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Posted on 21/05/2014 ® Beginning a career
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Then I came to a serious check. The path went through a gate into a field with a big herd of = At CAUL in Lishon
cows, many with calves, who came hurrying over to see me. With them came the bull, a % Oxt Wilsweca .
= Mathematics Genealogy Project

very solidly built chap whose conversation and gestures made it very clear that he didn’t = DELP
want me to come into his field. Normally it is quite easy to hoosh cows away, but this herd, = Walks
perhaps emboldened by the presence of Big Daddy, were not to be moved. So instead I had : ;::n"itﬁ'z
to climb over the fence and walk through the potato field next door. 3
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THE MINIMAL DEGREE OF A FINITE INVERSE SEMIGROUP

1 In other words, people who care about semigroups qua semigroups consider groups to be "known." If you

can solve a semigroug Eroblem in terms of groups, then you consider the Eroblem 'solved’, even if the

BORIS M. SCHEIN group-theoretic problem is not really "solved". - Arturo Magidin May 1 '12 at 19:00

ABSTRACT. The minimal degree of an inverse semigroup S is the minimal

AZANAZILE, WAL} ANFL AERRRARALW LS 10 11WLE uv Yuwiu vl llllbl\;al., Yo WULIDIWUGTE Ulll! JRERRR W
inverse semigroups in this paper. Our main result is an exact formula for §(.S)
“modulo groups.” Solving semigroup problems “modulo groups” (a_semigroup
problem reduced to a group problem is considered solved) may raise objections,

¥ s — e S w —_ Ya.. "N
| (- | €0 www.encyclopediaofmath.org/index.php/Semi-group EJ
When the structure of semi-groups is considered, much importance is attached to various constructions that reduce
the description of the semi-groups in question to that of "better" types. Quite frequently, the latter are groups, and

the principle of description "modulo groups” is common in semi-group-theoretical contexts; in fact, it already

p— in the theory of groups or with the role finite-dimensional simple algebras over a
e field play in the structure theory of rings.

ik 0 Criticas The_structure of finite 0-simple semigroups was described (modulo groups)
by Sushkevich in 1928. This is why the class of finite 0-simple semigroups is
considered to be one of the most transparent classes of semigroups. The following
result was therefore totally unexpected.

Escrever critica

Algorithmic Problems in
Groups and Semigroups Theorem 1 (Kublanovskii, 1994). The S-problem and the SP-problem for the

editado por Jean-Camille Birget,Stuart class CO are undecidable.
Aargolis,John Meakin,Mark V. Sapir



Sym(n)

J{n-1)

Jir)

u v

J(r-1) ;
a

rank T(n) = rank S(n) + 1

rank of 7'(n)

1,2 3 4

2 3 4

1,29 39 49 .

Q1th =

oh gh 4h



2nd Question:

Are answers of the type

rank T(n) = rank Sym(n) + 1

really the



2nd Question:

Are answers of the type

rank T(n) = rank Sym(n) + 1
really the

° good



2nd Question:

Are answers of the type

rank T(n) = rank Sym(n) + 1
really the

° good
o ftrue



2nd Question:

Are answers of the type

rank T(n) = rank Sym(n) + 1
really the

° good
e f{rue
e juste



2nd Question:

Are answers of the type

rank T(n) = rank Sym(n) + 1
really the

° good

e ftrue

e juste and
e beauty



2nd Question:

Are answers of the type

rank T(n) = rank Sym(n) + 1
really the

e good

e f{rue

e juste and
e beauty

way of foster the interaction between groups and semigroups?



2nd Question:

Are answers of the type

rank T(n) = rank Sym(n) + 1
really the

° good

e t{rue

e juste and
e beauty

way of foster the interaction between groups and semigroups?




3rd Q: How to try the best cherries?




3rd Q: How to try the best cherries?

+— Fibonacei numbers, 4 Happy birthday, Isaac New

A train journey sts

Posted on 08/07/2012 ® Good news on metrics
= [¥d 1 prove that?

1like travelling by train. I have made memorable trips from Cairns to Gympie; Vancouver : i:ﬁimi“ﬁ e

—_ » s . " = [ecture notes

to Calgary; Roma to Potenza; Fort William to Mallaig; Mumbai to Pune; Paris to Milano. P

Now I can add another to this list. = Beamer handouts
Blogroell

The train starts its journey in Covilhg; the line to the north has been closed. It passes " Annoying precision

= Astro ¢ Picture of the Da
through the fertile valley of the Zézere river, with vineyards and orchards everywhere. . Azimz;lm} TRRACIEER

(The first stop, Fundéo, produces “the best cherries in the world”; we ate them in the » Bad seience
breaks at the workshop in Covilhé, and I would not quarrel with the description.) Then it iy

r p r ; = British Combinatorial Committ
climbs a rugged range, where a tunnel takes it to the other side, another wide flat valley. B i s
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But that only gives the rank n — 1 idempotents; not all the rank n — 1 maps...
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Ahah! You are right —said the semigroupist— but now we have a piece of
semigroup theory magic!

e Given arank n — 1 map u there exists an idempotent e and a permutation
g € Sy, suchthatu = eg

e Givenarank n — 1 map u and a transposition (xy), there are three
idempotents e, eo, e3 such that u(xy) = uejeges.

e u=-¢cg=c(xy)g1 = eereae3g) = ... =product of idempotents!

Theorem Let G < 5,, be a group and let ¢t be a rank n — 1 map. TFAE:

1. (G, t) generates all non-invertible transformations;
2. (G is 2-homogeneous.

Corollary Let G be 2-homogeneous and ¢ be a rank n — 1 map. Then the rank
of (G, t) is at most 4, and we know exactly what it is for each group G.



What is good




What is good




Real world example




Real world example

Pei Huisheng Problem: rank T'( X, P) =?
P

| 1234

abcd

Xyzw

& # % $

rank T'(X, P) = rank S(X, P) + 2



Real world example

Pei Huisheng Problem: rank T'( X, P) =?
P

| 1234

abcd

Xyzw

& # % $

rank T'(X, P) = rank S(X, P) + 2 = rank(S,, 1 Sn) + 2



Real world example

Pei Huisheng Problem: rank T'( X, P) =?
P

1234

abcd

Xyzw

& # % $

rank T'(X, P) = rank S(X, P) + 2 = rank(S,, 1 Sn) + 2



Real world example

Pei Huisheng Problem: rank T'( X, P) =?
P

1234

abcd

Xyzw

& # % $

rank T'(X, P) = rank S(X, P) + 2 = rank(S,, 1 Sn) + 2
rank T'(X, P) = 2 + 2!



Real world example

Pei Huisheng Problem: rank T'( X, P) =?
P P

«| 1234

abcd

Xyzw

& # % §

rank T'(X, P) = rank(Sy; 0.Sn,) X ... X (Spmy USn, )+7



Real world example

Pei Huisheng Problem: rank T'( X, P) =?
P P

«| 1234

abcd

Xyzw

& # % $

rank T'(X, P) = rank(Sp,; 1 Sny) X .. X (Spy 1Sn)+7



Real world example

Pei Huisheng Problem: rank T'( X, P) =?
P P

1234

abcd

Xyzw

& # % §

rank T'(X, P) = rank(Sp,; 1 Sny) X .. X (Spy 1Sn,)+7



Real world example

Pei Huisheng Problem: rank T'( X, P) =?
P P

«| 1234

abcd

Xyzw

& # % §

rank T'(X, P) = rank(Sm, 0Sn,) X ... X (Smy 050, ) + A4
The rank of the semigroup of transformations stabilising a partition of a finite
set, Math. Proc. Cambridge Phil. Soc. (2015)



Real world example

Pei Huisheng Problem: rank T'( X, P) =?
P P

«| 1234

abcd

Xyzw

& # % §

rank T'(X, P) = rank(Sm, 0Sn,) X ... X (Smy 050, ) + A4

The rank of the semigroup of transformations stabilising a partition of a finite
set, Math. Proc. Cambridge Phil. Soc. (2015)

The first paper in transformation semigroups accepted in this journal in the last
20 years.
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From the 20s to 1972 mathematicians described Aut(End(I")), for T’

e an anti-chain (Aut(T(X)))

e achain, a poset, a Boolean algebra, a lattice, and a very large etc.

e (Vazenin 1972) a reflexive digraph in which one of the edges is not
contained in a cycle.

Are there natural (easy) digraphs in which every arrow is contained in a cycle?
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Circulant graph Clzgf'.

If we consider only reflexive circulant digraphs 1 € S C Z,,, then
Aut(End(Cy)) = {g € Ns,(Aut(Cy)) | g~ End(Cy)g = End(C;)}
CFSG™ + Schur rings = Ng, (Aut(C?))(for particular S and n).

=

Aut(End(C?)) =? & {a € Aut(Z,) | o ' End(C)a = End(C3)} =7
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Problems Session #2

The Enormous Problem Prize: given a C> describe
{a € Aut(Zy,) | a *End(C2)a = End(C2)}

This Prize is worth O euros.

Johann Sebastian Bach
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Problems Session #2

The Nesetril Prize (worth 5 euros) Classify the C',;f whose endomorphisms are
trivial [automorphisms or constants].

The Clifford Tower Prize Describe the ea-automaton of your favourite
mathematical object.
(Worth eternal fame!)




From Pushed by the father

profinite groups / profinite semigroups

hyperbolic groups / hyperbolic semigroups
(bi)automatic groups / (bi)automatic semigroups
conjugation in groups / conjugation in semigroups
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Rank 5

C.H. Li et al, £ Jowrnal af Algebra 279 { 304) 749-7 70 733
Tahle 2
Werex-primitive arc-transitive graphs of valency 4
At i” Wertex-stabiliser ¥ n m Comments
Zptéy Z4 1 I3 1 p=3
21Dy Dy [ 1 pzd
PSLa(p) 54 2 ipipt—Ing4E 1 p=ctl (mod ), p# 7
PSL2 () Ay 2 (plpd —101/24 [ip+£1/12] p=+3(mod &), p£5, =41
Ilip+eh p# ] imod 10)
PGLyip) Sy 2 (pipt—1y24 | 5= 3 (mod §)
PGL2(T) D 1 21 1 Cayley
AutiAg) [35 ] 1 45 1 non-Cayley
PSL2(1T) Dyg I 153 I non-Cayley
57 54 % 5y 3 35 1 odd graph
PSL3(7) (Ag:Ls)da 3 26068 1 non-Cayley




Rank 5

C.H. Lieral, / Jowrnal of Algelra 279 (NN ) 749-7 7} 133
a — b—¢C Table 2
Werex-primitive arc-transitive graphs of valency 4
At i” Wertex-stabiliser ¥ n m Comments
£nidy Z4 1 I3 1 p=3
B C C 21Dy Dy 1 pt 1 pzd
A 1 2 PSLa(p) 54 T (plpt o148 ] p=cl (mod &), p#£7
d PSLa(p) Ay 2 plpt =124 [p+e)/12]  p=L£3(mod 8l p £S5 s =+l

a Ilip+eh p#F £l imod 10)
PGLy(p) Sy (pp? — 10)/24 p=+3 (mod§)
C PGL2(T) Dig | Cayley

1
1
AutiAg) [2S ] 45 1 non-Cayley
153 1 non-Cayley
1
1

o = = = b

PSL2(17) O
C B A C 57 54 % 5y 35 odd graph
A1 1 2 2 PSL1(7) (AyZ3hds 26063 non-Cayley

at 7d
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Peter J. Cameron Prize (worth 200 euros) Suppose G is primitive, A and B

are 2-sets, and there exists g € (G such that Ag = B. Let S be any generating

set for G. Prove that there exists a word w on S, of length n — 1, such that
Aw = B?



Example

A group G < S, is (k, k + 1)-homogeneous (k < n/2) if for every k-set A
and every (k + 1)-set B thereis g € GG suchthat Ag C B.
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A group G < S, is (k, k + 1)-homogeneous (k < n/2) if for every k-set A
and every (k + 1)-set B thereis g € GG suchthat Ag C B.

Problem Classify the groups G < S, that are (k, k + 1)-homogeneous, for all
k<n/2

Answer C5, D5, AGL(1,5) (degree 5), PSL(2,5) or PGL(2,5) (dg 6),
AGL(1,7) (dg 7), PGL(2,7) (dg 8), PSL(2,8) or PT'L(2,8) (dg 9), or A,,, Sj,.



Example

A group G < S, is (k, k + 1)-homogeneous (k < n/2) if for every k-set A
and every (k + 1)-set B thereis g € GG suchthat Ag C B.

Problem Classify the groups G < S, that are (k, k + 1)-homogeneous, for all
k<n/2

Answer C5, D5, AGL(1,5) (degree 5), PSL(2,5) or PGL(2,5) (dg 6),
AGL(1,7) (dg 7), PGL(2,7) (dg 8), PSL(2,8) or PI'L(2, 8) (dg 9), or A, Sy,.

Theorem (JA, JD Mitchell, C. Schneider; J. Algebra) Let G < S,,. Then (G, t)
is regular for all t € T, if and only if (G is one of the groups in the list above.
(Regular means: for every a € S exists b € S s.t. a = aba.)






Example

Problem Let k& < n; classify the primitive groups GG < S,, such that for every
k-set A and every k-partition P there is g € G such that Ag is a section for P.



Problem Let k& < n; classify the primitive groups GG < S,, such that for every
k-set A and every k-partition P there is g € G such that Ag is a section for P.
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Problem Let k£ < n/2; classify the primitive groups G' < .S,, such that for
every k-set A and every k-partition P there is g € (& such that Ag is a section
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(k — 1)-partition.



Example

Problem Let k£ < n/2; classify the primitive groups G' < .S,, such that for
every k-set A and every k-partition P there is g € (& such that Ag is a section
for P.

Theorem [JA, PJ. Cameron; TAMS 2015] The problem has been (@most solved.
Corollary If in the orbit (under (&) of any k-set there exists a section for every
k-partition, then in the orbit of any (k — 1)-set there exists a section for every

(k — 1)-partition.

Theorem Let G < S, and k < n/2;then (G, t) is regular, for all rank k£ maps
t, iff in the orbit (under &) of any k-set there exists a section for any k-partition.
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Problems session # 3
Stuart Margolis Prize (worth 7 euros) For each natural n and for each £ < n,

find the smallest number of k-partitions needed to dominate all the k-subsets
of [n].

Rosemary Bailey Prize (worth 7 euros) For each natural n and for each
k < n, find the smallest number of k-sets needed to dominate all the
k-partitions of [n].

Michael Kinyon Prize (worth 7 euros) Prove that if G < G L(n, q) is such that
for all singular matrix a there exists a matrix g € G with
rank(aga) = rank(a), then G contains the special linear group.

Gordon Royle Prize (worth 10 euros) Is it true that the Suzuki groups have the
3-universal transversal property?

B. & H. Neumann Prize (worth 10 euros) Classify the groups G that have the
4-universal transversal property and PSL(2,q) < G < PI'L(2,q), for ¢
prime, or ¢ = 2P, with p prime. [Conjecture mathematics is not ready for this
problem...]
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Peter J. Cameron Prize (worth 20 euros) Suppose G is primitive, A and B are
2-sets, and there exists g € G such that Ag = B. Let S be any generating set
for G. Prove that there exists a word w on S, of length linear on n, such that
Aw = B?

Gordon Royle Prize (worth 10 euros) Is it true that the Suzuki groups have the
3-universal transversal property?

B. & H. Neumann Prize (worth 10 euros) Classify the groups GG that have the
4-universal transversal property and PSL(2,q) < G < PI'L(2,q), for ¢
prime, or ¢ = 2P, with p prime.



Epic split




Fundao cherries




Inbox (32,620)
Starred
Important
Sent Mail
Drafts (547)

+ Circles

Fundao cherries

From: Ricardo Gongalves <ricardogoncalves@cm-fundao.pt>

Date: 27 July 2015 at 15:03

Subject: Message from Paulo Ferandes, Mayor fo Fundao

To: jjrsga@gmail.com

Special Message to the participants in the London Mathematical Society Conference in Durham.
As Mayor of Fundao, | am very honoured to know that Professor Cameron is an admirer of the
quality of Fundao's cherries, if possible, we are even more honoured to know that he has been
acting as a sales representative for the Fundao cheries to the world's mathematical community!

Next time you visit Portugal please come to visit us.

| will be very pleased to receive you in the Town Hall and offer you the best of the best cherries,
that only in situ can be tasted.

This invitation, of course, applies also to any of the participants of your conference. Thank you
very much for what you have been doing for Funddo. And for mathematics!

Big hug my friend,

Paulo Fernandes
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