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Ramsey classes

We consider relational structures in language L without function
symbols.

Definition
A class C (of finite relational structures) is Ramsey iff

∀A,B∈C∃C∈C : C −→ (B)A
2 .

(B
A

)
is set of all substructures of B isomorphic to A.

C −→ (B)A
2 : For every 2-coloring of

(C
A

)
there exists B̃ ∈

(C
B

)
such that

(B̃
A

)
is monochromatic.
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J. Hubička Ramsey Classes by Partite Construction II



Nešetřil-Rödl Theorem

A structure A is called complete (or irreducible) if every pair of
distinct vertices belong to a relation of A.

ForbE(E) is a class of all finite structures A such that there is no
embedding from E ∈ E to A.

Theorem (Nešetřil-Rödl Theorem, 1977)
Let L be a finite relational language.
Let E be a set of complete ordered L-structures.
The then class ForbE(E) is a Ramsey class.

Proof by partite construction.
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Nešetřil-Rödl Theorem

A structure A is called complete (or irreducible) if every pair of
distinct vertices belong to a relation of A.

ForbE(E) is a class of all finite structures A such that there is no
embedding from E ∈ E to A.
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Unary closures = relations with out-degree 1

Unary closure description C is a set of pairs (RU ,RB) where RU

is unary relation and RB is binary relation.

We say that structure A is C-closed if for every pair (RU ,RB)
the B-outdegree of every vertex of A that is in U is 1.

Theorem (H., Nešetřil, 2015)
Let E be a family of complete ordered structures and U an
unary closure description. Then the class of all C-closed
structures in ForbE(E) has Ramsey lift.

All Cherlin Shelah Shi classes with unary closure can be
described this way!
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Map of Ramsey Classes

freerestricted

linear orders

cyclic orders

graphs

unions of complete graphs

interval graphs

permutations

Kn-free graphs
partial orders

acyclic graphs

metric spaces

boolean algebras Unary CSS classes
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Further applications

Known Cherlin-Shelah-Shi classes:
bouquets
bowties extended by path
known examples without unary closure

n-ary functions
(structures with a function symbol (A, f ) where f : An → A)

Consider (A, f ) as a relational structure with (n + 1)-ary
relation where every n-tuple has a closure vertex
Because the algebraic closure is not locally finite Fraïssé
limit is not ω-categorical

In some cases algebraic closure is introduced as a
scaffolding and does not appear in the final Ramsey class:

Structures with infinitely many equivalence classes
QQ
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Structures with forbidden homomorphisms

Let F be a family of relational structures. We denote by
ForbH(F) the class of all finite structures A such that there is no
F ∈ F having a homomorphism F→ A.

Theorem (Cherlin,Shelah,Shi 1998)
For every finite family F of finite connected relational structures
there is an ω-categorical structure that is universal for ForbH(F).

Every ω-categorical structure can be lifted to
homogeneous.
Explicit homogenization is given by H. and Nešetřil (2009).

Theorem (Nešetřil, 2010)
For every finite family F of finite connected relational structures
there is a Ramsey lift of ForbH(F).
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Theorem (Nešetřil, 2010)
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Explicit homogenization of ForbH(C5)

Basic concept:
Amalgamation of two structures in ForbH(F) fails iff the free
amalgam contains a homomorphic copy of structure F ∈ F .
Use extra relations to prevent such amalgams

F
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Explicit homogenization of ForbH(F)

Definition
Let C be a vertex cut in structure A. Let A1 6= A2 be two
components of A produced by cut C. We call C minimal
separating cut for A1 and A2 in A if C = NA(A1) = NA(A2).

A rooted structure P is a pair (P,
−→
R ) where P is a relational

structure and
−→
R is a tuple consisting of distinct vertices of P.

−→
R

is called the root of P.

Definition
Let A be a connected relational structure and R a minimal
separating cut for component C in A. A piece of a relational
structure A is then a rooted structure P = (P,

−→
R ), where the

tuple
−→
R consists of the vertices of the cut R in a (fixed) linear

order and P is a structure induced by A on C ∪ R.
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Pieces of Petersen graph
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Explicit homogenization of ForbH(F)

Enumerate by P1, . . .PN all isomorphism types of pieces
structures in F .
Add lifted relations E1, E2,. . . EN where arities correspond
to sizes of roots of pieces P1, . . .PN .

Canonical lift of structure A, denoted by A, adds~t ∈ E i
A if

and only if there is a rooted homomorphism from P to A
mapping root of the piece to~t .
A sublift X of A is maximal if there is no extend A to
B ∈ ForbH(F) such that B induces more lifted relations on
X . In this case also A is call a witness of X.

Lemma
The class of all maximal sublifts of canonical lifts of structures
in ForbH(F) is an strong amalgamation class.
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Explicit homogenization of Petersen-free graph

Homogenization will consist of two ternary relations and one
quaternary relation denoting the rooted homomorphisms from
the pieces above.
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Infinitely many pieces

Example

Let Co be the class of odd cycles.

The pieces are even and odd paths rooted by the end

Only two lifted relations needed: all even paths can be tracked by E1

and all odd by E2.

A piece P = (P,
−→
R ) is incompatible with a rooted structure A if

there is a free amalgam of P and A unifying the roots it is
isomorphic to some F ∈ F .

IP is set of all rooted structures incompatible with P.

For two pieces P1 and P2 put P1 ∼ P2 if and only if IP1 = IP2 and put
P1 � P2 if and only if IP2 ⊆ IP1 .

Definition
A family of finite structures F is called regular if ∼ is locally finite.
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The existence of ω-categorical universal graph

Theorem (H., Nešetřil, 2015)

Let F be class of connected structures that is closed for
homomorphic images. Then there is an ω-categorical universal
structure in ForbH(F) if and only if F is regular.

The finite case:

Cherlin, Shelah, Shi, 1999: Universal graphs with forbidden
subgraphs and algebraic closure

Covington, 1990: Homogenizable relational structures

The finite case of relational trees:

Nešetřil, Tardif, 2000: Duality theorems for finite structures
(characterising gaps and good characterisations)

The infinite case of relational trees:

P. L. Erdös, Pálvölgyi, Tardif, Tardos, 2012: On infinite-finite
tree-duality pairs of relational structures
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The Ramsey Property
Consider special case of ForbH(C5).

The homogenization is a metric space with distances 1,2,3.

Describe the metric space by forbidden triangles implying image
of 5-cycle

1− 1− 1, 1− 2− 2, 3− 1− 1

and non-metric triangles:

3− 1− 1

Let A and B be such metric spaces. Applying Nešetřil-Rödl
theorem obtain C −→ (B)A

2 .

Little trouble: C is not a complete structure and may not be
complete to a metric space at all!

1

1

1

2

1

1

1
1

1
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J. Hubička Ramsey Classes by Partite Construction II



The Ramsey Property
Consider special case of ForbH(C5).

The homogenization is a metric space with distances 1,2,3.

Describe the metric space by forbidden triangles implying image
of 5-cycle

1− 1− 1, 1− 2− 2, 3− 1− 1

and non-metric triangles:

3− 1− 1

Let A and B be such metric spaces. Applying Nešetřil-Rödl
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The Induced Partite Construction

Nešetřil-Rödl Theorem:
C0 −→ (B)A

2 .
By mean of forbidden irreducible
substructures force C0 to be
3-colored graph without triangles
111,122,311

Construct C0-partite P0

Enumerate by A1, . . .AN all possible
projections of copies of A in P0

Construct C0-partite P1 . . .PN :

Bi : partite system induced on
Pi−1 by all copies of all with
projection to Ai
Partite lemma: Ci −→ (Bi)

Ai
2

Pi is built by repeating the free
amalgamation of Pi over all
copies of Bi in Ci
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The Induced Partite Construction

The problematic forbidden subgraphs:

1

1

1

2

1

1

1
1

1

Can we prove by induction that C0-partite pictures 1,. . . , N will omit
these given that C0 do not contain triangles 111,122,311?

A

Pi+1Pi Pi

Ci −→ (Bi )
A
2

C0
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J. Hubička Ramsey Classes by Partite Construction II



The Iterated Induced Partite Construction

Fix F .
Produce ordered homogenizing lift for ForbH(F). Denote
by L the class of all maximal sublifts of canonical lifts of
structures in ForbH(F).
Fix A and B in the lifted language.

Produce forbidden configurations (“cuttings” of structures
F ∈ F) and sort them as F1, . . . ,FM in a way so number of
minimal separating cuts increase.
Use Nešetřil-Rödl theorem to find C0 −→ (B)A

2 that does
not contain any irreducible structures not allowed in L.
Repeat partite construction to obtain C1, . . .CM such that
Ci −→ (B)A

2 . Ci is built from Ci−1.
By whack-a-mole argument show that Ci does not contain
Fi .
Because Ci has homomorphism to Ci−1 we know that Ci
does not contain F1, . . . ,Fi .
Turn Ci into an maximal lift C ∈ L.
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Infinite families of forbidden substructures

Definition
Class F (of relational structures) is locally finite in class C if for
every A ∈ C there is only finitely many structures F ∈ F , F→ A.

Theorem (H., Nešetřil, 2015)
Let E be a family of complete ordered structures, F be a regular
family of connected structures. Assume that F is locally finite in
ForbE(E). Then class ForbE(E) ∩ ForbH(F) has Ramsey lift.
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Example

Theorem (Nešetřil Rödl, 1984)
Partial orders have Ramsey lift.

P = (V ,≤,≺,⊥)

Forbidden complete substructures E :

Forbidden homomorphic images F :

. . .
Structures in ForbE(E) ∪ ForbH(F) can be completed into partial
orders without affecting existing ≺ and ⊥ relations.
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General statement

Definition
Let R be a Ramsey class, H be a family of finite ordered connected
structures, and, C an closure description.
K is (R,F , C)-multiamalgamation class if:

1 K is a subclass of the class of all C-closed structures in
R∩ ForbH(F).

2 F is regular and locally finite in R
3 Completetion property: Let B be structure from K, C be
C-semi-closed structure with homomorphism to some structure
in R∩ ForbH(F) such that every vertex of C as well as every
tuple in every relation of C is contained in a copy of B. Then
there exists C ∈ K and a homomorphism h : C→ C such that h
is an embedding on every copy of B.

Theorem (H. Nešetřil, 2015)

Every (R,F , C)-multiamalgamation class K has a Ramsey lift.
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J. Hubička Ramsey Classes by Partite Construction II



General statement

Definition
Let R be a Ramsey class, H be a family of finite ordered connected
structures, and, C an closure description.
K is (R,F , C)-multiamalgamation class if:

1 K is a subclass of the class of all C-closed structures in
R∩ ForbH(F).

2 F is regular and locally finite in R
3 Completetion property: Let B be structure from K, C be
C-semi-closed structure with homomorphism to some structure
in R∩ ForbH(F) such that every vertex of C as well as every
tuple in every relation of C is contained in a copy of B. Then
there exists C ∈ K and a homomorphism h : C→ C such that h
is an embedding on every copy of B.

Theorem (H. Nešetřil, 2015)
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Example

Example

Consider relational structure with two relations R1 and R2

where both relations forms an acyclic graph. Further forbid all
cycles consisting of one segment in R1 and other in R2.

Show that acyclic graphs in R1 with linear extension forms
an Ramsey class
Show that acyclic graphs in R2 with linear extension forms
an Ramsey class
Use the fact that strong amalgamation Ramsey classes
can be interposed freely to build Ramsey class R.
R now has two independent linear orders.
Show that the family of all bi-colored oriented cycles B is
regular
Show that the class in question is
(R,B, ∅)-multiamalgamation class
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How complex can be Ramsey lift?

. . . it contains at least an homogenizing lift
free linear order:
graphs, digraphs, ForbH(F) classes, metric spaces, . . .
convex linear order:
classes with unary relations
unary predicate and convex linear order:
n-partite graphs, dense cyclic order
linear extension:
acyclic graphs, partial orders and variants
multiple linear extensions:
two freely overlapped acyclic graphs possibly with
additional constraints
ordered digraph:
a structure with ternary relations where neighborhood of
every vertex forms a bipartite graph
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Map of Ramsey Classes

freerestricted

linear orders

cyclic orders

graphs

unions of complete graphs

interval graphs

permutations

Kn-free graphs
partial orders

acyclic graphs

metric spaces

boolean algebras Unary CSS classes
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Map of Ramsey Classes
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freerestricted

linear orders

cyclic orders

graphs

unions of complete graphs

interval graphs

permutations

Kn-free graphs
partial orders

acyclic graphs

metric spaces

boolean algebras Unary CSS classes
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Open problems

Can we use techniques above to find Ramsey lift of the
following?

all (non-unary) Cherlin-Shelah-Shi classes,
classes produced by Hrusovski construction,
C4-free graphs where very pair of vertices has closure
denoting the only vertex connected to both,
semilattices, lattices and boolean algebras

Can the notion of multiamalgamation be extended to handle
more algebraic structures, such as groups and semigroups?

. . . Can we find examples of Ramsey classes without Ramsey
lift or does all homogeneous classes with finite closures permit
Ramsey lifts?
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Thank you!
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