consider a space of
lengths (or, equivalently, a space of metrics) on a fixed graph G.

Define
Mc={l:E—-R""

and a space of normalised lengths
Mg ={t e Mg : h(G,0) =1},

where )
h(G,?0) = tILm " log #{cycles v : ¢(~) < t}.
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Entropy

We call the number
h(G,0) = tim %Iog #{cycles v : £(v) < t}.

the entropy of the metric graph (G, ¢).

From a dynamical point of view, it is the topological entropy of a
certain flow (R-action) but we shall not use that description here.
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Let S be a smooth orientable compact surface of genus k > 2

The Teichmiiller space Teich(S) parametrizes Riemannian metrics
of constant curvature —1 on S (as a marked surface).

Teich(S) is a smooth manifold diffeomorphic to R® 6,
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The Weil-Petersson metric on Teich(S)

Teich(S) supports a natural Riemannian metric called the
Weil-Petersson metric, || - |jwe-

The original definition is via Beltrami differentials but more
intuitive definitions have been given by Thurston-Wolpert and
McMullen.

The Weil-Petersson metric has the desirable property of making
Teich(S) negatively curved.

Theorem (Ahlfors, 1961)
Teich(S) is negatively curved with respect to || - [jwp -
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Thurston's definition

Consider an analytic path

(—€,€) = Teich(S) : A — ga.

Then we can expand
2

. S
gAzgoJr/\goJr?goJr"',

where gy € Tg,(Teich(S)).
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Thurston's definition

Let {7,}52,; be a sequence of closed geodesics on (S, go) which
are equidistributed with respect to the gp-area measure: for all
feC(SR),

. 1 / /
im —mmM— f= f darea,,.
n—00 Iengthgo(’yn) Yo S £

Then
0?2 length,, (vn)

-2 ;
= |
€0 Thurston = im =5 length,, (va) |,




Wolpert's Theorem

Theorem (Wolpert, 1980s)

» Thurston’s metric || - || Thurston IS equal to the Weil-Petersson
metric H : ”WP

» Teich(S) is incomplete with respect to || - ||lwe-
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McMullen’s definition
Let ¢ : TX(S,80) — T*(S,g0) be the geodesic flow on the
unit-tangent bundle over (S, go).

Define f : T1(S,g) — R by f(v) = go(v, v) and
2
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McMullen's definition

Let ¢ : TX(S,80) — T*(S,g0) be the geodesic flow on the
unit-tangent bundle over (S, go).

Define f : T1(S,g) — R by f(v) = go(v, v) and

1 t 2
= Jim * [ . ([ roman) dusiv)

where 1, is the Liouville measure on T1(S, go) (the product of
the area measure on (S, go) and Lebesgue measure on the fibres).

Theorem (McMullen, 2007)

2(g0) = 2 lgollfve _ llgollive
9" 3area(S,g0) 3m(k—1)




Outer Space

The natural analogue of Teichmiiller space in the Culler-Vogtmann
outer space Xi. This parametrizes lengths on all (marked) graphs
with rank k fundamental group.



Outer Space

The natural analogue of Teichmiiller space in the Culler-Vogtmann
outer space Xi. This parametrizes lengths on all (marked) graphs
with rank k fundamental group.

Xk is a singular space made up of infinitely many cells (simplices)
corresponding to lengths on a given marked graph.



Outer Space

The natural analogue of Teichmiiller space in the Culler-Vogtmann
outer space Xi. This parametrizes lengths on all (marked) graphs
with rank k fundamental group.

Xk is a singular space made up of infinitely many cells (simplices)
corresponding to lengths on a given marked graph.

Our space M1G corresponds to a single cell in Xj.



Outer Space

The natural analogue of Teichmiiller space in the Culler-Vogtmann
outer space Xi. This parametrizes lengths on all (marked) graphs
with rank k fundamental group.

Xk is a singular space made up of infinitely many cells (simplices)
corresponding to lengths on a given marked graph.

Our space M1G corresponds to a single cell in Xj.

We will give a definition of a Riemannian metric on ./\/l%; which is
analogous to McMullen's definition.
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Oriented edges

Consider again the graph G = (V, E). Let E° denote the oriented
edges of G. (So |E°| = 2|E|.)

If e € E° then € € E° will denote the edge with the reversed
orientation.

The length ¢ defines a function ¢ : E° — R>0 satisfying
l(e) = ((e).
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The incidence matrix for oriented edges

Define a matrix A indexed by E° x E° by

Ale. ) 1 if ¢ follows e,
e e)= )
0 otherwise.

Our assumptions on G imply that A is irreducible, i.e. that for
each (e, €') there exists n such that A"(e, e’) > 0.

In face, A is aperiodic (A" has positive entries for some n) unless
G is bipartite.



A subshift of finite type

Define a space
Y ={e=(en)izp: Alen, ent1) =1Vn >0},

i.e. X is the space of infinite paths in G.



A subshift of finite type

Define a space
Y ={e=(en)peo: Alen,ent1) =1VYn>0},
i.e. X is the space of infinite paths in G.

> can be made into a compact metric space by setting

where
n=max{m: e =-¢ fori=0,...,m—1}.



A subshift of finite type

Define a space
Y ={e=(en)peo: Alen,ent1) =1VYn>0},
i.e. X is the space of infinite paths in G.

> can be made into a compact metric space by setting

where
n=max{m: e =-¢ fori=0,...,m—1}.

It supports the shift map T : ¥ — X defined by (Te), = ept1.
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Pressure

Given a function f : E° — R, define a new matrix Ar by
Af(e, €)= e A(e, ).
By the Perron-Frobenius Theorem, Af has a simple positive

eigenvalue equal to its spectral radius. We denote this eigenvalue
by €”(f) and call P(f) the pressure of f.
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The Parry measure

Consider the matrix A_y, where h = h(G,¢). Then eP(=h0) =1

By the Perron-Frobenius Theorem, there exists a positive right
eigenvector A_peq = q.

The matrix

A_ )G
P(e, e/) — hf(;’ € )qe

is row stochastic.
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The Parry measure

P has a left eigenvector pP = p, which we can normalise to be a
probability vector.

We can define a measure up on X in the following way. Let
[eo0, . .., en] denote the set of infinite paths in G starting with a
fixed finite path (ep,...,e,). Then

wp([eo, - -, en]) = pey Plen, €1) - - - P(en—1, €n).

This extends to a probability measure on X called the Parry
measure, which is invariant under the shift map T: for integrable

f: X —R,
/fOTd,UP:/fdup.
b b



The Parry measure

For f : E® — R (identified with a function on X),

/Zfdup =) pef(e).

ecE°



Differentiating pressure

Lemma

Suppose that (—e, e) — RE® 1 X = ¢y is analytic with ¢g =

Then the function X\ — P(¢)) is analytic and

/ dodpp = > pedo(e

ecE°

9 p
g ¢A

—ht.
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We have an eigenvalue equation

with wy positive and wy = q.
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We have an eigenvalue equation
with wy positive and wy = q.

Define
(e, €) = pr(e) + log wy(€') — log wy(e).



Proof of Lemma

We have an eigenvalue equation
with wy positive and wy = q.

Define
(e, €) = pr(e) + log wy(€') — log wy(e).

Then P(1)) = P(¢») and

Ayl = eP(m)l7



Proof of Lemma

Differentiating and evaluating at A = 0 (using P(¢o) = 0 and
Ay, = P) we obtain

dP($y)
d\

= 3" (ole) + vin(e) — io(e)) Ple, ).

A=0  cge




Proof of Lemma

Multiplying by pe and summing over e € E° we get (using
ZeeEO Pe = 1)

dP(¢x)
R P

= > pedo(e)Ple,e)+ > (o(e") — vw(e)) peP(e,€’)

e,e’cE°

e,e’cE°

= Z Peéo(e)a

ecE°

as required, using the fact that P is row stochastic and that

pP =p.
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The tangent space to M

To define a Weil-Petersson type metric in this setting, we need to
characterise the tangent space to /\/llG at a point £ € /\/l1G

Suppose that
(—e,€) = ME X = Ly,

is an analytic path in M.

Then we can expand

. P
E)\Zfo-f-)\go—l-?fo—F"',

where lo € Ty, (ML).



The tangent space to M
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The tangent space to M

Since /) € M1G we have
P(—¢y) = 0.
By the lemma above, we have

0— dP(—1))
- dA

= —/éo dup.
A=0 X

Remark
This parallels the fact that in the surface case

/ go(v,v)dug,(v) =0.
T1(S,g0)



The tangent space to M

Since _ _
fo(@) = Eo(e)



The tangent space to M

Since _ _
to(€) = lo(e)

we thus have

T Mg C {f E°—R: f(e)=f(e) and > pef(e) =0

ecE°

} |
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The tangent space to M

However, we have
dim Mg = |E| -1

and

dim {f: E° - R: f(e) =f(¢€) and Z pef(e) :0}

ecE°
— (|E°|/2) —1=|E| - 1.



The tangent space to M

However, we have
dim Mg = |E| -1

and
dim{f E° - R : f(e) )and > pefe
ecE®°
= (|E°|/2) — 1= |E| - 1.
Therefore
TIML = {f E° =R : f(e) )and ) pef
ecE°

-
_0}_



A Weil-Petersson metric on M1G

By analogy with McMullen’s definition, for f € Tg./\/llc we set

() = fim [ (&) +7(T(&) - F(T" )’ du.
>

n—oo n
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A Weil-Petersson metric on M1G

By analogy with McMullen’s definition, for f € Tg./\/llc we set

2(F) = lim / (F(e) + F(T(e)) + -+ F(T™X(e)))? dup.
>

n—oo n

In fact, one can calculate that

o*(F) =Y pelf(e))*.

ecE°

Finally, we use this to define a metric

1flve = o(F)-



Properties of the metric

How does the metric compare with the Weil-Petersson metric on
Teichmiiller space?
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Properties of the metric: completeness

Theorem
There exist graphs G for which || - ||wp is incomplete.

In fact, the metric is incomplete for the graph with one vertex and
two edges.



Properties of the metric: curvature

Theorem
There exist graphs G for which the curvature of (Mg, || - [lwp)
takes both positive and negative values.



Properties of the metric: curvature

Theorem
There exist graphs G for which the curvature of (Mg, || - [lwp)
takes both positive and negative values.

In fact, this occurs for the “dumbbell” graph.



Properties of the metric: curvature

Theorem
There exist graphs G for which the curvature of (Mg, || - [lwp)
takes both positive and negative values.

In fact, this occurs for the “dumbbell” graph.

However, for the “belt buckle” graph, the curvature is negative.



