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More edge-disjoint HCs

We need a stronger condition to force more edge-disjoint HCs.

A tournament T is strongly r -connected if deleting any r − 1
vertices keeps T strongly connected.

Conjecture (Thomassen, 1982)

∀k, ∃f (k) s.t. if T is a strongly f (k)-connected tournament, then
T contains k edge-disjoint HCs.

Know f (1) = 1. Not known whether f (2) exists.

Theorem (Kühn, Lapinskas, Osthus, P., 2013+)

For every k, f (k) exists, and we can take f (k) = O(k2 log2 k).

This is asymptotically best possible up to the logarithmic factor.
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∀k , ∃g(k) s.t. every strongly g(k)-edge-connected
tournament contains k edge-disjoint HCs.
False. (Thomassen, 1982)
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How many edge-disjoint HCs are we guaranteed in a
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Regular tournaments are highly connected.
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Every regular tournament on n (odd) vertices has a Hamilton
decomposition, i.e. (n − 1)/2 edge-disjoint HCs.

Proved by Kühn, Osthus, 2013.
Thomassen’s Conjecture motivated by Kelly’s Conjecture.
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Sketch Proof

Are there any useful properties of all tournaments?

Theorem (Redei, 1934)
Every tournament has a Hamilton path, i.e. a consistently
oriented path through every vertex.

Proposition

Let T be any tournament and let D ⊆ T s.t. ∆(D) ≤ t . Then in
T − D there exist paths Q1, . . . ,Qt+1 s.t.

Q1, . . . ,Qt+1 are vertex-disjoint,
V (Q1) ∪ · · · ∪ V (Qt+1) = V (T ).

The case t = 0 is Redei’s Theorem.
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Key idea of the proof - linking structure

Let T be a strongly 1013-connected tournament

We can find a linking structure L ⊆ T s.t.
|V (L)| ≤ |V (T )|/100
∆(L) ≤ 4

and where L has the following key property:

Given any 5 vertex-disjoint paths P1, . . . ,P5 outside of V (L)

a each path can be extended into V (L) with a single
(suitable) edge

b these extended paths can be connected into a cycle C
using edges of L

c the cycle C uses all vertices of L
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The linking structure L consists of

a 5 in-dominating sets A1, . . . ,A5 and 5 out-dominating sets
B1, . . . ,B5

(with a Hamilton path in each set)
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Key idea of the proof - linking structure

Given 3 paths outside L ...

can extend paths into L to form cycle
but the cycle does not contain all vertices of L.
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Covering Edges

Method for absorbing vertices into cycles

Let x ∈ V (T ) and yz ∈ E(T ).
yz is a covering edge for x if yx , xz ∈ E(T ).
For C a cycle, if x 6∈ V (C) and yz ∈ E(C), then can absorb
x into C.
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Key idea of the proof - linking structure
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c a distinct covering edge on P∗
3 for each vertex in our

dominating sets
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Key idea of the proof - linking structure

Given 3 paths outside L ...

can extend paths into L to form cycle C
and use covering edges to absorb any missing vertices
into C.
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Linking structure and connectivity

This completes the proof sketch except ... where do we use
connectivity?
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Connectivity and linkedness

Menger’s Theorem (for tournaments)

X Y

x1

x2

x3

y1

y2

y3

If T is strongly r -connected with X ,Y ⊆ V (T ) of size r , then can
find r vertex-disjoint X -Y -paths.



Connectivity and linkedness

Linkedness (for tournaments)

X Y

x1

x2

x3

y1

y2

y3

T is r -linked if given any r pairs (x1, y1), . . . , (xr , yr ), there exist
vertex-disjoint paths connecting xi to yi ∀i .



Connectivity and Linkedness

Theorem (Thomassen, 1984)
If a tournament is strongly ck !-connected, then it is k-linked.

Theorem (Kühn, Lapinskas, Osthus, P., 2013+)
If a tournament is strongly ck log k-connected, then it is
k-linked.

Short proof based on the idea of a sorting network.

Conjecture (Kühn, Lapinskas, Osthus, P.)
If a tournament is strongly ck-connected, then it is k-linked.
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Connectivity, linkedness, and sorting networks

Given T strongly ck log k -connected, find vertex-disjoint paths
from xi to yi (example: k = 3)

T

x1

x2

x3

y1

y2

y3

S

z1

z2

z3

y1

y2

y3

z1

z2

z3

y1

y2

y3

z1

z2

z3

The structure S ‘simulates’ a sorting network
Crossing edges correspond to comparators
∃ sorting network with ck log k comparators (Ajtai, Komlós,
Szemerédi, 1983) =⇒ can find small S
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Connectivity and Linkedness

Conjecture (Kühn, Lapinskas, Osthus, P.)
If a tournament is strongly ck-connected, then it is k-linked.

Evidence for:
22k -connected graphs are k linked (Bollobás, Thomason,
1996).
10k -connected graphs are k linked (Thomas, Wollan,
2005)

Evidence against:
∀k ∃ strongly k -connected digraph that is not 2-linked
(Thomassen, 1991).

If the conjecture holds then we can take f (k) = O(k2 log k)
rather than f (k) = O(k2 log2 k).
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