

1

Automata based graph algorithms

for logically defined problems

Bruno Courcelle

(includes current work with Irène Durand)

Bordeaux-1 University, LaBRI (CNRS laboratory)

2

References :

 B.C. & J. Engelfriet : Graph structure and monadic second-order logic,

Cambridge University Press, 2012.

BC & I. Durand : Automata for the verification of monadic second-order graph

properties, J. Applied Logic, 10 (2012) 368-409

BC & I. Durand : Computing by fly-automata beyond MSOL, Preprint, Abstract

in Proceedings of CAI 2013 (Conference on Algebraic Informatics).

3

Topics of lectures

Algorithmic meta-theorems : existence and construction of (relatively)

efficient graph algorithms from logical descriptions of the problems.

These lectures : meta-theorems based :

 on problem descriptions in (extensions of) MSO (Monadic Second-

Order) logic,

 on hierarchical decompositions of graphs

 and on automata, possibly with infinitely many states.

A kind of theory of dynamic programming.

4

Summary of 3 lectures

Part 1

First example : construction of a finite automaton for the 2-

colorability of series-parallel graphs.

Graph decompositions expressed by algebraic terms : tree-width

and clique-width, parameters for FPT and XP graph algorithms.

Automata based algorithms : the general scheme.

Difficulty : the size of automata; the example of connectedness.

Fly-automata : definitions.

5

3 types of fly-automata : P, FPT and XP.

Part 2

Monadic Second-Order logic : definitions, examples.

The main construction : from MSO formulas to automata

(accepting clique-width terms).

Existential quantifications and nondeterministic automata.

Example : colorability problems.

6

Part 3 (Recent work)

Beyond MSO logic for graph properties and functions.

A fly-automaton for regularity of graphs (not an MSO property).

Boolean and first-order constructions of properties and functions,

and their interpretations in terms of fly-automata

Monadic-second order constructions; spectra.

Implementation (in AUTOGRAPH) and tests.

 Conclusions and call for interesting problems to handle in this way

7

2-colorability of Series-Parallel (SP) graphs

Graphs with distinguished vertices marked 1 and 2, generated from

e = 1 � 2 by the operations of parallel-composition // and series-composition •

 ((e // e) • e) // (e • e)

The defining equation is S = S // S ∪ S • S ∪ { e }

8

Inductive computation : Test of 2-colorability for SP graphs

Not all series-parallel graphs are 2-colorable (see K3)

G and H 2-colorable does not imply that G//H is 2-colorable (see K3= P3//e).

One can check 2-colorability with 2 auxiliary properties :

 Same(G) = G is 2-colorable with sources of the same color,

 Diff(G) = G is 2-colorable with sources of different colors

by using the rules :

 Diff(e) = True ; Same(e) = False

Same(G//H) ⇔ Same(G) ∧ Same(H)

Diff(G//H) ⇔ Diff(G) ∧ Diff(H)

Same(G•H) ⇔ (Same(G) ∧ Same (H)) ∨ (Diff(G) ∧ Diff(H))

Diff(G•H) ⇔ (Same(G) ∧ Diff(H)) ∨ (Diff(G) ∧ Same(H))

9

Application : An algorithm based on a finite bottom-up automaton

For every term t, we can compute, by running a finite deterministic bottom-up
automaton on t, the pair of Boolean values (Same(G(t)) , Diff(G(t))), where G(t) is
the graph value of t. We get the answer whether G(t) is 2-colorable.

Example : σ at node u means that Same(G(t /u)) is true, σ that it is false,
δ that Diff (G(t /u)) is true, etc… Computation is done bottom-up with the rules of

previous page.

 Answer : the graph is not 2-colorable.

10

Algebraic view of tree-decompositions

 Tree T

 Graph G Tree-decomposition of G

 Dotted lines - - - - link copies of a same vertex.

Width = max. size of a box -1. Tree-width = minimal width of a tree-decomposition

11

Graph operations and terms for tree-decompositions

Graphs have distinguished vertices called sources, (or terminals or boundary

vertices) pointed to by source labels from {a, b, c, ..., d}.

Binary operation : Parallel composition

G // H is the disjoint union of G and H and sources with same label are

fused.

(If G and H are not

disjoint, one first

makes a copy of H

disjoint from G).

12

Unary operations :

 Forget a source label

 Forgeta(G) is G without any a-source: the source is no longer

distinguished (it is made "internal").

 Source renaming :

Rena b(G) exchanges source labels a and b

 (replaces a by b if b is not the label of any source)

Nullary operations denote basic graphs : edge graphs, isolated vertices.

 Terms over these operations define (or denote) graphs (with or

without sources)

13

Example : Trees

Constructed with two source labels, r (root) and n (new root).

Fusion of two trees

at their roots :

 Defining equation : T = T // T ∪ extension(T) ∪ r

Extension of a tree by parallel composition

with a new edge, forgetting the old root,

making the "new root" as current root :

e = r •_________• n

Renn r (Forgetr (G // e))

14

Series-parallel graphs have tree-width 2.

Proposition: A graph has tree-width ≤ k

if and only if it can be constructed from edges by using the

operations // , Ren a b and Forget a with ≤ k+1 labels a,b, ….

Consequences :

 - Representation of tree-decompositions by terms.

 - Algebraic characterization of tree-width.

 - Terms as inputs to graph algorithms

15

 From an algebraic expression to a tree-decomposition

Example : cd // Rena c (ab // Forgetb(ab // bc)) (ab denotes an edge from a to b)

16

Graph operations for defining clique-width

Graphs are simple, directed or not, and labelled by a , b , c,

A vertex labelled by a is called an a-vertex.

One binary operation: disjoint union : ⊕⊕⊕⊕

Unary operations: edge addition denoted by Adda,b

Adda,b (G) is G augmented

with directed or undirected edges

from every a-vertex to every b-vertex.

The number of added edges depends

on the argument graph. H = Adda,b (G) ; only 5 new edges added

17

vertex relabellings :

Relaba b(G) is G with every a-vertex is made into a b-vertex

Basic graphs : those with a single vertex.

Definition: A graph G has clique-width < k ⇔ G=G(t) is defined by

a term t using < k labels.

Example : Cliques have

clique-width 2.

Kn is defined by tn where tn+1 =

Relabb a(Adda,b (tn ⊕⊕⊕⊕ b))

18

Tree-width and clique-width

Proposition : (1) Bounded tree-width implies bounded clique-width (cwd(G) <

22twd(G)+1 for G directed), but not conversely.

(2) Unlike tree-width, clique-width is sensible to edge directions : Cliques

have clique-width 2, tournaments have unbounded clique-width.

Classes of unbounded tree-width and bounded clique-width:

 Distance hereditary graphs (3),

 Graphs without {P5 , 1⊗P4} (5), or {1⊕⊕⊕⊕P4 , 1⊗P4} (16)

as induced subgraphs.

Classes of unbounded clique-width :

 Planar graphs of degree 3, Tournaments, Interval graphs.

 Graphs without induced P5. (Pn = path with n vertices)

19

Exercises

1) Complete the proof of the proposition page 14: transform a

tree-decomposition of width k into a term that defines the same

graph and uses k+1 source labels.

2) Prove that this proposition holds without the source renaming

operations.

3) What is the maximal clique-width of a SP graph ?

4) Give upper-bounds to the tree-width and the clique-width of the

rectangular n x m grids.

5) Give an upper bound to the clique-width of a graph whose

biconnected components have clique-width at most k.

20

The parsing problem: construction of decompositions

 Automata take terms as inputs, not graphs : the parsing must be

done before. (Graph automata do not exist in a satisfactory way).

 A difficult problem : deciding twd(G) < k and cwd(G) < k

(for input (G,k)) are NP-complete problems.

21

 There are FPT approximation algorithms, taking time f(k).na, that

output the following for given k and G with n vertices:

 (i) either the answer that wd(G) > k,

 (ii) or a term witnessing that wd(G) < g(k).

 Hence from an algorithm taking as input a term t in T(Fk) (Fk : the

operations for terms of width < k) and whose computation time is

h(k).nb, we get (by trying k = 1, 2, … until we reach Case (ii)) an FPT

algorithm for given G with computation time < m(wd(G)).nmax(a,b)

22

 Algorithms : for tree-width : see Bodlaender et al., Information

and Computation 2010 and 2011, ACM Trans. Algos 2012).

 For clique-width : approximation algorithms based on articles by

Oum, Seymour, Hlineny, Kanté, 2005-2013).

 However, graphs arising from concrete problems are not random.

They may have “natural” hierarchical decompositions from which terms

of small tree-width or clique-width are not hard to find.

 Compilation : flow-graphs of structured programs have

 tree-width < 6.

 In linguistics and chemistry: graphs of tree-width < 3.

23

Algorithmic meta-theorems through automata:

the general scheme

 k ϕ (logical formula)

 Automaton Constructor

 Yes

G Graph Analyzer t A(ϕ, k)

 No

 Error : wd(G) > k

Steps are done “once for all”, independently of G

A(ϕ,k): finite automaton on terms t

wd = tree-width or clique-width or equivalent notion.

24

Automata on terms that check graph properties

 Terms are seen as labelled trees. We want to check a property

P(G), for G = G(t), t in T(F).

 For each labelled graph G, we define some piece of information

q(G) consisting of properties of G and of values attached to G, with:

 (i) inductive behaviour of q : for f in F and graphs G,H:

 q(f(G,H)) = fq (q(G), q(H))

 for some computable function fq .

 (ii) P(G) can be decided from q(G).

 Recall the 2-colorability of SP graphs, page 8.

25

 Then q(G(t/u)) is computed bottom-up in a term t, for each

node u. This information is relative to the graph G(t/u) defined by

the subterm t/u of t issued from u.

 q(G(t/u)) is a state of a finite or infinite deterministic bottom-

up automaton.

 These automata formalize some form of dynamic programming.

 In the sequel we only consider clique-width: the automata are simpler

to build and they can be adapted to bounded tree-width as bounded

tree-width implies bounded clique-width.

 Now an example.

26

The deterministic automaton for connectedness.

The state at node u is the set of types (sets of labels) of the

connected components of the graph G(t/u). For k labels (k = bound

on clique-width), the set of states has size < 2 ^ (2 ^ k).

 Proved lower bound : 2 ^ (2 ^ k/2).

� Impossible to “compile” the automaton (i.e., to list the transitions) .

Example of a state : q = { {a}, {a,b}, {b,c,d}, {b,d,f } }, (a,b,c,d,f : labels).

Some transitions :

 Adda,c : q { {a,b,c,d}, {b,d,f } },

 Relaba b: q { {b}, {b,c,d}, {b,d,f } }

 Transitions for ⊕⊕⊕⊕ : union of sets of types.

Note : Also state (p,p) if G(t/u) has > 2 connected components, all of type p.

27

In a fly-automaton : the states and transitions are computed and

not tabulated.

We allow fly-automata with infinitely many states and with

outputs : numbers, finite sets of tuples of numbers, etc.

 Example continued : For computing the number of connected

components, we use states such as :

 q = { ({a}, 4), ({a,b}, 2), ({b,c,d},2), ({b,d,f },3) },

 where 4, 2, 2, 3 are the numbers of connected components

 of respective types {a}, {a,b}, {b,c,d}, {b,d,f }.

28

Fly-automaton (FA)

Definition : A = < F, Q, δ, Out >

F : finite or countable (effective) signature (set of operations),

Q : finite or countable (effective) set of states (integers, pairs of integers,

finite sets of integers: states can be encoded as finite words, integers in binary),

Out : Q � D (an effective domain, i.e., set of finite words), computable.

δ : computable (bottom-up) transition function

Nondeterministic case : δ is finitely multi-valued.

29

This automaton defines a computable function : T(F) � D

 (or : T(F) � P(D) if it is not deterministic)

If D = { True, False }, it defines a decidable property, equivalently,

 a decidable subset of T(F).

Deterministic computation of a nondeterministic FA :

 bottom-up computation of finite sets of states (classical simulation

 of the determinized automaton): these states are the useful ones of

the determinized automaton; these sets are finite because the transition

function is finitely multivalued.

 Fly-automata are “implicitly determinized” and they run deterministically

30

Computation time of a fly-automaton

 F : all graph operations, Fk : those using k labels.

 On term t ∈ T(Fk) defining G(t) with n vertices, if a fly-automaton

 takes time bounded by :

 (k + n)c � it is a P-FA (a polynomial-time FA),

 f(k).nc � it is an FPT-FA,

 a.ng(k) � it is an XP-FA.

 The associated algorithm is polynomial-time, FPT or XP for clique-

width as parameter.

31

Proposition : Every polynomial-time computable function : T(F) � D is

computable by a fly-automaton whose computation time is polynomial.

 Nothing new ! : Our concern is to have easy and uniform

constructions of FA’s from logical and combinatorial descriptions of

functions and properties.

Theorem : Every graph property expressible in monadic second-order

(MS) logic can be checked by a fly-automaton whose restriction to each

subsignature Fk has finitely many states.

 Hence, it is a linear FPT-FA.

Linear : its computation-time is bounded by f(k).n

