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Sherlock Holmes: A Game of Shadows (2011)
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It's so overt, it's covert — a more brutal version
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Green's relations

The most fundamental tool in studying the structure of
semigroups. (Named after J. Alexander “Sandy” Green
(1926-2014).)

aZb <= aS'=bS'! <— (Ax,ycSYax=b&by=a
a¥lb < Sla=Sb < ([Hu,veSY)uva=b&vb=a2
D=RRoL =LR

H =RHNYL

a b SaS'=5bS' & (3x,y,u,v e S)uax=b&vby =a
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The eggbox picture of a Y-class

Groups (overt): J¢-classes shaded red (these are all isomorphic)

maximal subgroups of a semigroup = #-classes containing idempotents
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Regularity

a €S is regular if

a= axa

for some x € §S.

Fact

For any Z-class D, either all elements of D are regular or none of
them.

Hence, a is regular <= a ¥ e for and idempotent e.
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A regular Z-class
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A regular eggbox
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A non-regular Z-class
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A non-regular eggbox

PGTS, Durham, July 28, 2015 7 Igor Dolinka: Groups — overt & covert



Schitzenberger groups — groups the never were

There is a ‘hidden’ / covert group capturing the structure of a
(non-regular) Z-class D, called the Schiitzenberger group of D.

Namely, let H be an J#Z-class within a Z-class D, and consider
Th={teSl: HtCH}.

Basic results of semigroup theory (Green’s Lemma) show that each
pt - H— H (t € Ty) defined by

hpt = ht
is a permutation of H.

Hence, Sy = {p:: t € Ty} is a permutation group on H. This is
the (right) Schiitzenberger group of H.
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Schitzenberger groups — groups the never were

Fact

If both Hq, Hy belong to D, then Sy, = Spy,. Hence the
Schiitzenberger group is really an invariant of a Z-class of a
semigroup.

Fact
If H is a group (so that D is regular), then Sy = H.
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A classical example: Tx

Fact
In Tx we have:

(1) f Zg <= ker(f)=

Q) fLg = m(f)= (g),
(3) f 2 g <= rank(f)=|im(f)| = |im(g)| = rank(g);
(4) 7 =92,

(5) if e = €? and rank(e) = k, then He = S;

(6) Tx is regular.
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End(A)

Let A be a first-order structure. Since End(A) < Ta, if
f,g € End(A) are Z-/.Z-related in End(A) they are certainly
H-] L -related in Ta. Hence,

(i) fZg = ker(f)=ker(g);
(i) f L g = im(f)=im(g).

Remark

We must be careful with the notion of an ‘image’ of an
endomorphism if our language contains relational symbols, because
besides im(f) we also have (Af), the induced substructure of A on
Af.

Lemma
f92g = (Af) = (Ag).
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Regular elements in End(A)

Proposition (Magill, Subbiah, 1974)
If f € End(A) is regular, then im(f) = (Af).

Lemma (Magill, Subbiah, 1974)

Let f,g € End(A) be regular. Then:

(i) fZ g <= ker(f)=ker(g),

(i) f Lg < im(f)=im(g),

(i) f 2 g <= im(f)=im(g);

(iv) if e is idempotent, then He = Aut(im(e)) = Aut(im(f)) for
any f € D..
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Schiitzenberger groups in End(A)

Proposition
Let f € End(A) and H = Hs.
(i) If t € Ty, then t|ar is an automorphism of both (Af) and
im(f);
(ii) the mapping ¢ : pt — t|ar is an embedding of Sy into
Aut((Af)) N Aut(im(f)).
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So, what the heck are the images of (idempotent)
endomorphisms of Fraissé limits?

Call a Fraissé class C neat if it consists of finite structures, and for
each n > 1 the number of isomorphism types of n-generated
structures in C is finite.

Examples:
» relational structures

» Fraissé classes of algebras contained in locally finite varieties

Theorem (ID, 2012)

Let C be a neat Fraissé class enjoying the strict AP and the
IPHEP. Then there exists and (idempotent) endomorphism f of F,
the Fraissé limit of C, such that A > im(f) if and only if A is
algebraically closed in C.
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Algebraically clo... wait, what?

An L-formula ®(x) is primitive if it is of the form

Gy) A\ Vilx.y)

i<k

where each W; is a literal: an atomic formula or its negation. No
negation — primitive positive formula.

Let K be a class of L-structures. An L-structure A is existentially

(algebraically) closed (in K) if for any primitive (positive) formula
®(x) and any tuple a from A we have already A = ®(a) whenever
there is an extension A" € K of A such that A’ = ®(a).
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Graphs

Countable e.c. graphs: R (Alice’s Restaurant property)
Countable a.c. graphs: any finite set of vertices has a common
neighbour (= infinitely many of them)

In the rest of this talk we will be concerned with simple graphs and
study End(R). However, all these results can be adapted for

> the random digraph,
> the random bipartite graph,
> the random (non-strict) poset,

> ...

Proposition

A countable graph (V, E) is a.c. if and only if there exists E' C E
such that (V,E') = R (that is, it is e.c.). Consequently, for any
a.c. graph I there is a bijective homomorphism R — T.
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Frucht's Theorem (1939)

Any finite group is = Aut(I") for a finite graph T.

de Groot / Sabidussi (1959/60) = automorphism groups of
countable graphs include all countable groups.

Name of the game: Strengthen this for countable a.c. graphs.
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The team

-

Shooting Guard:
Robert “Bob” Gray

Point Guard:
Martyn Quick

Center:
Jillian “Jay” McPhee

Forward: Power Forward:
“Baby” James Mitchell Dr. D
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Happy 30th birthday, Jay !l (July 28)

new 20s
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Automorphism groups of countable a.c. graphs

Theorem
Let T be a countable graph. Then there exist 2X° pairwise

non-isomorphic countable a.c. graphs whose automorphism group
is = Aut(l).

Proof. For a (simple) graph A, let Af denote its complement.
» Aut(AT) = Aut(A).
» A any graph, A infinite locally finite graph = (AW A)f is a.c.
» The central idea — consider |.f. graphs Ls for S C N'\ {0, 1}:

v, U
L-fz,lo.s“.‘.} 2 T 4 f'":s
—L—J
|
o - & o —— =
Z, e/ gz 15 le {5‘
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Automorphism groups of countable a.c. graphs

Proof (cont'd).
» Properties of Ls (S, T C N\ {0,1}):
» Each Ls is rigid (Aut(Ls) =1).
> sl < S=T.

» If Ls is isomorphic to no connected component of ' (and this
excludes only countably many choices of S), then

Aut(Tw Ls)" = Aut(l w Ls) = Aut(I) x Aut(Ls) = Aut(T).

» 51 # S, yield non-isomorphic a.c. graphs.
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Images of idempotent endomorphisms

Theorem (Bonato, Deli¢, 2000; ID, 2012)

Let I be a countable graph. There exists an idempotent
f € End(R) such that im(f) = T if and only ifT is a.c.

Theorem

If T is a countable a.c. graph, then there exists an (induced)
subgraph " 22T of R such that there are 2%° jdempotent
endomorphisms f of R such that im(f) =1T".
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Images of idempotent endomorphisms

Proof.

At each stage of extending a ho-
momorphism ¢ : I — Rr to an
endomorphism q3 of R = Ry, in-
stead of mapping vs — vsg, if
im(¢) is a.c. one can find a com-
mon neighbour w for S¢ within

im(6).

In this way, we achieve

im(3) = im(¢).

In fact, at each stage there are in-
finitely many choices for w, which
results in Ry° = 2% extensions.
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The number of regular Z-classes with a given group

J-class

Theorem

(i) Let T be a countable graph. Then there exist 2% distinct
regular 9-classes of End(R) whose group ¢ -classes are
= Aut(IN).

(i) Every regular 9-class contains 2% distinct group ¢ -classes.

Corollary
End(R) has 2%° regular 9-classes. (You know, the ones with
eggs...)

PGTS, Durham, July 28, 2015 24 Igor Dolinka: Groups — overt & covert



The size of a regular eggbox

Theorem
Every regular 9-class of End(R) contains 2% many %- and
Z~classes.

Proof. Let e be an idempotent endomorphism of R, and let
N=im(e) (a.c.).
Z-classes: Assume R is constructed as Ry.

We already know that the identity mapping on [ can be extended
to f € End(R) in 2% ways such that im(f) = im(e).

All such f are idempotents, and f & e, moreover, f £ e.

However, all these idempotents are not Z-related.
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The size of a regular eggbox

Z-classes: Key idea — construct the graph I'* from I by replacing
each edge by the following gadget:

’-1

Construct R around I'*, so that R = Rrs.

I a.c. = I a.c. Hence, the identity map on ' can be extended
to an endomorphism g : R — %,

PGTS, Durham, July 28, 2015 26 Igor Dolinka: Groups — overt & covert



The size of a regular eggbox

For each binary sequence b = (b;);en define a map v on ' by
Vi rthp = Vi b,

for all i € N and r € {0,1}. Easy: ¢p € End(I*) and im(vp) =T
is induced by {vjp, : i € N}.

g¥p € End(R) are idempotents, im(gip) = I = all these
idempotents are Z-related to e.

Different images = they are not .Z-related.
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Non-regular eggboxes

Theorem

Let ' 22 R be a countable a.c. graph. Then there exists a
non-regular endomorphism of R such that im(f) = T and D¢
contains 280 many Z- and £-classes.

The proof is a variation of the idea of I'* and binary sequences.
Theorem
There are 280 non-regular 9-classes in End(R).

Open Problem
Are there any non-regular eggboxes of some other size?
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Schiitzenberger groups in End(R)

Let ' = (Wo, Eo) be a countable a.c. graph. Then, as we already
know, there is a subset F C Eg such that (Vo, F) = R. Now build
Rr = R around I, and let f : Rr — (Vp, F) be an isomorphism.
Then f is an injective endomorphism of R; if F # Eg then f is
non-regular.

Proposition

Let f be an injective endomorphism of R = (V, E) as described
above, with Vf = V. Then

Sk, = Aut({ Vo)) N Aut(im(f))
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Schiitzenberger groups in End(R)

So, to show a universality result for Schiitzenberger groups in
End(R), one needs to extend the Frucht-de Groot-Sabidussi
Theorem to countable a.c. graphs with 2-coloured edges (blue and
red, say) where the ‘red graph’ is = R.

This is what we did via an involved construction that again uses
the rigid graphs Ls (for a particular countable family of sets S).

Theorem

Let T be any countable graph. There are 2%° non-regular Z-classes
of End(R) such that the Schiitzenberger groups of the 7 -classes
within them are = Aut(I").

See arXiv:1408.4107 for details.
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A few words on posets

A poset (P, <) is a.c. if for any finite A, B C P such that A< B
there exists x € P such that

A< x<B.

Hence, any lattice is a.c. when considered as a poset (but not as
an algebral).

Now by the Birkhoff's Representation Theorem any automorphism
group of a countable/finite graph can be represented as the
automorphism group of a countable/finite distributive lattice.

It follows all countable/finite groups arise as automorphism groups
of countable/finite a.c. posets.
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A few words on posets

However, for strict posets (P, <) the notion of being a.c. changes:
here we require that for all finite A < B we have x € P such that

A< x<B.

Open Problem

What are the automorphism groups of countable a.c. strict posets?
(l.e. what are the maximal subgroups of End(P, <)?)

Related work: G. Behrendt (PEMS, 1992)
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THANK YOU!

Questions and comments to:
dockie@dmi.uns.ac.rs

Further information may be found at:
http://people.dmi.uns.ac.rs/~dockie
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