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@ What prevents a Hamilton cycle in a tournament?
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@ No HC since no path from y to x.
@ i.e. the tournament is not strongly connected.
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3 a path from x to y and 3 a path from y to x.

@ Have seen T contains a HC = T strongly connected.

Theorem (Camion, 1959)
If T is strongly connected then T contains a HC.

@ The proof is about half a page long.

Can we get more (edge-disjoint) HCs?
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Theorem (Kihn, Lapinskas, Osthus, P., 2013+)

For every k, f(k) exists, and we can take f(k) = O(k?log? k).

This is asymptotically best possible up to the logarithmic factor.

@ Every strongly (10'2k2 log? k)-connected tournament
contains k edge-disjoint HCs.

@ Vk, f(k) > k?/4:
there exists a tournament that is

e strongly k?/4-connected,
e does not contain k edge-disjoint HCs.

Conjecture (Kuhn, Lapinskas, Osthus, P.)

We can take f(k) = ck?® for some constant c.
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Related results

Thomassen’s Conjecture with edge-connectivity?

@ Vk, 3g(k) s.t. every strongly g(k)-edge-connected
tournament contains k edge-disjoint HCs.

@ False. (Thomassen, 1982)
Kelly’s Conjecture

@ How many edge-disjoint HCs are we guaranteed in a
highly connected tournament?
@ Regular tournaments are highly connected.

Conjecture (Kelly, 1968)

Every regular tournament on n (odd) vertices has a Hamilton
decomposition, i.e. (n — 1)/2 edge-disjoint HCs.

@ Proved by Kihn, Osthus, 2013.
@ Thomassen’s Conjecture motivated by Kelly’s Conjecture.
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K vertices K vertices

o0 -0 0
k vertices

C
A : B

2 2
K- -connected K- -connected

All edges between A, B, C are from left to right, except for a
perfect matching from B to A.

@ Ty is strongly k2 /4-connected

@ T, does not contain k edge-disjoint HCs: k edge-disjoint
HCs require > k?/2 backwards edges (because of C)
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@ Will give a sketch of why £(2) < 103

@ i.e. will sketch why every strongly 10'3-connected
tournament contains 2 edge-disjoint HCs.

@ Use essentially the same ideas for the full result.
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Sketch Proof

Are there any useful properties of all tournaments?

Theorem (Redei, 1934)

Every tournament has a Hamilton path, i.e. a consistently
oriented path through every vertex.

Proposition

Let T be any tournament and let D C T s.t. A(D) < t. Then in
T — D there exist paths Qy, ..., Q.1 S.L.

@ Qy,..., Q1 are vertex-disjoint,
o V(Q1) U+ U V(Quq) = V(T).

The case t = 0 is Redei’'s Theorem.
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Edge-disjoint path covers

Given tournament T
@ take P = Hamilton path, so A(P) =2
@ Proposition — 3 @y, @, Q5 s.t.

° V(Q1) U V(Qg) [ V(Qg) = V(T)
e Qy, (, Q3 edge-disjoint from P

Q4
Qo
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We can find a linking structure L C T s.t.
o |V(L)] <|V(T)|/100
@ A(L)<4
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Key idea of the proof - linking structure

Let T be a strongly 10'3-connected tournament

We can find a linking structure L C T s.t.
o |V(L)] <|V(T)|/100
@ A(L)<4
and where L has the following key property:

Given any 5 vertex-disjoint paths Py, ..., Ps outside of V(L)

a each path can be extended into V(L) with a single
(suitable) edge

b these extended paths can be connected into a cycle C
using edges of L

¢ the cycle C uses all vertices of L
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Key idea of the proof - linking structure

If Py, P2, P3 cover all of V(T)\ V(L) then we obtain a HC.
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Key idea of the proof - linking structure

The linking structure L consists of

a 5in-dominating sets A1, ..., As and 5 out-dominating sets
By, ..., Bs (with a Hamilton path in each set)
Al o o5 e B .
A2 o > e [ G S 82
Ajje > o o5 eB
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Key idea of the proof - linking structure

Given 3 paths outside L ...

@ can extend paths into L to form cycle
@ but the cycle contain all vertices of L.
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Key idea of the proof - linking structure

L consists of dominating sets linked by paths and ...

¢ adistinct on P for each vertex in our
dominating sets

Ao (\,\\)’/\2/\/&% B> L
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Key idea of the proof - linking structure

Given 3 paths outside L ...
@ can extend paths into L to form cycle C

@ and use to absorb any
into C.
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Linking structure and connectivity

This completes the proof sketch except ... where do we use
connectivity?

(\,\\}\)P,*/‘w\o
1

¢ e gy e, — ® L

B — P3
m‘/\é\/*w

@ Use strong connectivity to construct P;.
@ In fact use linkedness to construct P;.



Connectivity and linkedness

Menger’s Theorem (for tournaments)

X{ o] e Vi

Xo & e Y2

X3 e— e )3
X Y

If T is strongly r-connected with X, Y C V(T) of size r, then can
find r vertex-disjoint X-Y-paths.



Connectivity and linkedness

Linkedness (for tournaments)

X1 0//\/\\0 2
Xo 0//\}/\\0 Y2
e T N, e

X Y
T is r-linked if given any r pairs (x1, ¥1), ..., (X, ¥r), there exist
vertex-disjoint paths connecting x; to y; Vi.
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Theorem (Thomassen, 1984)

If a tournament is strongly ck!-connected, then it is k-linked.

Theorem (Kihn, Lapinskas, Osthus, P., 2013+)

If a tournament is strongly ck log k-connected, then it is
k-linked.

Short proof based on the idea of a sorting network.

Conjecture (Kihn, Lapinskas, Osthus, P.)
If a tournament is strongly ck-connected, then it is k-linked.
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Connectivity, linkedness, and sorting networks

Given T strongly ck log k-connected, find vertex-disjoint paths
from x; to y; (example: k = 3)

Z4

X1 ® Vi
22

T Xo ® )2
Z3

X3 e V3

@ The structure S ‘simulates’ a sorting network
@ Crossing edges correspond to comparators

@ Jsorting network with ck log k comparators (Ajtai, Komlds,
Szemerédi, 1983) — can find small S
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Connectivity and Linkedness

Conjecture (Kihn, Lapinskas, Osthus, P.)
If a tournament is strongly ck-connected, then it is k-linked.

Evidence for:

@ 22k-connected graphs are k linked (Bollobas, Thomason,
1996).

@ 10k-connected graphs are k linked (Thomas, Wollan,
2005)

Evidence against:

@ Vk 3 strongly k-connected digraph that is not 2-linked
(Thomassen, 1991).

If the conjecture holds then we can take f(k) = O(k?log k)
rather than f(k) = O(k? log? k).



