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Topics  of  lectures  

 

 

Algorithmic meta-theorems :  existence and construction of (relatively) 

efficient graph algorithms from logical descriptions of the problems. 

 

 

These lectures : meta-theorems based :  

  on problem descriptions in (extensions of) MSO (Monadic Second-

Order) logic,  

  on hierarchical decompositions of graphs  

  and on automata, possibly  with  infinitely many states.  

 

A  kind of  theory  of  dynamic  programming. 
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Summary of 3 lectures  

Part 1  

First example : construction of a finite automaton for the 2-

colorability of series-parallel graphs. 
 

Graph decompositions expressed by algebraic terms : tree-width 

and clique-width, parameters for FPT and XP graph algorithms. 
 

Automata  based  algorithms : the general scheme. 
 

Difficulty : the size of automata; the example of connectedness. 
 

Fly-automata : definitions. 
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3 types of fly-automata : P, FPT and XP. 
 

Part 2  

Monadic Second-Order  logic : definitions, examples. 
 

The  main construction : from MSO formulas to automata 

(accepting clique-width terms). 
 

Existential quantifications and nondeterministic  automata. 
 

Example : colorability problems. 
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Part 3 (Recent work) 

Beyond MSO logic for graph properties and functions. 
 

A fly-automaton for regularity of graphs (not an MSO property). 
 

Boolean and first-order constructions of properties and functions, 

and their interpretations in terms of fly-automata 

 

Monadic-second order constructions; spectra. 
 

Implementation (in AUTOGRAPH) and tests. 

 

   Conclusions and call for interesting problems to handle in this way 
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2-colorability of  Series-Parallel (SP) graphs 

 

Graphs   with  distinguished  vertices marked  1  and  2,  generated   from   

e = 1 � 2  by  the operations of parallel-composition //  and  series-composition  • 

              ((e // e) • e ) // ( e • e ) 

  

 

 

 

 

 

 

 
The  defining  equation   is   S  =  S // S   ∪   S • S   ∪  { e } 
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Inductive  computation  :  Test  of  2-colorability   for  SP  graphs 

Not  all  series-parallel  graphs are  2-colorable  (see  K3)  

 

G and H 2-colorable  does not  imply  that  G//H  is  2-colorable (see   K3= P3//e). 

 

One can check  2-colorability  with  2  auxiliary  properties : 
 

        Same(G)  =  G is 2-colorable with sources of the same color, 
 

           Diff(G)    =  G is 2-colorable with sources  of different colors 
 
by  using  the  rules :  
 
    Diff(e)  =  True  ;  Same(e)  = False 

Same(G//H)  ⇔  Same(G) ∧ Same(H) 

Diff(G//H)  ⇔   Diff(G) ∧  Diff(H) 
 
Same(G•H)  ⇔  (Same(G) ∧ Same (H)) ∨ (Diff(G) ∧ Diff(H)) 

Diff(G•H)   ⇔  (Same(G) ∧ Diff(H)) ∨ (Diff(G) ∧  Same(H)) 
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Application  :   An algorithm  based  on  a finite bottom-up automaton 

 

For every  term t, we can compute, by running a finite deterministic bottom-up 
automaton  on   t,  the  pair  of   Boolean  values   (Same(G(t)) ,  Diff(G(t)) ), where  G(t)   is 
the graph  value  of  t.  We  get  the answer  whether   G(t)  is  2-colorable. 

 

Example : σ  at node u means that  Same(G(t /u)) is true,    σ   that it is false,   
δ  that  Diff (G(t /u))  is true, etc… Computation is done  bottom-up  with the  rules  of   

previous page. 
            
 
 
 
 
 
 
 
 
 
 

     Answer : the  graph   is   not   2-colorable. 
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Algebraic  view  of  tree-decompositions  

 

 

                                                          Tree   T 

 

          

  Graph  G                  Tree-decomposition   of   G                               

       Dotted  lines  - - - -   link  copies  of  a  same  vertex.  

Width  = max. size of a  box -1. Tree-width = minimal  width of a  tree-decomposition 
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Graph  operations  and  terms  for tree-decompositions 
 

Graphs have distinguished vertices called sources, (or terminals or boundary 

vertices) pointed to by source labels  from  {a, b, c,  ..., d}. 
 

Binary operation  : Parallel  composition 

G // H   is  the  disjoint  union of  G  and  H  and sources  with  same  label  are   

fused.  

 

(If  G  and  H  are  not  

disjoint,  one   first   

makes  a  copy  of  H 

disjoint  from  G). 
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Unary operations   :     

 Forget   a   source   label  
     

    Forgeta(G) is G without any a-source: the source is no longer  

distinguished   (it  is  made  "internal"). 

       Source renaming : 

 

Rena     b(G)  exchanges  source  labels  a  and b     

    (replaces  a  by  b   if  b  is not  the label of any source) 
 

Nullary operations denote basic graphs  : edge  graphs,  isolated  vertices. 
  

 Terms over these operations define (or denote) graphs  (with or 

without sources) 
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Example : Trees  

Constructed  with  two  source  labels, r  (root)  and   n  (new root).  

Fusion   of   two   trees   

at  their  roots  :  

 

 

 

 

 

 

 

 

 

 Defining equation  : T =  T // T  ∪  extension(T)  ∪  r  

Extension of a tree by parallel composition 

with a new edge, forgetting the old root, 

making  the "new root"  as  current  root :  

e  =  r  •_________•  n 

Renn         r  (Forgetr (G // e )) 
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Series-parallel  graphs  have  tree-width  2. 

 

 

 

Proposition:    A  graph  has   tree-width  ≤  k   

if  and  only if   it  can  be  constructed   from  edges   by   using  the 

operations  // ,    Ren a    b    and  Forget a  with  ≤  k+1  labels a,b, ….   

 

Consequences :  

 - Representation  of  tree-decompositions  by  terms.  

 - Algebraic  characterization  of  tree-width. 

 - Terms  as  inputs  to  graph algorithms 
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         From  an  algebraic  expression  to  a   tree-decomposition 

Example : cd // Rena       c (ab // Forgetb(ab // bc))            (ab  denotes  an edge from  a   to  b) 
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Graph operations  for  defining  clique-width 

 

Graphs are simple, directed  or  not, and labelled  by  a , b , c, ... .    

A  vertex  labelled by  a  is  called  an   a-vertex. 
 

One  binary  operation:   disjoint  union    :   ⊕⊕⊕⊕    

    

Unary  operations:  edge  addition  denoted  by  Adda,b 

 

Adda,b (G)   is  G  augmented   

with  directed  or  undirected edges   

from every   a-vertex   to  every  b-vertex. 

The  number  of added edges  depends   

on  the  argument graph.      H = Adda,b (G) ; only 5  new edges added 
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vertex  relabellings :  

Relaba         b(G)  is  G  with  every  a-vertex   is  made  into  a  b-vertex 

 

Basic graphs   :   those  with  a  single  vertex. 

 

Definition: A  graph  G  has  clique-width  <  k  ⇔  G=G(t)  is  defined  by 

a  term   t  using    <   k    labels. 

 

 

Example : Cliques   have  

clique-width  2. 

Kn  is   defined  by  tn  where  tn+1  =    

Relabb        a(    Adda,b  (tn ⊕⊕⊕⊕ b) )  
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Tree-width  and  clique-width  

Proposition : (1) Bounded  tree-width implies  bounded  clique-width (cwd(G) < 

22twd(G)+1  for  G  directed), but   not  conversely.  

 

(2) Unlike tree-width, clique-width is  sensible  to  edge directions : Cliques 

have  clique-width  2,  tournaments  have  unbounded  clique-width. 
 

Classes  of  unbounded tree-width  and  bounded  clique-width: 

 Distance hereditary graphs (3),  

 Graphs  without  {P5 , 1⊗P4}  (5),   or  {1⊕⊕⊕⊕P4 , 1⊗P4} (16)   

as   induced   subgraphs.  
 

Classes  of unbounded clique-width : 

 Planar graphs of degree 3,   Tournaments,  Interval graphs. 

 Graphs   without   induced   P5.                (Pn = path  with  n  vertices) 
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Exercises  

1) Complete  the  proof  of   the proposition  page  14:  transform  a  

tree-decomposition  of width k into  a  term  that  defines  the  same  

graph  and uses  k+1  source labels. 

2) Prove  that  this  proposition  holds without  the source renaming 

operations. 

3) What  is  the  maximal  clique-width  of  a  SP graph ?  

4) Give upper-bounds to the tree-width  and  the  clique-width  of the 

rectangular  n x m grids. 

5) Give an upper bound  to  the clique-width of  a graph whose  

biconnected  components have  clique-width  at  most  k.  
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The parsing problem: construction of decompositions 

 

  Automata  take terms as inputs, not graphs : the parsing must be 

done before. (Graph automata do not exist in a satisfactory way). 

   

  A  difficult problem : deciding  twd(G) < k  and cwd(G) < k   

(for input (G,k) ) are  NP-complete problems. 
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 There are  FPT  approximation algorithms, taking time f(k).na, that 

output  the following for given k and  G with n vertices:     

   (i) either  the answer that  wd(G)  > k, 

   (ii) or  a  term  witnessing  that wd(G)  < g(k). 

   

  Hence from an algorithm taking as input a term  t  in  T(Fk) (Fk : the 

operations  for terms of width < k) and whose computation  time  is  

h(k).nb, we  get (by trying k = 1, 2, … until we reach Case (ii) ) an  FPT 

algorithm for given G  with computation time < m(wd(G)).nmax(a,b)  
 

   



 

22 

  Algorithms : for  tree-width :  see  Bodlaender et al., Information 

and Computation 2010 and 2011, ACM Trans. Algos 2012). 

 

  For clique-width : approximation algorithms based on articles by 

Oum, Seymour, Hlineny, Kanté, 2005-2013). 

 

 

   However, graphs  arising from concrete problems are not random.  

They may have  “natural” hierarchical decompositions from which terms 

of small  tree-width or clique-width are not hard to find. 

  Compilation : flow-graphs of structured programs have  

      tree-width < 6. 

  In linguistics  and chemistry:  graphs of  tree-width < 3. 
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Algorithmic  meta-theorems  through  automata: 

the general  scheme 

       k            ϕ    (logical  formula)   

      

             Automaton Constructor  

                  Yes  

G                   Graph Analyzer                 t              A(ϕ, k)           

                  No  

       Error : wd(G) > k  

Steps       are  done  “once  for  all”, independently   of   G   

A(ϕ,k):  finite  automaton  on  terms  t  

wd  =  tree-width  or  clique-width  or equivalent notion.  
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Automata  on  terms  that  check graph  properties 

  

 Terms  are  seen  as  labelled trees. We want to check a  property 

P(G),  for G = G(t),  t in T(F). 

 For each labelled graph G,  we  define  some piece of information  

q(G)  consisting  of  properties of  G  and of values attached  to G, with: 

   (i) inductive  behaviour of q :  for f  in  F  and  graphs  G,H: 

     q(f(G,H))  =  fq (q(G), q(H))  

   for  some  computable function  fq . 

  (ii) P(G)  can be decided from  q(G). 
 

       Recall  the 2-colorability  of  SP  graphs, page 8. 
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 Then  q(G(t/u))  is  computed  bottom-up  in  a  term  t,   for  each  

node  u. This  information  is  relative  to  the  graph  G(t/u)  defined  by  

the  subterm   t/u  of  t   issued   from  u.   

  q(G(t/u))  is  a state  of  a   finite  or  infinite  deterministic  bottom-

up automaton. 

  

 These  automata  formalize  some  form  of  dynamic programming. 

 

 

 In the sequel we only consider clique-width: the automata are simpler 

to build and they can be adapted to  bounded tree-width as bounded 

tree-width implies bounded clique-width.   

 Now an example.  
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The  deterministic  automaton  for  connectedness. 

 

The state at node u is the set of  types (sets  of  labels)  of  the 

connected  components of  the  graph G(t/u).  For  k  labels (k = bound 

on clique-width),  the set  of  states  has  size  <  2 ^ (2 ^ k).   

  Proved  lower  bound  :  2 ^ (2 ^ k/2).   

�  Impossible  to  “compile”  the   automaton (i.e., to list the transitions) . 

Example  of  a  state   :  q = { {a}, {a,b}, {b,c,d}, {b,d,f } },  (a,b,c,d,f :  labels).  

Some  transitions :               

  Adda,c :    q             { {a,b,c,d}, {b,d,f } },                    

  Relaba       b: q            { {b}, {b,c,d}, {b,d,f } }   

  Transitions   for   ⊕⊕⊕⊕ :  union  of  sets  of  types. 

Note : Also  state (p,p)  if  G(t/u) has   >  2 connected components,  all  of  type p. 
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In  a  fly-automaton : the states  and   transitions  are  computed  and 

not  tabulated. 

 

We  allow  fly-automata  with  infinitely  many  states  and with   

outputs  :   numbers, finite sets of tuples of numbers,  etc.  

 

 Example continued : For  computing  the  number  of  connected  

components,  we  use  states  such  as  : 

   q = { ({a}, 4 ), ({a,b}, 2), ( {b,c,d},2), ( {b,d,f },3) },   

   where 4, 2, 2, 3  are  the  numbers  of  connected  components  

   of  respective   types  {a}, {a,b}, {b,c,d}, {b,d,f }.  
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Fly-automaton    (FA)   

 

Definition : A = < F, Q, δ, Out >  

F :  finite or  countable (effective)  signature   (set of operations), 

Q :  finite or countable (effective)  set of states   (integers, pairs of integers, 

finite sets of integers: states can be encoded as finite words, integers in binary), 

Out : Q � D   (an effective domain, i.e., set of  finite words), computable. 

δ : computable  (bottom-up)  transition  function 

 

Nondeterministic  case :  δ   is  finitely  multi-valued. 

 



 

29 

 

This  automaton defines  a  computable  function : T(F) � D   

    (or  : T(F) � P(D)  if  it  is  not  deterministic) 

 

If  D = { True, False },  it  defines  a  decidable  property, equivalently, 

   a  decidable  subset  of  T(F). 

 

 

Deterministic  computation  of  a  nondeterministic  FA  :  

 bottom-up   computation  of  finite  sets  of  states  (classical  simulation 

  of the determinized automaton):  these states  are  the  useful  ones  of   

the  determinized  automaton;  these sets are  finite  because the transition 

function is finitely multivalued.  

 Fly-automata  are  “implicitly  determinized” and  they run deterministically 
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Computation  time  of  a  fly-automaton 

  

 F : all graph operations,   Fk : those using k  labels. 

 On  term  t ∈ T(Fk)  defining  G(t)  with  n  vertices,  if  a  fly-automaton  

  takes  time  bounded by : 

  (k + n)c  �  it is a P-FA   (a   polynomial-time  FA), 

  f(k).nc  �    it is an FPT-FA, 

  a.ng(k)  �    it is an XP-FA. 

 

 The associated  algorithm  is  polynomial-time, FPT or XP for clique-

width as parameter.          
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Proposition : Every  polynomial-time  computable  function : T(F) � D  is 

computable  by  a  fly-automaton whose computation time is polynomial. 

 

 

 

 Nothing new ! : Our  concern  is  to  have  easy  and uniform  

constructions  of  FA’s  from  logical  and  combinatorial  descriptions  of  

functions  and  properties.    

 

Theorem  : Every graph property expressible in monadic second-order 

(MS) logic can be checked by a fly-automaton whose restriction to each 

subsignature  Fk  has finitely many states.  

   Hence, it is a linear  FPT-FA.  

 

Linear : its  computation-time is bounded by  f(k).n 




