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Applications to model theory

The goal of our second lecture is to apply the machinery developed for
general topological groups to the special case of non-Archimedean Polish
groups.

Here the non-Archimedean Polish groups are simply those isomorphic to
closed subgroups of S∞ or equivalently to automorphism groups

Aut(M)

of countable first-order structures M.

The topology on Aut(M) is always that obtained by declaring pointwise
stabilisers

Va = {g ∈ Aut(M)
∣∣ g(a) = a}

of finite tuples a in M to be open.
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Concepts from yesterday

Given an automorphism group Aut(M), we wish to find a canonical
generating set S ⊆ Aut(M) and then to compute the corresponding word
metric ρS on Aut(M).

Canonical here means that S should be relatively (OB) in Aut(M), i.e.,
that, for every identity neighbourhood V 3 1, there is a finite set F and a
k > 1 with

S ⊆ (FV )k .

Provided this holds, then, up to quasi-isometry,

ρS is independent of the choice of S

so defines an isomorphic invariant of the group, the quasi-isometry type.
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To ensure a proper translation between properties of the structure M and
its automorphism group, we shall work under the relatively mild
assumption that M is ω-homogeneous.

That is, for all finite tuples a and b in M,

O(a) = O(b) ⇔ tpM(a) = tpM(b),

where O(a) denotes the orbit of a under the action of Aut(M) on M|a|.

Some of the tasks avaiting us are then

1 to develop criteria in terms of M for when Aut(M) is locally (OB) or
(OB) generated,

2 similarly, provide realisations of and tools for analysing the large scale
geometry of Aut(M),

3 show how the geometry of Aut(M) interacts with the algebraic and
dynamical structure of the group and with the structure M.
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Orbital graphs and quasi-isometry types

A basic organisational tool will be that of orbital graphs functioning as a
replacement for the Cayley graphs of finitely generated groups.

So assume M is a countable ω-homogeneous structure, a is a finite tuple
in M and S is a finite collection of parameter-free complete types on M.

Without loss of generality, we may assume that S consists of types of the
form p = tpM(b, c), where

tpM(a) = tpM(b) = tpM(c).

We define a graph Xa,S on the set O(a) of realisations of tpM(a) in M by
connecting distinct b, c ∈ O(a) by an edge if and only if

tpM(b, c) ∈ S or tpM(c , b) ∈ S.
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Observe that, since
tpM(gb, gc) = tpM(b, c)

for all tuples b, c and automorphisms g ∈ Aut(M), the diagonal action of
Aut(M) on O(a) is an action by automorphisms on the graph Xa,S .

Moreover, since O(a) is a single orbit, the action

Aut(M) y Xa,S

is vertex transitive.

Also, we let ρa,S be the corresponding path-metric on Xa,S .

By stipulation, we have that ρa,S(b, c) =∞ if and only if b and c lie in
distinct connected components of ρa,S .

We thus have a transitive isometric action Aut(M) y
(
Xa,S , ρa,S

)
.
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Theorem

Let M be a countable ω-homogeneous structure.
Then Aut(M) is (OB) generated if and only if there is a finite tuple a in
M satisfying the following two requirements.

1 There is a finite set R of parameter-free types so that Xa,R is
connected, and

2 for every tuple b extending a, there is a finite set S of parameter-free
types so that

{c ∈ O(b)
∣∣ c extends a}

has finite diameter in the graph Xb,S .

Condition (2), which in itself is equivalent to the pointwise stabiliser Va

being relatively (OB) in Aut(M), may require some amount of work to
verify.
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While the previous result characterises when Aut(M) is locally (OB) or
even (OB) generated, the next result computes the actual quasi-isometry
type.

Theorem (Milnor–Schwarz Theorem)

For a and R as above, the map

g ∈ Aut(M) 7→ g · a ∈ Xa,R

is a quasi-isometry between Aut(M) and Xa,R.
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As an application of this, let T denote the ℵ0-regular unrooted tree.

Since T is vertex transitive, if we let a be any vertex, then O(a) = VertT.

Moreover, one may then verify that Condition (2) is satisfied.

Secondly, let R = {E} consist of the single type which is the edge relation
E . Then, since Xa,R = T is connected, Condition (1) is also verified.

By the Milnor–Švarc Theorem, we see that the map

g ∈ Aut(T) 7→ g(a) ∈ T

is a quasi-isometry between Aut(T) and Xa,R = T.
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One outcome of the preceding calculation is a rigidity phenomenon similar
to many reconstruction results.

Reconstruction results common to this area often states that the structure
M can be fully recovered or be recovered up to bi-interpretability from
Aut(M) as a topological or even abstract group.

However, the initial data given, namely Aut(M) as an abstract group, is
an incredibly detailed piece of information.

Instead the result here says that T is recoverable up to quasi-isometry
from much coarser topological-algebraic information about Aut(T),
namely the quasi-isometry type of a word metric ρS with respect to some
relatively (OB) generating set S .
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Orbital independence relations

The verification that Aut(M) is locally (OB) often relies on identifying an
appropriate independence relation |̂ A between finite subsets of M relative
to a fixed finite subset A ⊆M or tuple a in M.

Definition

Let M be a countable structure and A ⊆M a finite subset. An orbital
A-independence relation on M is a binary relation |̂ A defined between
finite subsets of M so that, for all finite B,C ,D ⊆M,

(i) (symmetry) B |̂ A C ⇔ C |̂ A B,

(ii) (monotonicity) B |̂ A C & D ⊆ C ⇒ B |̂ AD,

(iii) (existence) there is f ∈ VA so that fB |̂ A C ,

(iv) (stationarity) if B |̂ A C and g ∈ VA satisfies gB |̂ A C , then
g ∈ VCVB , i.e., there is some f ∈ VC agreeing pointwise with g on B.
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When restricting our attention to ω-homogeneous structures M,
Conditions (iii) and (iv) of the definition of orbital A-independence
relations can be reformulated as follows.

(iii) For all a and B, there is b with

tpM(b/A) = tpM(a/A) and b |̂
A
B.

(iv) For all a, b and B,

a |̂
A
B & b |̂

A
B & tpM(a/A) = tpM(b/A)

⇒ tpM(a/B) = tpM(b/B).

Independence notions similar the those above have recently been studied
by K. Tent and M. Ziegler in connection with questions of simplicity of
automorphism groups.
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Theorem

Suppose M is a countable structure, A ⊆M a finite subset and |̂ A an
orbital A-independence relation. Then the pointwise stabiliser subgroup
VA has property (OB) (relative to itself).

In fact, for every identity neighbourhood W ⊆ VA, there is f ∈ VA so that

VA = W ·f ·W ·f −1 ·W .

Thus, if A = ∅, the automorphism group Aut(M) = V∅ is quasi-isometric
to a point and, if A 6= ∅, Aut(M) is locally (OB).

Christian Rosendal Geometry of automorphism groups Durham, July 2015 16 / 25



Theorem

Suppose M is a countable structure, A ⊆M a finite subset and |̂ A an
orbital A-independence relation. Then the pointwise stabiliser subgroup
VA has property (OB) (relative to itself).
In fact, for every identity neighbourhood W ⊆ VA, there is f ∈ VA so that

VA = W ·f ·W ·f −1 ·W .

Thus, if A = ∅, the automorphism group Aut(M) = V∅ is quasi-isometric
to a point and, if A 6= ∅, Aut(M) is locally (OB).

Christian Rosendal Geometry of automorphism groups Durham, July 2015 16 / 25



Theorem

Suppose M is a countable structure, A ⊆M a finite subset and |̂ A an
orbital A-independence relation. Then the pointwise stabiliser subgroup
VA has property (OB) (relative to itself).
In fact, for every identity neighbourhood W ⊆ VA, there is f ∈ VA so that

VA = W ·f ·W ·f −1 ·W .

Thus, if A = ∅, the automorphism group Aut(M) = V∅ is quasi-isometric
to a point

and, if A 6= ∅, Aut(M) is locally (OB).

Christian Rosendal Geometry of automorphism groups Durham, July 2015 16 / 25



Theorem

Suppose M is a countable structure, A ⊆M a finite subset and |̂ A an
orbital A-independence relation. Then the pointwise stabiliser subgroup
VA has property (OB) (relative to itself).
In fact, for every identity neighbourhood W ⊆ VA, there is f ∈ VA so that

VA = W ·f ·W ·f −1 ·W .

Thus, if A = ∅, the automorphism group Aut(M) = V∅ is quasi-isometric
to a point and, if A 6= ∅, Aut(M) is locally (OB).

Christian Rosendal Geometry of automorphism groups Durham, July 2015 16 / 25



Functorial amalgamations

Among other examples, the independence relations studied by Tent and
Ziegler are shown to arrise from canonical amalgamation schemes in
Fräıssé classes.

For our purposes, we require a stronger scheme.

Definition

Given an Fräıssé class K with limit K and a finite substructure A ⊆ K, we
say that K satisfies functorial amalgamation over A if there is a way of
choosing the amalgamations over A in the class K to be functorial with
respect to embeddings.
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The rational Urysohn metric space

Consider the Fräıssé class MQ of finite metric spaces with rational
distances whose limit is the rational Urysohn metric space QU.

Lemma

MQ admits a functorial amalgamation over a single point a.

That is, let B and C be two finite metric spaces with only a single point a
in common.

The free amalgam of B and C over a is the union B ∪ C with

d(b, c) : = d(b, a) + d(a, c)

for all b ∈ B \ {a} and c ∈ C \ {a}.

An important fact here is that, unless we bound the diameters of the
metric spaces in question, there is no functorial amalgamation of the
empty set.
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Given a Fräıssé class K with limit K and a functorial amalgamation
scheme over some finite A ⊆ K, we obtain an orbital A-independence
relation |̂ A on K by setting

B |̂
A
C ⇔ B & C are functorially amalgamated over A

Theorem

Suppose K is a Fräıssé class with limit K and assume that A is a finite
substructure of K so that K admits a functorial amalgamation over A.
Then VA has property (OB) and thus Aut(K) is locally (OB).
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Returning to QU, this implies that the stabiliser Va of any point a ∈ QU
has property (OB).

To show that the automorphism group Isom(QU) is (OB) generated and
to compute the quasi-isometry type, we seek a finite set R of
parameter-free complete types, so that the graph

Xa,R

with vertex set QU = O(a) is connected.

For this, set R = {d(x , y) = 1} and note that any two points x , y ∈ QU
can be connected by a path in Xa,R of length

at most dd(x , y)e+ 1, but no less than d(x , y).

Therefore, Xa,R is quasi-isometric to QU and we conclude that the map

g ∈ Isom(QU) 7→ g(a) ∈ QU

is a quasi-isometry.
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Groups with trivial geometry

In many familiar cases, though we are able to identify the large scale
geometry of a topological group, it turns out that this is trivial.

Theorem (P. Cameron)

Let M be an ℵ0-categorical countable structure.
Then Aut(M) is quasi-isometric to a point.

Similarly, using forking calculus and the associated independence relation,
we may show the same conclusion for saturated ω-stable structures.

Theorem

Let M be a saturated countable model of an ω-stable theory.
Then Aut(M) is quasi-isometric to a point.
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Tame geometry from model theoretical considerations

Recall that a structure M is atomic if every complete type is isolated.

It follows that, if R is a finite collection of types, then, for every n, the
relation on b and c ,

ρa,R(b, c) 6 n,

is definable in M.

Definition (J.-L. Krivine and B. Maurey)

A metric d on a set X is said to be stable if, for all d-bounded sequences
(xn) and (ym) in X , we have

lim
n→∞

lim
m→∞

d(xn, ym) = lim
m→∞

lim
n→∞

d(xn, ym),

whenever both limits exist.
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Definition

Let T be a complete theory of a countable language L and let κ be an
infinite cardinal number.

We say that T is κ-stable if, for all models M |= T and subsets
B ⊆M with |B| 6 κ, we have |SM

n (B)| 6 κ.

Also, T is stable if it is κ-stable for some infinite cardinal κ.

The stability of the underlying structure is similarly reflected in the large
scale geometry.

Theorem

Suppose M is a countable atomic model of a stable theory T .

1 If Aut(M) is locally (OB), it admits a coarsely proper stable metric,

2 if Aut(M) is (OB) generated, it admits a maximal stable metric.

Christian Rosendal Geometry of automorphism groups Durham, July 2015 24 / 25



Definition

Let T be a complete theory of a countable language L and let κ be an
infinite cardinal number.

We say that T is κ-stable if, for all models M |= T and subsets
B ⊆M with |B| 6 κ, we have |SM

n (B)| 6 κ.

Also, T is stable if it is κ-stable for some infinite cardinal κ.

The stability of the underlying structure is similarly reflected in the large
scale geometry.

Theorem

Suppose M is a countable atomic model of a stable theory T .

1 If Aut(M) is locally (OB), it admits a coarsely proper stable metric,

2 if Aut(M) is (OB) generated, it admits a maximal stable metric.

Christian Rosendal Geometry of automorphism groups Durham, July 2015 24 / 25



Definition

Let T be a complete theory of a countable language L and let κ be an
infinite cardinal number.

We say that T is κ-stable if, for all models M |= T and subsets
B ⊆M with |B| 6 κ, we have |SM

n (B)| 6 κ.

Also, T is stable if it is κ-stable for some infinite cardinal κ.

The stability of the underlying structure is similarly reflected in the large
scale geometry.

Theorem

Suppose M is a countable atomic model of a stable theory T .

1 If Aut(M) is locally (OB), it admits a coarsely proper stable metric,

2 if Aut(M) is (OB) generated, it admits a maximal stable metric.

Christian Rosendal Geometry of automorphism groups Durham, July 2015 24 / 25



Definition

Let T be a complete theory of a countable language L and let κ be an
infinite cardinal number.

We say that T is κ-stable if, for all models M |= T and subsets
B ⊆M with |B| 6 κ, we have |SM

n (B)| 6 κ.

Also, T is stable if it is κ-stable for some infinite cardinal κ.

The stability of the underlying structure is similarly reflected in the large
scale geometry.

Theorem

Suppose M is a countable atomic model of a stable theory T .

1 If Aut(M) is locally (OB), it admits a coarsely proper stable metric,

2 if Aut(M) is (OB) generated, it admits a maximal stable metric.

Christian Rosendal Geometry of automorphism groups Durham, July 2015 24 / 25



Definition

Let T be a complete theory of a countable language L and let κ be an
infinite cardinal number.

We say that T is κ-stable if, for all models M |= T and subsets
B ⊆M with |B| 6 κ, we have |SM

n (B)| 6 κ.

Also, T is stable if it is κ-stable for some infinite cardinal κ.

The stability of the underlying structure is similarly reflected in the large
scale geometry.

Theorem

Suppose M is a countable atomic model of a stable theory T .

1 If Aut(M) is locally (OB), it admits a coarsely proper stable metric,

2 if Aut(M) is (OB) generated, it admits a maximal stable metric.

Christian Rosendal Geometry of automorphism groups Durham, July 2015 24 / 25



Definition

Let T be a complete theory of a countable language L and let κ be an
infinite cardinal number.

We say that T is κ-stable if, for all models M |= T and subsets
B ⊆M with |B| 6 κ, we have |SM

n (B)| 6 κ.

Also, T is stable if it is κ-stable for some infinite cardinal κ.

The stability of the underlying structure is similarly reflected in the large
scale geometry.

Theorem

Suppose M is a countable atomic model of a stable theory T .

1 If Aut(M) is locally (OB), it admits a coarsely proper stable metric,

2 if Aut(M) is (OB) generated, it admits a maximal stable metric.

Christian Rosendal Geometry of automorphism groups Durham, July 2015 24 / 25



Definition

Let T be a complete theory of a countable language L and let κ be an
infinite cardinal number.

We say that T is κ-stable if, for all models M |= T and subsets
B ⊆M with |B| 6 κ, we have |SM

n (B)| 6 κ.

Also, T is stable if it is κ-stable for some infinite cardinal κ.

The stability of the underlying structure is similarly reflected in the large
scale geometry.

Theorem

Suppose M is a countable atomic model of a stable theory T .

1 If Aut(M) is locally (OB), it admits a coarsely proper stable metric,

2 if Aut(M) is (OB) generated, it admits a maximal stable metric.

Christian Rosendal Geometry of automorphism groups Durham, July 2015 24 / 25



Noting the independence relations present in models of stable theories, one
could be hopeful that the assumption that Aut(M) be locally (OB) would
be superfluous.

However, this is not so.

Theorem (J. Zielinski)

There is a countable atomic model M of an ω-stable theory so that
Aut(M) is not locally (OB).
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