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But that only gives the rank n− 1 idempotents; not all the rank n− 1 maps...
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• Given a rank n− 1 map u there exists an idempotent e and a permutation

g ∈ Sn such that u = eg
• Given a rank n− 1 map u and a transposition (xy), there are three

idempotents e1, e2, e3 such that u(xy) = ue1e2e3.

• u = eg = e(xy)g1 = ee1e2e3g1 = . . . =product of idempotents!

Theorem Let G ≤ Sn be a group and let t be a rank n− 1 map. TFAE:

1. 〈G, t〉 generates all non-invertible transformations;

2. G is 2-homogeneous.

Corollary Let G be 2-homogeneous and t be a rank n− 1 map. Then the rank

of 〈G, t〉 is at most 4, and we know exactly what it is for each group G.
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Pei Huisheng Problem: rank T (X,P ) =?

rankT (X,P ) = rank(Sm1
≀ Sn1

)× . . .× (Sm1
≀ Sn1

) +A
The rank of the semigroup of transformations stabilising a partition of a finite

set, Math. Proc. Cambridge Phil. Soc. (2015)

The first paper in transformation semigroups accepted in this journal in the last

20 years.



This is what is good!



Problems session #1

• The Steinberg Prize rankT (X,P ) using the representation theory of

semigroups.



Problems session #1

• The Steinberg Prize rankT (X,P ) using the representation theory of

semigroups.

• The John Fountain Prize rankT (X,P, S) using anything you want.



Problems session #1

• The Steinberg Prize rankT (X,P ) using the representation theory of

semigroups.

• The John Fountain Prize rankT (X,P, S) using anything you want.

• The Praeger Prize (worth 5 euros):



Problems session #1

• The Steinberg Prize rankT (X,P ) using the representation theory of

semigroups.

• The John Fountain Prize rankT (X,P, S) using anything you want.

• The Praeger Prize (worth 5 euros): find the largest commutative

subsemigroups of T (X).



Problems session #1

• The Steinberg Prize rankT (X,P ) using the representation theory of

semigroups.

• The John Fountain Prize rankT (X,P, S) using anything you want.

• The Praeger Prize (worth 5 euros): find the largest commutative

subsemigroups of T (X).



Is it juste (fair)?



Is it juste (fair)?

No!



Is it juste (fair)?

No! The case of automorphisms:



Is it juste (fair)?

No! The case of automorphisms:



Is it juste (fair)?

No! The case of automorphisms:



Automorphisms of semigroups

From the 20s to 1972 mathematicians described Aut(End(Γ)), for Γ

• an anti-chain (Aut(T (X)))



Automorphisms of semigroups

From the 20s to 1972 mathematicians described Aut(End(Γ)), for Γ

• an anti-chain (Aut(T (X)))
• a chain,



Automorphisms of semigroups

From the 20s to 1972 mathematicians described Aut(End(Γ)), for Γ

• an anti-chain (Aut(T (X)))
• a chain, a poset,



Automorphisms of semigroups

From the 20s to 1972 mathematicians described Aut(End(Γ)), for Γ

• an anti-chain (Aut(T (X)))
• a chain, a poset, a Boolean algebra,



Automorphisms of semigroups

From the 20s to 1972 mathematicians described Aut(End(Γ)), for Γ

• an anti-chain (Aut(T (X)))
• a chain, a poset, a Boolean algebra, a lattice, and a very large etc.



Automorphisms of semigroups

From the 20s to 1972 mathematicians described Aut(End(Γ)), for Γ

• an anti-chain (Aut(T (X)))
• a chain, a poset, a Boolean algebra, a lattice, and a very large etc.

• (Vaz̆enin 1972) a reflexive digraph in which one of the edges is not

contained in a cycle.



Automorphisms of semigroups

From the 20s to 1972 mathematicians described Aut(End(Γ)), for Γ

• an anti-chain (Aut(T (X)))
• a chain, a poset, a Boolean algebra, a lattice, and a very large etc.

• (Vaz̆enin 1972) a reflexive digraph in which one of the edges is not

contained in a cycle.



Automorphisms of semigroups

From the 20s to 1972 mathematicians described Aut(End(Γ)), for Γ

• an anti-chain (Aut(T (X)))
• a chain, a poset, a Boolean algebra, a lattice, and a very large etc.

• (Vaz̆enin 1972) a reflexive digraph in which one of the edges is not

contained in a cycle.

Are there natural (easy) digraphs in which every arrow is contained in a cycle?
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CS
n := ((i, i+ s))i∈n,s∈S

If we consider only reflexive circulant digraphs 1 ∈ S ⊆ Zn, then

Aut(End(CS
n )) = {g ∈ NSn

(Aut(CS
n )) | g

−1End(CS
n )g = End(CS
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CFSGℵ1 + Schur rings = NSn
(Aut(CS

n ))(for particular S and n).

Aut(End(CS
n )) =? ⇔ {α ∈ Aut(Zn) | α
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are 2-sets, and there exists g ∈ G such that Ag = B. Let S be any generating
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Aw = B?
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Answer C5, D5,AGL(1, 5) (degree 5), PSL(2, 5) or PGL(2, 5) (dg 6),

AGL(1, 7) (dg 7), PGL(2, 7) (dg 8), PSL(2, 8) or PΓL(2, 8) (dg 9), or An, Sn.

Theorem (JA, JD Mitchell, C. Schneider; J. Algebra) Let G ≤ Sn. Then 〈G, t〉
is regular for all t ∈ Tn if and only if G is one of the groups in the list above.

(Regular means: for every a ∈ S exists b ∈ S s.t. a = aba.)
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Example

Problem Let k < n/2; classify the primitive groups G ≤ Sn such that for

every k-set A and every k-partition P there is g ∈ G such that Ag is a section

for P .

Theorem [JA, P.J. Cameron; TAMS 2015] The problem has been (almost) solved.

Corollary If in the orbit (under G) of any k-set there exists a section for every

k-partition, then in the orbit of any (k − 1)-set there exists a section for every

(k − 1)-partition.

Theorem Let G ≤ Sn and k ≤ n/2; then 〈G, t〉 is regular, for all rank k maps

t, iff in the orbit (under G) of any k-set there exists a section for any k-partition.
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find the smallest number of k-partitions needed to dominate all the k-subsets

of [n].

Rosemary Bailey Prize (worth 7 euros) For each natural n and for each

k < n, find the smallest number of k-sets needed to dominate all the

k-partitions of [n].

Michael Kinyon Prize (worth 7 euros) Prove that if G ≤ GL(n, q) is such that

for all singular matrix a there exists a matrix g ∈ G with

rank(aga) = rank(a), then G contains the special linear group.

Gordon Royle Prize (worth 10 euros) Is it true that the Suzuki groups have the

3-universal transversal property?

B. & H. Neumann Prize (worth 10 euros) Classify the groups G that have the

4-universal transversal property and PSL(2, q) ≤ G ≤ PΓL(2, q), for q
prime, or q = 2p, with p prime. [Conjecture mathematics is not ready for this

problem...]
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2-sets, and there exists g ∈ G such that Ag = B. Let S be any generating set

for G. Prove that there exists a word w on S, of length linear on n, such that

Aw = B?

Gordon Royle Prize (worth 10 euros) Is it true that the Suzuki groups have the

3-universal transversal property?

B. & H. Neumann Prize (worth 10 euros) Classify the groups G that have the

4-universal transversal property and PSL(2, q) ≤ G ≤ PΓL(2, q), for q
prime, or q = 2p, with p prime.
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